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Simple Summary: Young, Mexican women are more susceptible to breast cancer compared to other
populations. However, studies on germline young, Mexican women are scarce and limited to a panel
of 143 genes. This is partially due to the lack of gene annotation tools and difficulties in determining
the causal genes in understudied populations. Here, we used whole exome sequencing combined
with a powerful annotation tool to analyze 862 cancer genes in 115 young, Mexican women diagnosed
with breast cancer. Our results showed well-known genes and many barely reported variants in our
population. Moreover, we were able to assign candidate causal genes to 34% of patients, surpassing
previous studies. These results suggest that deeper bioinformatic analyses could inform medical
decisions to improve diagnosis, treatment, and life expectancy in young women with breast cancer.

Abstract: Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About
7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches
15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in
YBC across the world. However, there is only one report from a Mexican population, which is not
restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively
pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more
complex tools to determine which genes and variants could be pathogenic. We used germline whole
exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients.
Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes
on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as
BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in
Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting
and controversial evidence for some of these genes. We conclude that exome sequencing combined
with robust annotation tools and further analysis, can identify more genes and more patients affected
by germline mutations in cancer.

Keywords: breast cancer; variant annotation; variant pathogenicity; cancer predisposition; bioinformatic
pipeline; cancer genes
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1. Introduction

Breast cancer (BC) is one of the most frequent types of cancer among women; 2.3 mil-
lion cases were reported in 2020, causing more than 680,000 deaths globally [1]. The BC
incidence increases with age. The majority of the diagnosed patients are 40 years and
older, reaching 89%: 4% between 39 and 35, 5% less than 35, and 1.75% in women under
30 (https://gco.iarc.fr/ (accessed on 1 December 2021), [1]). In Mexico, BC is the first cause
of death among women diagnosed with a malignant neoplasia [1], with an estimate of 26%
of cancer-related deaths. Notably, the incidence of breast cancer in young women (YBC) in
Mexico reached 15% in 2020, which is considerably higher than worldwide [1,2].

It has been observed that clinical outcomes and tumor biology in young patients are
different from older women [3,4]. Tumors in young women are more likely to be of higher
histological grade and are usually classified as estrogen receptor (ER) and progesterone
negative receptors [5]. These patients typically present local recurrences to be diagnosed at
an advanced stage and have inferior 5-year survival compared to the older premenopausal
counterparts [5]. Moreover, YBC tends to present a more aggressive subtype such as
triple-negative or HER2+ [6].

In some populations, up to 24% of the hereditary BC is linked to germline mutations
in BRCA1/2 specific genes [7], and the prevalence may reach 14% in patients not showing
familial history [7]. Mutations in these genes have a lifetime risk of developing BC up to
65% [8]. Other genes with germline mutations had been reported to confer moderate cancer
risk, such as ATM, CHECK2, and PALB2, which are also associated with other cancers [8–10].

In addition to BRCA1, BRCA2, ATM, CHEK2, and PALB2, germline mutations in Latin
America have been reported for CDH1, NBN, NF1, TP53, MLH1, BRIP1, MSH2, MSH6, and
PMS2 in populations from Chile, Brazil, Colombia, and México [11]. In Mexico, a study in
hereditary breast and ovarian cancer, which used a panel of 143 genes, found 21 germline
mutations in BRCA1 and BRCA2, while another 19 genes showed 1 or 2 mutations, including
the FANC(I/B/C/L/M) gene family accounting for 6 mutations [12]. Importantly, the above
study found only 15% of patients (46 of 300) showing a germline mutation in at least one of
the 143 panel genes. The low detection rate highlights the need to interrogate more genes
in the population known to carry familial susceptibility.

The sequencing of gene panels has been a cost-efficient tool to determine the preva-
lence of specific genes among cancer populations [13–16]. However, more genes need
to be studied to determine pathogenicity in most patients, for example, by whole exome
sequencing. One issue is that pathogenicity is challenging to assess in not well-known or
reported genes without further functional assays. Fortunately, extensive sequencing efforts,
such as the 1000 genomes project [17] and the gnomAD (accessed on 1 December 2021) [18],
provide databases of human variation among a relatively healthy population that help
remove many common variants. In addition, other databases, such as ClinVar (accessed
on 1 December 2021), help to mark pathogenic variants [19]. Still, massive sequencing
generates several unseen variants increasing the need to explore methodologies to identify
possible causal variants. In this context, Pediatric Cancer Variant Pathogenicity Information
Exchange (PeCanPIE, accessed on 1 December 2021) is a web-based tool that integrates
many sources of information supported by the guidelines from the American College of
Medical Genetics and Genomics (ACMG) that are useful to identify interesting candidate
variants quickly [20]. PeCanPIE uses a variant categorization for putative pathogenicity
based on a “medal ceremony” concept of four levels. The Gold category is assigned for
highly likely pathogenic truncating or splicing variants, whose genes are already found in
pathogenic databases and whose variants are rare among healthy populations. Silver vari-
ants are in-frame, indels, and truncations in non-cancer genes or predicted to be damaging
and matching pathogenic databases. Bronze variants are those whose effects are predicted
to be tolerated. An unknown label is assigned otherwise.

To determine the possible etiology of BC in young women, in this study, we performed
whole exome sequencing followed by the PeCanPie bioinformatic analysis of 115 young
patients diagnosed with BC and focused on known 862 cancer genes where pathology

https://gco.iarc.fr/
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has already been associated with diseases. Briefly, we obtained 49 variants classified as
Gold resulting in more than 20 genes that have not been reported previously in LA BC. In
addition, 106 variants were classified as Silver.

2. Materials and Methods
2.1. Patients

We included 115 patients from the National Cancer Institute of Mexico (INCAN, Insti-
tuto Nacional de Cancerología) diagnosed at 40 years old or younger with histopathological
confirmation of BC. Patients were recruited between September 2015 and December 2017.
Medical records and electronic files with detailed clinical and sociodemographic informa-
tion were obtained from the INCAN. Trained nurses obtained blood samples after patients
received genetic counseling and signed the informed consent.

2.2. Ethical Considerations

Regulatory approval was obtained from the INCAN Research and Ethics Committee
(Approval ID CEI/1123/16). Genetic counseling and information about potential germline
findings were provided to patients in addition to assurance of patient confidentiality and
relevant information concerning the project, sample management, and DNA shipment
for analysis to the National Cancer Institute (NCI), USA. Based on the recommendations
provided by the American College of Medical Genetics, hereditary cancer diagnostic
variants in their DNA were reported to the patients.

2.3. Sample and Panel Library Preparation for Sequencing

The DNA was extracted from peripheral leukocytes using the Wizard Genomic DNA
Purification Kit (Promega Corporation, Madison, WI, USA), following the manufacturer’s
instructions. The resulting DNA was purified using Agencourt AMPure XP reagent (Beck-
man Coulter Inc., Brea, CA, USA) following the manufacturer’s protocol. In addition,
an adapter-ligated library was prepared using the KAPA HyperPlus Kit (KAPA Biosys-
tems, Wilmington, MA, USA) with NEXTflexTM DNA Barcoded Adapters (Perkin Elmer
Waltham, MA, USA), according to the KAPA-provided protocol.

2.4. Sequencing

The deep whole exome sequencing was performed at the Laboratory of Translational
Genomics, Division of Cancer Epidemiology and Genetics (NCI, Rockville, MD, USA).
The GRCh37 (hg19) genome assembly was used for genome mapping reference. The
DNA sequencing was performed using the Illumina HiSeq 2000 sequencer for 2 × 100-pb
paired-end cartridge (Illumina, San Diego, CA, USA). The sequencing included regulatory,
splicing, and 3′ and 5′ UTR regions.

2.5. Variant Calling

The reads were aligned using Novoalign software (v3.00.05, Novocraft Technolo-
gies Sdn Bhd, Petaling Jaya Selangor, Malaysia). Duplicate reads were removed using
MarkDuplicates from Picard Software (v1.126, Broad Institute, Cambridge, MA, USA). For
variant calling, the pipeline involved RealignerTargetCreator, IndelReligner, BaseRecalibra-
tor, UnifiedGenotyper, and HaplotyperCaller tools from GATK (v4.1.3.0, Broad Institute,
Cambridge, MA, USA). Variants that failed to pass the pipeline control metrics (CScorefilter)
had a read depth minor to 10, ABHet (reference to alternate reads ratio) <0.2 or >0.8 were
excluded for the analysis. In addition, all variants were filtered using popmaxfreq <0.01.

Before variant categorization, variants were filtered to remove those that do not show
at least 10 reads in the alternate allele or that the minor allelic fraction was lower than 0.25.

2.6. Variant Categorization

The obtained variant calling files were analyzed using PeCanPIE, which classified the
variants into three categories: Gold, Silver, and Bronze [20]. The variants were assigned as
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Gold if it is a truncating variant, including splicing, or a loss-of-function associated with
a reported disease documented in ClinVar with at least two starts, and at least one of the
following databases: IARC: Tp53, ASU: TERT, ARUP: Ret, BIC, PCFP, and COSMIC. The
variants assigned as Silver are considered as in-frame indels, truncation events in non-tumor
suppressor genes. Variants had to be reported in at least one of the following databases:
UMD, LOVD, RB1, or ALSoD [20]. The variant is assigned as Bronze if predicted to be
tolerant by in silico algorithms.

For PeCanPie, we used the union of their internal set of cancer predisposition genes
and the Cancer Gene Census v94 from COSMIC [21] containing 712 and 723 genes, respec-
tively, generating a list of 862 genes.

Only gold and silver variants were considered and studied separately for further
analysis and filtering. The variants with fewer than 20 total reads or variant allele frequency
(VAF) less than 0.25 were discarded for further analysis.

2.7. Statistical Analysis

We performed a descriptive analysis to calculate central tendency and dispersion
measures for quantitative variables and absolute/relative frequencies for categorical vari-
ables. We also constructed logistic regression models to analyze the predictors of Gold
variants. The final model included age < 30 years at diagnosis, family history of cancer,
immunohistochemical subtype, advanced stage (IIB–IV), and continuous BMI. To evaluate
disease-free and overall survival, we performed a Kaplan–Meier analysis, stratified by Gold
variant, and considered time (in months) from diagnosis to the date of first recurrence or
death. To evaluate differences by mutational status, we performed a Log-rank test. For all
tests, we assumed a p-value < 0.05 to determine statistical significance. We used STATA 14®

software to perform all statistical analysis tests.

3. Results
3.1. Clinical Population

A summary of our cohort characteristics, including 115 patients, is shown in Table 1
(raw data in Table S1). The median age was 33.9 years at diagnosis, and 18.3% were younger
than 30. Patients diagnosed at advanced clinical stages (IIB–IV) corresponded to 65% of the
cohort. Ductal histology (85%) and Luminal-B (50%) subtype were the most common in
this group. A family history of cancer was present in 32.2% of these young women. All
participants were premenopausal. The mean age at menarche was 12.34 years, 28.7% of
participants were nulliparous, and the average number of children among parous was 2.1.
Breastfeeding was practiced in 68.7% of parous women. Overweight and obesity was a
condition present in 61.7% of the participants.

3.2. Variant Categorization

From the 1,189,705 raw variants, quality filtering generated 350,546 variants used
for PeCanPIE annotation. PeCanPIE detected 6496 variants within the 862 cancer genes
selected. After further filtering (for the number of reads described in the Methods section),
49 were categorized as Gold and 106 as Silver, corresponding to 40 and 87 genes, respectively
(Figure 1). Only 39 patients (34%) showed high confidence Gold variants, while 74 (64%)
showed Silver variants. Overall, 88 patients showed Gold or Silver variants.

3.3. High Confident Germline Variants in Cancer Genes

The criteria for Gold variants involve known pathogenic variants, a strong alteration
variant (nonsense, frameshift, truncation) in a known pathogenic gene, and low allele
frequency in public non-cancer databases [20]. From the 52 Gold variants obtained before
manual filtering, two were removed (chr19, positions 34945343 and 34945354, UBA2 gene)
because six patients showed alternative and varied genotypes at those positions, always
with fewer reads in the alternate genotype suggesting mapping and sequencing artifacts.
Additionally, one variant in (chr16, position 72991715, ZFHX3 gene) was also removed



Cancers 2022, 14, 1647 5 of 15

because it was present in all patients suggesting a common variant. Thus, 49 variants
involving 40 genes and 39 patients were finally designated as Gold (Figure 2 and Table 2).
All variants were heterozygous. Except for one variant present in two patients (RBM8A),
all Gold variants were observed only in one patient. Of these variants, we noted 20 splicing,
17 frameshift, eight nonsense, three missense, and one ‘5-UTR. Most patients showed only
one Gold variant, but 11 patients of 39 (28%) showed two. The well-known BRCA2 gene
was the most recurrently altered, observed in five patients, showing four frameshifts and
one missense. The following most frequent alterations were observed in CHEK2, PALB2,
POLQ, DDX3X, and FLG affecting two patients. From these genes observed in two or more
patients, the variants observed in BRCA2, PALB2, and CHEK2 were also found in ClinVar
with documented association to BC (Table S2). However, variants in POLQ, DDX3X, FLG,
and RBM8A are barely reported in BC and will be further described.

Table 1. Clinical data of 115 BC young patients.

Clinical Data n Frequency (%)

Patients n 115

Age Mean 33.9
Interquartile range 31–38

Age at menarche Mean 12.34
Interquartile range 11–13

Parity

Nulliparous 33 28.7
1 child 27 23.2

2 children 32 23.5
>3 children 23 20.0

Breastfeeding

No 37 32.2
Yes 78 67.8

Luminal B
(Her2-positive) 19 13.2

Luminal B
(Her2-negative) 31 28.3

Her2-positive
(non-luminal) 8 6.6

Triple Negative 30 28.3

Histology

Ductal 98 85.2
Lobular 6 5.2
Mixed 9 7.8
Others 2 1.7

Clinical Stage

I 15 13.0
II 45 39.1
III 49 42.6
IV 6 5.2

Consumption of
Hormonal contraceptives

No 50 43.5
Yes 65 56.55

First-grade family history of cancer No 90 78.3
Yes 25 21.7

Second-grade family history of cancer No 78 67.8
Yes 37 32.2

Body Mass Index
Normal (BMI < 25) 44 38.3

Overweight 45 39.1
Obesity (BMI > 30) 26 22.6

DDX3X, located in Xp11.4, encodes for an RNA helicase linked to somatic mutations in
medulloblastoma [22]. It is also X chromosome inactivated in ovarian cancer [23]. Germline
mutations have been reported in female brain development and disability, whose variants
were observed on the Helicase ATP-binding and the Helicase C-terminal domains [24,25]. The
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two observed T→C heterozygous variants in our cohort affect the exon-intron splicing sites
located in the Helicase C-terminal region (G539 and S590) responsible for the interaction
with the nuclear mRNA export receptor TAP [26]. Moreover, DDX3X plays a role in DNA
damage response [27]. There is no evidence in the clinical record for mental disability in
these patients. These pieces of evidence suggest that DDX3X is potentially a predisposing
gene in young BC patients.

Figure 1. The diagram summarizes all the obtained variants with their exclusion criteria. YBC young
Mexican breast cancer patients.

POLQ encodes a polymerase involved in DNA repair [28,29]. Germline mutations in
BC have been reported mainly in non BRCA1/2 carriers [30,31]. In our data, we observed
one splicing and one nonsense variant in I2385V and L1430*, respectively. Consistent to the
above studies, these POLQ positive patients were not carriers of BRCA1/2 or TP53 variants.

FLG encodes for filaggrin that aggregates keratin intermediate filaments in the mam-
malian epidermis. FLG germline variants have been recently reported in around 16% of
Taiwanese BC patients [28] and 17% of hepatocellular carcinomas from Thailand [29]. In ad-
dition, it has been found somatically mutated in 10% of ER + BC patients [30]. We observed
two G→A nonsense mutations (R788* and R501*), each one affecting a single patient. One
of these patients carrying a FLG germline variant had a second primary contralateral breast
cancer (K1).



Cancers 2022, 14, 1647 7 of 15

Figure 2. Gold variants detected. The top seven genes show two or more patients affected (black and
green), while the rest show one patient only (blue). The 11 patients (in columns) marked with “2”
show two Gold variants.

We observed a promoter variant in RBM8A affecting two patients. According to
ClinVar (ID 30464), this recessive variant causes a decrease in gene expression [31], which is
crucial when combined with another severe variant affecting patients with Radial aplasia-
thrombocytopenia syndrome. RBM8A differential expression has been noted in several
cancers types but observed more expressed in the tumor than in the normal tissue [32],
which seems counterintuitive. The allelic fraction reported in gnomAD is 1.8%, similar to
the 1.7% observed in our sample, suggesting that promoter variants may be random. Like
reports in ClinVar, it may need to be combined with another unknown alteration. Overall,
the evidence is unclear, suggesting that the promoter variant in RBM8A is a variant of
unknown significance (VUS).

From the genes present in only one patient, 12 genes have strong support shown by
their reports in ClinVar for pathogenic or likely pathogenic variants in ATM, BLM, BRCA1,
CLTCL1, ERCC6, FANCE, G6PC3, MSH6, MUTYH, TP53, and TSC2. Moreover, some of
these genes also show germline mutations in BC patients. For example, ERCC6 has also
been reported in Brazilian YBC patients [33] and Lebanon familial BC [34]; BLM in Russian
YBC patients [35] and USA patients [36]; TSC2 in Italian patients [37]; and ATM is also well
known in BC [11].
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Table 2. Gold variants.

Chr Position Ref * Alt * Depths Gene LA + Type AA Chg Pat pLI AF Lat § ProtSize
11 108175579 G A 21,19 ATM Splice E1892_E37 H4 0 1 × 10−4 3056
15 91341429 A AG 15,25 BLM Frameshift T1074fs D8 0 - 1417
17 41258472 C A 54,35 BRCA1 Splice R71_E4 G8 0 3 × 10−5 1863
13 32914033 CA C 18,20 BRCA2 Frameshift S1848fs E0 0 3 × 10−5 3418
13 32914122 AC A 52,30 BRCA2 Frameshift N1877fs J2 0 3 × 10−5 3418
13 32930653 C CA 15,17 BRCA2 Frameshift S2509fs B2 0 - 3418
13 32937507 A G 44,30 BRCA2 Missense D2723G G2 0 A:C 0 3418
13 32954260 CG C 23,17 BRCA2 Frameshift V3079fs K5 0 2 × 10−4 3418
22 29091718 TA T 29,23 CHEK2 Frameshift L413fs J6 0 - 543
22 29115401 A ATGAT 28,16 CHEK2 Frameshift M222fs F5 0 1 × 10−4 543
22 19222211 C T 33,36 CLTCL1 No Missense E330K G5 0 9 × 10−4 1640
2 189868190 T A 35,26 COL3A1 No Splice P869P J6 1 9 × 10−5 1466
7 101926377 C T 57,41 CUX1 No Nonsense Q678 * G2 1 3 × 10−3 678
16 50818362 T A 30,39 CYLD No Splice I650_E13 C1 1 3 × 10−5 956
18 50734187 G A 28,23 DCC No Splice V621_E11 H2 0.99 2 × 10−4 1447
X 41206109 T C 46,39 DDX3X No Splice G539_E15 K3 1 4 × 10−5 662
X 41206562 T C 44,41 DDX3X No Splice S590_E16 F3 1 2 × 10−3 662
19 45917294 T C 21,22 ERCC1 Splice V235_E7 H0 0 6 × 10−5 297

10 50680422 C T 16,25 ERCC6 No Splice R975_E16 G8 0 C:A 3 ×
10−5 1493

11 44228353 G A 33,34 EXT2 No Nonsense W535 * A2 0 1 × 10−4 718
6 35425330 C T 25,34 FANCE No Splice D286_E3 A0 0 3 × 10−4 536
4 187530955 C G 34,21 FAT1 No Splice T3356T B0 0 0 4588

17 17117000 CG C 45,40 FLCN No Frameshift R570fs C0 0.79 C:T 3 ×
10−5 579

1 152285000 G A 46,43 FLG No Nonsense R788 * K8 0 6 × 10−4 4061
1 152285861 G A 45,34 FLG No Nonsense R501 * K1 0 4 × 10−3 4061
17 42148542 TC T 11,14 G6PC3 No Frameshift I70fs H0 0 8 × 10−4 346
14 62203827 G A 20,20 HIF1A No Splice D417_E9 A2 0 2 × 10−4 826
2 48033791 GT(26) G 15,12 MSH6 Splice R1334_E9 A0 0 1 × 10−4 & 1360
1 45797228 C T 25,23 MUTYH Splice G396_E13 E7 0 3 × 10−3 546
6 44233331 G GC 21,12 NFKBIE No Frameshift A57fs I9 0.77 3 × 10−4 500
5 176722446 TC(6) T 27,25 NSD1 No Frameshift S2424fs G7 1 - 2696
16 23641062 CAG C 25,39 PALB2 Frameshift S804fs D6 0 1 × 10−4 1186
16 23641139 G C 24,36 PALB2 Nonsense S779 * K6 0 9 × 10−5 1186
3 52620706 TG T 15,12 PBRM1 No Splice E1017_E21 C9 1 0 & 1689
2 190728500 C T 26,29 PMS1 No Nonsense R630 * C9 0 1 × 10−4 932
3 121168273 T C 19,22 POLQ Splice I2385V B2 0 - 2590
3 121207489 A T 20,15 POLQ Nonsense L1430 * E6 0 9 × 10−5 2590
5 23527845 CA C 31,42 PRDM9 No Frameshift T883fs B6 0 6 × 10−5 894
1 45294985 C T 14,13 PTCH2 No Splice L406_E10 B1 0 3 × 10−5 1203
17 56774167 C CT 47,59 RAD51C Frameshift A173fs A5 0 - 376
1 145507646 G A 15,27 RBM8A No UTR_5 E1_UTR_5 G1 0.57 1 × 10−2 174
1 145507646 G A 18,24 RBM8A No UTR_5 E1_UTR_5 G5 0.57 1 × 10−2 174
2 3623181 G A 51,58 RPS7 No Splice E4 0.95 - 194
1 16262459 G GC(27) 27,17 SPEN No Frameshift A3242fs I0 1 9 × 10−4 & 3664
17 7578406 C T 22,29 TP53 Missense R175H I9 0.53 0 393
16 2124201 C T 44,31 TSC2 No Splice R786C B0 1 0 1807
17 5074956 T A 83,62 USP6 No Nonsense Y1343 * H3 0 9 × 10−5 1406
8 31014882 A G 13,13 WRN Splice K1274_E33 J8 0 1 × 10−4 1432
16 72991713 C CC(9) 20,14 ZFHX3 No Frameshift A778fs H6 1 0 3703
X 70466308 GTGGT G 28,11 ZMYM3 No Frameshift P821fs L2 1 - 1370

* Numbers in parenthesis represent the total length. + Represent whether the gene has been reported in Latin-
American BC patients in the Urbina-Lara et al. analysis [11]. § Allele frequency in Latino population from
GnomAD website (https://gnomad.broadinstitute.org/, accessed on 1 December 2021). Variants in GnomAD
slightly different to those found are explicitly indicated or marked with &. A total of 50 variants is shown,
49 unique (RBM8A is present in two patients). Genomic positions correspond to hg19. Ref and Alt refer to
reference and alternate alleles respectively. Depths refers to Ref and Alt alleles respectively. AA Chg refers
to aminoacid change. Pat refers to patient. pLI refers to the probability of LoF intolerance. ProtSize refers to
canonical transcript protein size in aminoacids. Bold genes mark those found more than once. AF Lat = Allele
Frequency in Latin Americans.

The remaining Gold variants genes are, by definition in PeCanPIE, associated with
diseases in databases; inquiringly, they do not show clear evidence of pathogenicity, specif-
ically in ClinVar. All these variants carry protein truncations in genes where the loss of

https://gnomad.broadinstitute.org/
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function (LoF) mutations is a known mechanism of disease (BLM, COL3A1, CUX1, CYLD,
ERCC1, EXT2, FAT1, FLCN, NFKBIE, NSD1, PBRM1, PMS1, PRDM9, PTCH2, RAD51C,
RPS7, USP6, WRN, and ZFHX3). Many of these genes already show evidence of vari-
ants in BC in other populations such as BLM in Slavic [38] and Brazilians [39]; ERCC1 in
Brazilians [40]; PMS1 in men [41]; WRN in Latins [42], or in other cancers such as CYLD
in head and neck [43]; EXT2 in osteochondromas and chondrosarcomas [44,45]; FAT1 in
retinoblastomas [46]; NSD1 and PBRM1 in renal cell carcinoma [47,48]; PRDM9 in acute
lymphoblastic leukemia [49]; PTCH2 in rhabdomyosarcoma [50]; RAD51C also in breast
cancer [51]; RPS7 in hypocellular bone marrow failure [52]; SPEN, USP6, and ZFHX3 in
pancreatic adenosquamous carcinoma [53]; TICAM1 in thyroid cancer [54]; ZFHX3 also in
endometrial cancer [55]; and DCC in gallbladder cancer [56].

We also noted seven genes marked with “caution” in PeCanPIE showing the truncation
close to the C-terminal (CUX1, FLCN, FLG, MSH6, NSD1, PRDM9, and USP6), questioning
its functional effects in the cancer context. To provide additional support for these variants,
we considered the probability of LoF intolerance (pLI) provided by gnomAD [18]. Natural
selection purifies highly deleterious variants, therefore, genes showing fewer than expected
LoF variants in a large healthy population are seen as highly LoF intolerant, proposing
association to disease when observed in an individual. Thus, pLI close to 0.9 and up
to 1 are a strong indicator of LoF intolerance as recommended by gnomAD. We noted
pLI = 1 in NSD1, strongly suggesting some contribution to disease consistent with previous
evidence [47]. We also noted pLI = 1 for CUX1, but the stop codon gain is shown at the
last protein amino acid (Q678), marked in gnomAD as ‘low confidence loss of function’. In
between, we observed pLI = 0.79 in FLCN and pLI = 0.77 for NFKBIE. Contrary, we noted
pLI = 0 for PRDM9 and USP6; thus, although categorized as Gold, these variants are less
likely to be pathogenic. We also noted pLI > 0.9 for COL3A1, DCC, DDX3X, PBRM1, RPS7,
SPEN, TSC2, ZFHX3, and ZMYM3, in which a considerable proportion of the protein is
altered by a frameshift, splice, or nonsense variant. We noted that one of the patients
carrying TP53 and NFKBIE presented a second primary glioblastoma (I9).

We observed that the variant allelic fraction in Latino populations, is in general, low
(Table 2), validating the PeCanPie filtering. Nevertheless, few variants in the order or few
per a thousand (10−3) could indicate a random finding due to our sample size.

We explored associations between patients carrying Gold variants and those not, along
with clinical co-variables. The adjusted model showed an association of Gold variants with
first- and second-family history of cancer (OR 3.21; CI 95% 1.15–8.95) and age < 30 years
(OR 3.74; CI 95% 1.20–11.70). None of the tumor subtypes was associated with carrying a
Golden variant.

We also observed that an increase in one unit of continuous BMI raises the odds of
detecting a Gold variant in young women with breast cancer (OR 1.19; CI 95% 1.07–1.34),
suggesting that BMI might be a modifier in women with Gold germline variants, and
might reduce the age of breast cancer presentation. This phenomenon has been described
previously for BRCA1/2 carriers, but our results suggest BMI could be a modifier for other
genes as well [57–59].

We noticed that women with a Gold variant were diagnosed in advanced stages: IIB-IV
(OR 3.21; CI 95% 1.21–8.98), suggesting that a Gold variant might increase breast cancer
aggressiveness. It has been described that BRCA1/2 carriers have a higher risk of lymph
node involvement at diagnosis [60].

The Median follow-up of this cohort was 62 months (48–73). Although not significant
at p < 0.05 using a Log-Rank test probably due to the small sample size, we found that
disease-free survival could be higher in women without Gold variants (89%) versus women
with Gold variants (74%) (Figure 3A) after adjusting for clinical prognostic factors. We
observed fewer differences for overall survival (OS), with 91.5% of OS in women without
carrying a Gold variant and 86.8% OS in women with a Gold variant (Log-Rank test p = 0.48,
Figure 3B). These results are consistent with many previous studies involving hereditary
breast cancer and survival [61,62].
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Figure 3. Survival analyses of YBC patients carrying Gold variants. (A) Disease free survival.
(B) Overall survival.

3.4. Modest Confidence Germline Variants

The criteria for Silver are in-frame indels, truncation events in non-tumor suppressor
genes but associated to diseases, variants predicted to be damaging by in silico algorithms,
and matches to databases such as ClinVar with fewer than two stars, BRCA Share, ALSoD,
LOVD, and a locus-specific database for APC, MSH2, and RB1. In addition, we filtered for
the 862 genes associated with cancer. Under these conditions, PeCanPIE detected 1128 Silver
variants. To further filter Silver variants to choose those more likely pathogenic, we reasoned
that if a variant is the same as a somatic mutation found in a cancer patient, specifically
in the tumor biopsy, it could indicate a higher degree of confidence. Thus, to further
explore potential pathogenic variants, we only considered Silver variants categorized as
Gold or Silver in the PeCanPIE somatic category. This additional category considers somatic
databases such as COSMIC and PCGP [63].

Thus, 106 Silver variants were obtained distributed in 87 genes (Table S2). Of 115 pa-
tients, 74 (64%) presented one or more silver variants, all heterozygous. Of these, 18 were
missense, four splice site, one frameshift, one nonsense, six protein deletions, eight protein
insertions, and 78 splice regions. Of these genes, the most frequent were AKAP9 and ATM
in four patients, followed by KMT2D, MGA, COL3A1, NCOR2, ERBB2, and MLLT3 in three
patients each. We noted the following gene families: BRCA1/2, CDK 4/N2A, ERBB 2/3, ERCC
1/2/3, FANC A/D2/E/M, MRE 11/11A, NOTCH 1/2, and SMARC A4/B1/E1. Interestingly, we
detected the same missense mutation in ERBB2 (R896H) in two patients. The gene position
has been reported to activate HER2 function (R896C) [64], suggesting that R896H could
affect normal function and potentially contribute to tumorigenesis.

4. Discussion

In the current work, we report an exome analysis of 115 young Mexican BC patients
using the pipeline PeCanPIE focused on well-defined evidence of pathogenicity following
ACMG guidelines. To our knowledge, this is the first effort for Mexican patients covering
the germline whole exome. Previous efforts in Mexico and Latin America have focused
on gene panels from 20 to 140 genes irrespective of the age of diagnosis [12,65]. Similar
approaches showed a prevalence of 10.2% of pathogenic variants in BC in the USA [66].
Nevertheless, age at diagnosis is important because it may indicate an accelerated tu-
morigenesis process supported by recent reports showing an increase in BC incidence in
young women [1,2,67–70]. Therefore, we focused on extreme phenotypes patients, where
BC was diagnosed at 40 years old or less. We found that 39 patients (34%) showed a
likely pathogenic Gold variant in 40 genes. This finding is higher than recent prevalence
estimations in Latin American countries (13–25%) [42], which is likely due to our increased
analysis in over the more than 800 genes by whole exome, and a higher genetic risk
background of the younger population.
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Comparing our Gold variants results with those of Quezada-Urban et al. in Mexican’s
BC, where more than 53% were older than 40 years old and using a panel of 143 genes [12],
only six genes were overlapping (BRCA1/2, ATM, WRN, RAD51C, and CHEK2). We did not
find variants in 15 of the 21 genes reported (MSR1, ERCC3 [1 Silver], LIG4, PDE11A, ATR,
FANC(I/B/C/L/M), RECQL4, SDHB, MLH1, NBN, and PTEN), and we found 36 other genes
which were not present in the Quezada-Urban et al. study. Some genes, however, showed
similar gene families, such as ERCC1/6 and FANCE. We also noted that many genes were
not reported in BC for Latin-American countries (Table 2).

In our sample, we noted that 58% of the patients were overweight at the time of
diagnosis, which is consistent with the 60% reported by Quezada-Urban et al. [12] and
other reports in Mexico [2]. Weight loss in the young woman has been associated with
lower cancer risk in BRCA1 carriers [71]. Thus, we explored possible associations of known
variants (Gold) to BMI. We observed a small but significant increase in BMI among Gold
variant carriers. These results should be confirmed in larger cohorts.

We noted many Gold variants in genes not previously reported in Latin American
cohorts but reported in BC in the USA, Europe, Asia, or other cancer types and gene
families. For instance, Fanconi anemia and excision repair genes (FANC and ERCC genes)
have been reported in Latin American BC cases [11]. These findings highlight the use of a
broader set of genes combined with powerful analysis tools, to expand the results.

PeCanPIE uses a pipeline considering the observed variant frequency among ‘healthy’
populations deposited in databases such as ExAC, which is primarily based on Caucasian
populations [72]. In the Silver category, we noted few variants present in many individ-
uals in our cohort even with low allelic fraction in ExAC, confirming that estimations
of Latin America variations are needed to identify common variants in this population.
Although PeCanPIE was initially conceived for pediatric cancers, they included several
gene databases from other cancers reaching 712 genes. To complement this, we added
723 genes from COSMIC v94. Thus, our analysis was limited to the unified 862 genes from
these two sources. If we extend the analysis to the whole exome and focus on Gold variants,
besides the two common variants that would need to be removed, six genes are added
(C8B, DMD, HBB, IRF8, KCNQ1, and MYBPC3, of which three are splices, two frameshifts,
and one nonsense). Nevertheless, these were not considered in our analysis, since we focus
on more likely genes with a stronger background in the cancer context.

We focused on Gold variants because pathogenicity is theoretically the highest pro-
vided by PeCanPIE. Nevertheless, Silver variants may also show interesting results, such as
that mentioned for HER2 (ERBB2 R896H) and other gene families such as CDK, BRCA1/2,
ERBB, ERCC, and FANC. However, more careful revision is needed for Silver variants. For
example, we noted a missense mutation in five patients in WRN (R834C) that has been
shown to abolish important WRN function [73]. Although the variant was filtered out
because of quality criteria (fewer than 10 reads), this polymorphism is frequent in the
Mexican and is also unlikely to be pathogenic [74]. Thus, Silver variants should be handled
more thoroughly. This evidence also highlights that annotation tools are crucial to facilitate
interpretation but that results must be revised, and tools should be continuously updated.

Overall, our study provides candidate pathogenic variants in Mexican YBC, a barely
studied population. Some variants need more careful analyses; for example, those regarding
splice site variants and those in RBM8A. In addition, recent evidence rises questions even
for well-known breast cancer genes [75]. Thus, confirmatory information may be needed
either by specific experimental assays or analyses of large cohorts to potentially translate
our findings into clinical practice.

5. Conclusions

We conclude that using whole exome sequencing to analyze an extended set of cancer
genes, and a rigorous bioinformatic pipeline that includes PeCanPIE, we were able to
identify candidate pathogenic genes for a more extensive set in young, Mexican breast
cancer patients.
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