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Cyclic thrombocytopenia (CTP) is a rare disease of periodic platelet count oscillations. The
pathogenesis of CTP remains elusive. To study the underlying pathophysiology and genetic
and cellular associations with CTP, we applied systems biology approaches to 2 patients with
stable platelet cycling and reciprocal thrombopoietin (TPO) cycling at multiple time points
through 2 cycles. Blood transcriptome analysis revealed cycling of platelet-specific genes,
which are in parallel with and precede platelet count oscillation, indicating that cyclical
platelet production leads platelet count cycling in both patients. Additionally, neutrophil and
erythrocyte-specific genes also showed fluctuations correlating with platelet count changes,
consistent with TPO effects on hematopoietic progenitors. Moreover, we found novel genetic

* Both patients showed
sequential exaggerated
TPO, platelet gene,
and platelet count
cycling, as well as
trilineage gene
fluctuations.

« Both had somatic GOF
STAT3 mutations and

clonal T cells; 1 had a
novel germline LOF

associations with CTP. One patient had a novel germline heterozygous loss-of-function (LOF)
thrombopoietin receptor (MPL) ¢.1210G>A mutation, and both had pathogenic somatic gain-
of-function (GOF) variants in signal transducer and activator of transcription 3 (STAT3). In

MPL mutation
correlating with cycling
parameters.

addition, both patients had clonal T-cell populations that remained stable throughout platelet
count cycles. These mutations and clonal T cells may potentially involve in the pathogenic
baseline in these patients, rendering exaggerated persistent thrombopoiesis oscillations of
their intrinsic rhythm upon homeostatic perturbations. This work provides new insights into
the pathophysiology of CTP and possible therapies.

Introduction

The production of megakaryocytes and platelets in the bone marrow (BM) is strictly regulated by the
balance of thrombopoietin (TPO) and platelet mass to maintain platelet homeostasis. Patients with
cyclic thrombocytopenia (CTP) have substantial periodic platelet oscillations with amplitudes ranging
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Thirty-eight RNA sequencing data of sequential blood samples of both patients are
available at the Gene Expression Omnibus (GEO) under accession number
GSE179076.
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from thrombocytopenic to normal/thrombocytosis levels. Patients
with CTP typically have a cycling time of 3 to 5 weeks."? Various
potential etiological associations including cyclical mega-
karyopoiesis, menstrual cycles, cyclical autoimmune platelet
destruction, and T-cell clonality have been observed, yet the
pathogenesis remain elusive.'

The oscillatory nature of hematopoiesis in general has been
recognized and mathematically modeled as a nonlinear dynamical
system with feedback loops involving time delays.* After pertur-
bations, such systems entail oscillations with a constant period of
about twice the time delay, and certain conditions introducing
moderate thrombocytopenic baselines may increase the “gain” of
the system and result in a stable and exaggerated oscillatory stage.
Morley, Mackey, and others postulated that CTP could be a
consequence of errors in or perturbation of thrombopoiesis.””
Biological findings correlating with these concepts are needed to
improve specific modeling for CTP.” We hypothesized that inheri-
ted or acquired genetic mutations affecting thrombopoiesis could
create a vulnerability of this system to transition to a CTP pheno-
type and that patterns of gene expression during cycling could
shed light on the regulation of this process.

Methods

The study was approved by the Stanford University Institutional
Review Board and conducted in accordance with the Declaration
of Helsinki. Two patients enrolled with informed consent. Twenty-
four consecutive blood samples from patient 1 (CT1) and 15
from patient 2 (CT2) were collected every 3 to 4 days.

MPL was Sanger sequenced. MPL c.1210G>A mutation was
constructed. Wild-type (WT) or the mutant MPL cDNA was stably
transfected into Ba/F3 cells for functional analyses.

The Stanford Tumor Actionable Mutation Panel for Hematopoietic
and Lymphoid Neoplasms, or Heme-STAMP in short, is a targeted
next-generation sequencing (NGS)-based panel. Heme-STAMP
was performed on whole blood DNA to screen for hematolymphoid
neoplasm—associated mutations in 164 genes.

Peripheral blood mononuclear cell DNA were used for NGS-based
T- and B-cell receptor clonality profiling (LymphoTrack, Invivoscribe).

Blood RNAs were extracted after red blood cell lysis and sequenced
for longitudinal transcriptome analysis using SAMseq algorithm to
investigate platelet count—associated gene expressions.

Details of these methods are provided in supplemental Methods.

Results and discussion

CT1, a 58-year-old male, exhibited platelet count oscillation (range,
1-409 x 10%/L; mean, ~128 x 10%L) and an inverse plasma TPO
oscillation (6-2745 pg/mL) with a prolonged cycling period of 39
days.? CT2, an 86-year-old male, also exhibited reciprocal platelet
count (range, 7-142 x 10°L; mean, ~65 x 10%L) and TPO
oscillations (12-405 pg/mL) over a period of 26 days (Figure 1A).
Neither patient had known comorbidities or medications known to
affect platelet number or function.

Whole blood transcriptome analyses identified 236 genes that
were quantitatively correlated with platelet count in both patients.
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These genes can be parsed into 3 groups based on their expres-
sion patterns (Figure 1B; supplemental Table 1). The largest group
consisted of 151 platelet-specific genes that oscillated preceding
platelet count fluctuations by 3 to 4 days (Figure 1B-D). Thirty-four
of these 151 genes (eg, MYL9, TUBB1, ITGA2B) demonstrated
over 50-fold and 10-fold expression changes during platelet count
cycles in CT1 and CT2, respectively (Figure 1B). As platelet RNAs
are inherited from megakaryocytes and are positively correlated
with the number of newly formed platelets, the expression patterns
suggest cyclical platelet production underlie platelet count oscil-
lations in both patients (Figure 1E).

Both patients also shared fluctuations of immature neutrophil-spe-
cific'®"" (eg, AZU1, ELANE, LCN2) and erythrocyte-specific (eg,
ALAS2, EBP42, HBM) genes, with cycling patterns preceding
platelet-specific genes (Figure 1B-D). Gene ontology analysis
showed enrichment of neutrophil-specific and erythrocyte-specific
biological processes in these platelet count—associated genes
(supplemental Table 2). In contrast to gene expression patterns, only
neutrophil counts in CT1 showed a cycling trend, all within normal
range (supplemental Figure 1). This may be due to dampening (buff-
ering) effects of marrow neutrophil release control and long lifespan of
erythrocytes that absorbed the mild production fluctuations.*

The TPO and trilineage gene expression patterns are consistent
with TPO-mediated oscillations* in both patients. For CT2, the 14d
interval between TPO and platelet count oscillations resembles the
normal time delay (about 12 days) of TPO effect on platelet count
in healthy people,’? whereas CT1 displayed a prolonged time delay
of 21d. Moreover, compared with CT2 and prior CTP cases,®'®"®
CT1 had much higher TPO peak levels, similar to those observed in
congenital amegakaryocytic thrombocytopenia.'” These prompted
us to sequence the TPO receptor, MPL, in CT1, which revealed a
novel germline ¢.1210G>A heterozygous mutation, resulting in a
p.Gly404Arg (G404R) substitution in a highly conserved site
(Figure 2A-B; supplemental Figure 2). No MPL mutation was
detected in CT2.

In vitro functional analysis demonstrated that MPL G404R is a loss-
of-function mutation with deficiencies in TPO-stimulated growth,
TPO uptake, and TPO pathway activation (Figure 2C-E;
supplemental Figure 2). Thus, this mutation may explain the
unusually high TPO peaks without rebound thrombocytosis, and it
may also slow the TPO-mediated thrombopoiesis, explaining the
prolonged cycle period in CT1. Family studies demonstrated a
paternal origin of the mutant allele. The father exhibited nonperiodic
fluctuations in platelet count (166-223 x 10%L) during an 80-day
period. Therefore, this MPL mutation is insufficient to cause CTP.

Heme-STAMP testing of peripheral blood revealed somatic STAT3
variants in both patients: CT1 had STAT3 Y640F (2% VAF) and
STAT3 D661Y (1%VAF); CT2 had STAT3 D661Y (6% VAF)
(Figure 2A). These STAT3 variants are pathogenic gain-of-function
mutations first identified in T-cell large granular lymphocyte (T-LGL)
leukemia and are associated with immune-mediated cytopenias,
including neutropenia or pure red cell aplasia, even when present at
subclonal (low VAF) levels.'®?' Background LGL populations were
observed in both CT1 and CT2 (supplemental Figure 3), and T-LGL
lymphoproliferation has been reported in 2 patients with CTP.*2?

NGS profiling demonstrated clonal T cells in both patients
(Figure 2F). This is consistent with a recent report where clonal
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Figure 1. Oscillations of platelet count, plasma TPO, and trilineage-specific genes. (A) Reciprocal platelet count and plasma TPO oscillations in CT1 and CT2. CT2

received a platelet transfusion on day 2 (green arrow). TPO levels were measured in platelet-poor plasma by Quantikine ELISA (R&D Systems). (B) Venn diagram of the number of

genes quantitatively associated with platelet count changes in both patients and gene list of the 3 lineage-specific groups. (C) Heatmap of the 151 platelet-specific (Plt-specific),

the 19 erythrocyte-specific (Ery-specific), and the 7 immature neutrophil-specific (Neut-specific) genes displaying their longitudinal expression patterns over 2 platelet cycles for

each patient. Using Cluster 3.0, the expression levels of individual genes were mean-centered across all time points and log-transferred for heatmaps, which were visualized using

Java TreeView (Version 1.1.6r4) and color-scaled into yellow (high expression) to blue (low expression) or gray (below detection limit). (D) Quantification of the heatmap by

showing the median levels of each gene group at every time point to illustrate their longitudinal patterns. (E) The median expression levels (in transcripts per million [TPM]) of the

34 platelet-specific genes that showed the highest fold changes in relation with platelet count and TPO oscillations. These platelet-specific genes are in parallel with and leading

platelet count by 3 to 4 days in both patients. Together, they mirror the TPO oscillations. ELISA, enzyme-linked immunosorbent assay.

T-cell receptor rearrangement was found in 6 out of 8 patients with Additional findings were identified in each patient. CT1 had a
CTP, including 1 who later developed T-LGL leukemia.® The clonal monoclonal B-cell population by flow cytometry and B-cell receptor
populations did not show cyclical variation in either patient clonality profiling (Figure 2A; supplemental Figure 4). CT2 had

(Figure 2G).

192 ZHANG et al

pathogenic gain-of-function mutations in the last exon of PPM1D
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Figure 2. Genetic alterations and clonal lymphocytes patterns in these patients. (A) A list of the pathogenic blood cell mutations and clonality of T and B cells detected in
each patient. (B) Sanger sequencing data of the MPL c¢.1210G>A (G404R) heterozygous mutation in CT1 using both blood and hair DNA samples. (C) The MPL G404R
mutation failed to support TPO-stimulated growth of Ba/F3 cells. Ba/F3 cells expressing WT MPL, mutant MPL, or vector were incubated in medium without IL-3 but containing
10 ng/mL TPO. Cell numbers were counted daily using hemocytometer and displayed as mean plus or minus SD. (D) The mutant MPL is impaired in TPO uptake, a process
involving TPO-MPL binding at the cell surface and its subsequent internalization. Ba/F3 cells expressing WT or mutant MPL were seeded in 6-well plates containing equal
amounts of TPO with 5 x 10° cells per well. TPO uptake was monitored by measuring the remaining TPO concentration in cell supernatant after designated incubation time. After
60 minutes, the remaining TPO in WT cells was significantly lower than that of mutant cells (P =.0108) based on paired Student ¢ test. Mean plus or minus SD of 2 separate
experiments is displayed. (E) Mutant MPL leads do reduced JAK-STAT pathway activation upon TPO stimulation. Compared with WT MPL (WT), Ba/F3 cells expressing the
mutant MPL (G404R) had reduced phosphorylation of JAK-STAT pathway proteins such as p-STAT3, p-STAT5, and p-ERK1/2 after 15 to 120 minutes of TPO stimulation as
revealed by western blot. Ba/F3 cells transfected with the expression vector (Vector) was a negative control. f-Actin was a loading control for western blot. (F) Clonality of T cells
in CT1 and CT2. Histograms show the frequencies of the top 10 clones of T-cell receptor B locus (TRB) in a sample at platelet count descending phase. Both CT1 and CT2 had
clonal TRB. (G) The top clones of TRB in 6 sequential samples in CT1 and 5 in CT2 were identical. Their clonal frequencies were plotted and linked to show their stable
longitudinal patterns over a platelet count cycle. IL-3, interleukin-3; SD, standard deviation; VAF, variant allele frequency.

(R458X, 1% VAF; L484X, 2% VAF), which impair the DNA dam-
age response.”®

In summary, our study revealed novel genetic and cellular associ-
ations in 2 patients with CTP, who displayed exaggerated oscilla-
tions with their intrinsic periodic rhythms. The fact that pathogenic
somatic gain-of-function STAT3 mutations and stable clonal T-cell
populations are identified in both patients and are associated with
autoimmunity and cytopenias suggest their involvement in the
pathogenic baseline of CTP in these patients. In line with the
previous model,* we hypothesize that these factors could impair
thrombopoiesis, increasing gain of the system, leading to over-
correction and persistence of cycling in the setting of perturbations
eliciting a thrombopoietic response. In support of this concept, a
CTP phenotype linked to hydroxyurea therapy has been observed
in patients with JAK2 V617F—positive polycythemia vera.?*2°

€ blood advances 10 january 2023 - vOLUME 7, NUMBER 1

The true incidence of underlying somatic and germline genetic
alterations in CTP such as seen here in STAT3 and MPL will need
to be explored in additional patients. Identifying these mutations in
patients who require therapy could represent a potential opportu-
nity for individualized, novel targeted therapeutic approaches.
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