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ABSTRACT

Vitamin D signaling plays an essential role in innate defense against intracellular 
microorganisms via the generation of the antimicrobial protein cathelicidin. In addition 
to directly binding to and killing a range of pathogens, cathelicidin acts as a secondary 
messenger driving vitamin D-mediated inflammation during infection. Recent studies have 
elucidated the biological and clinical functions of cathelicidin in the context of vitamin D 
signaling. The vitamin D-cathelicidin axis is involved in the activation of autophagy, which 
enhances antimicrobial effects against diverse pathogens. Vitamin D studies have also 
revealed positive and negative regulatory effects of cathelicidin on inflammatory responses 
to pathogenic stimuli. Diverse innate and adaptive immune signals crosstalk with functional 
vitamin D receptor signals to enhance the role of cathelicidin action in cell-autonomous 
effector systems. In this review, we discuss recent findings that demonstrate how the vitamin 
D-cathelicidin pathway regulates autophagy machinery, protective immune defenses, 
and inflammation, and contributes to immune cooperation between innate and adaptive 
immunity. Understanding how the vitamin D-cathelicidin axis operates in the host response 
to infection will create opportunities for the development of new therapeutic approaches 
against a variety of infectious diseases.
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INTRODUCTION

Vitamin D signaling and metabolism are crucial in the regulation of bone and calcium 
homeostasis. However, various cells and tissues, regardless of calcium metabolism, express 
the vitamin D receptor (VDR) and can undergo functional VDR signaling, suggesting that 
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vitamin D plays a greater biological role than solely skeletal homeostasis (1,2). Accumulating 
data suggest that vitamin D and downstream receptor signaling play key roles in the ability of 
macrophages and other immune cells to enhance host antimicrobial defense and coordinate 
a variety of biological responses, including immune and inflammatory activity. The outcome 
of vitamin D-induced innate immune responses depends, at least partly, on the induction 
of gene sets encoding antimicrobial proteins (AMPs). Several AMPs are induced by vitamin 
D signaling, including cathelicidins, defensins, hepcidins, and neutrophil peptides, acting 
as principal intrinsic antibiotics given their direct antimicrobial activities against various 
pathogens (3). Since infections caused by drug-resistant pathogens are emerging worldwide, 
host defense peptides could be valuable candidates for the development of new therapeutic 
agents (4).

AMPs are usually cationic, binding to anionic regions (i.e., anionic lipids) of plasma 
membranes of various bacteria and viruses to form and eventually rupture pores (5). AMPs 
also function as key signaling molecules to fine-tune immune and inflammatory responses 
in diverse living organisms, including mammals, insects, and plants (6). Numerous 
previous studies have shown that vitamin D signaling leads to transcriptional activation 
of AMPs, including cathelicidins and defensins (7,8). Importantly, vitamin D-induced 
cathelicidin, the best-characterized AMP involved in VDR signaling, has multiple functions 
as an essential anti-infective agent against numerous pathogens, including intracellular 
Mycobacterium tuberculosis (Mtb), a major pathogen of human tuberculosis (TB) (7,8), and as 
a crucial immune modulator that impacts innate and adaptive immunity, chemotaxis, and 
angiogenesis (9).

In this review, we discuss the effects of the vitamin D-cathelicidin axis on antimicrobial host 
defense in a variety of infections caused by bacteria, viruses, and parasites, as examined 
in both in vitro and in vivo studies, and in clinical trials. Specifically, we review the current 
understanding of how VDR signaling is linked to the activation of AMP cathelicidin to 
modulate the autophagy machinery, cytokine/chemokine generation, and crosstalk with 
innate and adaptive immune responses during infection. We also speculate about the 
engagement of vitamin D signaling, cathelicidin, and host defense to eliminate invading 
pathogens without resulting in inflammatory-induced tissue injury.

OVERVIEW OF VITAMIN D METABOLISM AND 
SIGNALING
Vitamin D3 (hereafter mentioned as vitamin D) can be obtained from dietary intake 
or produced by ultraviolet light (UV)-mediated synthesis in the skin, in which UV rays 
promote the conversion of 7-dehydrocholesterol into vitamin D3 (10). The inactive 
vitamin D compound is then sequentially hydroxylated in the liver and kidney to form 
25-hydroxyvitamin D3 (25D3) and active compound 1,25 dihydroxy vitamin D3 (1,25D3) by 
essential enzymes 25- and 1-α-hydroxylases, respectively (10). Circulating 1,25D3 levels are 
tightly regulated to prevent excessive VDR signaling and activity by a metabolic feedback 
loop involving the conversion by the inactivating enzyme 24-hydroxylase (CYP24A1) into 
inactive calcitroic acid, which is subsequently excreted in the bile. Immune cells also produce 
both activating (25- and 1α-hydroxylase) and metabolizing (24-hydroxylase) enzymes to 
regulate local levels of 1,25D3 in immune reaction sites (10). It is now clear that immune 
cells express 1-α-hydroxylase (CYP27B1), which allows them to activate functional VDR 
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signaling pathways through the conversion of inactive 25D3 into active 1,25D3 (10). Various 
innate stimuli including TLR2/1 (11-13), TLR8 (14), and a combination of IL-12 and IL-18 (15) 
trigger local activation of functional VDR signaling to enhance cell-autonomous host defense 
mechanisms, which are mediated through cathelicidin induction, the autophagy pathway, 
and the production of IFN-γ, in host cells against intracellular pathogens.

During infection, VDR signaling activation coordinates innate immune signals for the 
production of AMPs, including human cathelicidin AMP (CAMP) and β-defensin 2 (HBD2) 
by binding to vitamin D response elements in target genes (8,16). Although antimicrobial 
effects have been the major function ascribed to AMPs in VDR signaling, recent studies have 
established AMP as a central regulator of autophagy/xenophagy, generation of cytokines, 
chemokines and reactive oxygen species (ROS), as well as modulation of IFN signaling, thus 
serving as a signaling node to regulate immune pathways (7,8,17). A number of excellent 
reviews have covered the antibacterial and immune regulatory roles of AMPs; therefore, 
this review mainly focuses on recent studies that have identified the roles of endogenous 
AMPs induced by VDR signaling, and on the therapeutic implications of vitamin D-AMPs in 
host-directed therapy against infections. The effector pathways of vitamin D-driven innate 
immune signaling, which will be discussed in this review.

CATHELICIDINS AND VITAMIN D-INDUCED 
ANTIMICROBIAL RESPONSES
The antimicrobial activity of human cathelicidin LL-37/human cationic AMP 18 (hCAP-18) has 
been reported in a variety of gram-positive and gram-negative pathogenic bacteria, viruses, 
and fungi (18,19). Vitamin D and its active analog upregulate the expression of the cathelicidin 
LL-37 in a wide range of cell types, including keratinocytes, epithelial cells, and human 
monocytes/macrophages (11,20,21). Interestingly, murine cells reportedly not to induce CAMP 
mRNA expression (22), suggesting that vitamin D-mediated LL-37 induction is critically 
involved in the human defense system. Cathelicidin is an antimicrobial weapon that eliminates 
intracellular mycobacteria and also plays a regulatory role in various processes of the 
autophagy pathway to enhance the fusion of mycobacterial phagosomes with autophagosomes 
and autolysosomes (11,23). In addition to its antibacterial roles, LL-37 has a pleiotropic 
role in a variety of biological responses, as a key immunomodulator with both pro- and 
anti-inflammatory functions in different cells/tissues and microenvironments in a context-
dependent manner (24). The generation and detailed functional significance of cathelicidins 
have been expertly reviewed (24-26); therefore, we will discuss recent findings of the roles and 
mechanisms of cathelicidins in the context of vitamin D signaling during infection.

Antimicrobial effects of cathelicidins in host cells
VDRs are found on monocytes/macrophages, which express and induce the 1α-hydroxylase 
isoenzyme (CYP27B1) to produce active 1,25D3, which promotes the adherence and 
differentiation of normal human monocytes (10). Innate immune signaling, e.g., TLR 2 
activation, results in functional activation of vitamin D signaling to enhance CYP27B1-
dependent synthesis of active vitamin D and enhancement of human cathelicidin (8,12). 
Cathelicidins are among the well-characterized classes of human AMPs and are usually 
produced as a prepropeptide to be processed for the generation of anti-microbial active 
fragments (27). The hCAP18 is the only member of human cathelicidins; LL-37 is the 
C-terminal, amphipathic, alpha-helical peptide generated by cleavage of the C-terminal end 
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of the hCAP18 protein by serine proteases and proteinase 3 (28). Due to its positive charge, 
LL-37 preferentially interacts with negatively charged bacterial membranes and forms pores 
via detergent-like effects (28). A recent study used super-resolution single-particle tracking 
tools to demonstrate LL-37 penetration and rigidification of bacterial cytoplasm through 
electrostatic linking of chromosomal DNA and a subset of ribosomes (29). Another recent 
study of LL-37 structure identified its core antimicrobial region for application in peptide 
designing of antimicrobial and antibiofilm agents (30).

Over the past 12 years, evidence has emerged for cathelicidin LL-37 as an integral regulator 
and effector of vitamin D-mediated anti-microbial responses in antibacterial immunity, 
particularly in mycobacterial infection (31). Synthetic LL-37 has shown a direct inhibitory 
effect on Mtb growth in broth and human macrophages (8,31). A study conducted by Liu 
et al. (8) showed that TLR2/1 triggering of vitamin D-mediated cathelicidin induction 
is crucial for anti-mycobacterial activity in human monocytes/macrophages. Numerous 
studies have demonstrated the beneficial effects of vitamin D-mediated cathelicidin in 
antimicrobial actions against Mtb infection (7,8,11). Importantly, the physiological levels of 
vitamin D3 contribute to the restriction of Mtb alone or Mtb/HIV replication in macrophages 
(11,32,33). In addition, a recent study showed that 25D3 treatment of human monocyte-
derived macrophages, which are differentiated with IL-15, led to increased expression of both 
cathelicidin mRNA and protein, and upregulated the vitamin D-dependent antimicrobial 
response against intracellular Mycobacterium leprae (34). Besides mycobacterial infection, 
calcipotriol, a calcitriol-derivative, has been shown to inhibit the hepatitis C virus and 
robustly activate VDR target genes, including cathelicidin and hepcidin (35). Recent 
studies have shown that 1,25D3 directly activates the transcription of IL-1β, decreasing 
the mycobacterial burden in macrophages through IL-1β-driven epithelial production of 
the antimicrobial peptide DEFB4/HBD2 (36). This result suggests that, for a wide variety 
of infections, vitamin D-induced AMPs can serve as an antimicrobial immune effector to 
activate host defense.

LL-37 is internalized through an endocytotic process via the P2X7 receptor and traffics into 
lysosomes to enhance bactericidal activity against Staphylococcus aureus in human macrophages 
(37). Human cathelicidin is produced via vitamin D-mediated signaling and exhibits 
antimicrobial activity against intracellular pathogens through trafficking into endosomal/
lysosomal compartments. Indeed, a previous study demonstrated that hCAP-18 is present 
in the phagolysosome with azurophil granule proteins, containing serine protease, which 
processes hCAP-18 to generate active AMP LL-37 (38).

Given the key roles of cathelicidin in the regulation of infection, it is not surprising that 
several pathogens have evolved strategies to inhibit LL-37 function (39). For example, human 
metapneumovirus, a major pathogen of respiratory tract infections in young children, 
markedly suppressed vitamin D-induced hCAP18 levels in human macrophages (40). A recent 
study also showed that the Clostridium difficile clnRAB operon binds directly to LL-37, thereby 
regulating the expression of a variety of gene sets involved in metabolism, cell signaling, and 
pathogenesis (41). These studies strongly suggest that microbial signals can modulate host 
responses through direct interaction with AMPs. These studies of vitamin D-cathelicidin 
during infection are summarized in Table 1. Further studies are required to clarify how 
pathogens modulate CAMP gene expression and/or degrade host cathelicidin proteins, to 
establish intracellular survival and replication during infection, and how they subvert vitamin 
D-mediated antimicrobial responses.
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Vitamin D-cathelicidin during infection in vivo
To date, most studies of LL-37 function have been conducted using in vitro systems, which 
have allowed us to begin to understand the impact of LL-37 as a biomarker related to vitamin 
D levels in various infectious diseases, including TB and HIV infection (42,43). A study 
applied sputum proteomic analysis to show that vitamin D binding protein was abundant, but 
cathelicidin lacked in sputum samples from active pulmonary TB patients (44). In Ethiopian 
patients with lymph node TB, plasma 25D3 levels were significantly correlated with local 
LL-37 expression in granulomatous lesions in disease sites (45). Another recent study showed 
that serum hCAP18/LL-37 levels were significantly depressed in patients with Mycobacterium 
avium complex lung diseases, although they were not related to serum vitamin D levels (46); 
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Table 1. In vivo and in vitro studies of vitamin D-cathelicidin during infection
Reagent Disease/pathogen Subject Results Reference
In vitro

TLR2/1 ligand Mtb Human macrophage TLR activation upregulates VDR and the vitaminD-1-hydroxylase genes (8)
Induction of the cathelicidin

Vitamin D Mtb Human monocyte and 
macrophage, THP-1 and RAW 

264.7 cells

Upregulation of transcription of BECN1 and ATG5 through 
cathelicidin-dependent MAPK and C/EBPβ signaling

(11)

Recruitment of cathelicidin to the autophagosomes through the Ca2+ 
and AMPK-dependent pathways

Vitamin D and its 
analog

Mtb, BCG Human PBMC Vitamin D inhibits the growth of mycobacteria through VDR signaling (31)
Up-regulated the cathelicidin hCAP-18gene

Vitamin D Mtb, HIV Human macrophage Induction of autophagy and phagosomal maturation (33)
Vitamin D, IL-15 Mycobacterium leprae Human macrophage Increased expression of cathelicidin (34)
Vitamin D, calcipotriol HCV Human hepatoma cell lines, 

human macrophage
Induced local structure rearrangement of VDR (35)

Vitamin D Mtb Murine macrophage, human 
macrophage, THP-1 cells

Enhanced IL-1β expression (36)
Epithelial IL1R1 signaling and DEFB4/HBD2

LL-37 Staphylococcus aureus Human macrophage, THP-1 
cells

Endocytotic process via P2X7 receptor (37)
Upregulation of ROS and lysosome formation

DrsG Streptococcus 
dysgalactiae subsp. 

equisimilis

In vitro assay Functions as a ligand of the cathelicidin LL-37 and inhibits the 
bactericidal activity of LL-37

(39)

Vitamin D hMPV Human macrophage hMPV attenuates CAMP through C/EBPα (40)
In vivo

LL-37 Clostridium difficile Syrian golden hamsters C. difficile clnRAB Operon is induced by LL-37, senses and binds to 
LL-37

(41)
C57BL/6 mice

- Mtb Patient sputum proteome A shift of vitamin D binding protein-AMP axis in the lung of TB patients (44)
- Mtb Ethiopian patient blood Patients with extrapulmonary TB in local lymph nodes show higher 

25(OH)D3 levels compared with pulmonary TB patients
(45)

Plasma 25(OH)D3 levels correlate with local LL-37 expression in 
granulomatous lesions of lymph nodes from extrapulmonary TB

- Mycobacterium avium 
complex

Patient serum Serum hCAP18/LL-37 level and BMD are decreased in patients with 
MAC lung disease; No relation to serum vitamin D level.

(46)

- Urinary tract infection Infants and young children 
patient serum

Serum vitamin D levels negatively correlate with age and are 
significantly lower in girls; Vitamin D levels positively correlate with 
levels of cathelicidin but not with β-defensin-2

(47)

- Cystic fibrosis Children No relationship between vitamin D in sera and HBD-2 or LL-37 in 
bronchoalveolar lavage

(48)

No differences in infective or inflammatory markers between vitamin 
D-sufficient and deficient groups

Cathelicidin Plasmodium chabaudi 
AS murine malaria

BALB/c mice No curative effects by exogenous CAMP in infected mice (49)

Vitamin D P. chabaudi AS murine 
malaria

BALB/c mice Vitamin D shows antimalarial activity in the acute phase of infection (50)

Vitamin D Influenza vaccine Elderly person serum No differences in cathelicidin level between vitamin D supplemented 
and untreated groups

(51)

Vitamin D Nontypeable 
Haemophilus 

influenzae

C57BL/6JolaH mice Vitamin D-deficient mice resolve infection and local lung 
inflammation faster than vitamin D-sufficient mice, possibly through 
a shift of protease/anti-protease balance and upregulation of CRAMP

(52)
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serum cathelicidin levels, which were correlated with vitamin D levels, were significantly 
decreased in young children and associated with urinary tract infection (47).

However, no relationship has been detected between vitamin D levels and LL-37 production in 
bronchoalveolar lavage fluids in children with cystic fibrosis, a genetic disorder (48). Similarly, 
cathelicidin may not play an important role in antimalarial effects, although vitamin D and its 
analogs display potent antiplasmodial activity (49,50). Vitamin D supplementation in deficient 
elderly persons with influenza vaccination was not found to increase serum cathelicidin levels, 
although vitamin D treatment drove lymphocyte polarization to the tolerogenic type (51). A 
recent study using an acute infection model with nontypeable Haemophilus influenzae showed a 
faster resolution of infection and lung inflammation in vitamin D-deficient mice, presumably 
due to cathelicidin-related antimicrobial peptide (CRAMP) upregulation (52). Together, these 
data suggest that cathelicidin production in vivo during infection is regulated by vitamin 
D-dependent and independent pathways, depending on the bacterial strain, cell types, and 
host immune status (Table 1).

THE VITAMIN D-CATHELICIDIN AXIS AND AUTOPHAGY 
REGULATION
Autophagy is an intracellular homeostatic process that affects diverse biological responses 
in the human body through quality control of cell functions. Autophagy plays an essential 
role in the activation of cell-autonomous immune defense against infectious agents (53). 
Since autophagy is an essential housekeeping function, its dysregulation is often associated 
with pathological conditions such as inflammation (53). Therefore, autophagy and vitamin 
D signaling have overlapping functions in the maintenance of homeostasis during infection 
and inflammation (23). In this section, we will focus on vitamin D-induced autophagy and 
its regulatory mechanisms, which are partly mediated by cathelicidin, in the context of 
infection (Fig. 1). The precise mechanisms by which vitamin D signaling activates autophagy 
and cathelicidin and how they interact with other signaling pathways/molecules remain to 
be elucidated.

Vitamin D-mediated autophagy in the antimicrobial effect of host cells
Upon pathogen challenge, vitamin D treatment triggers the autophagy pathway to 
enhance host antimicrobial responses and control excessive inflammation (11,23,54). 
The best examples of vitamin D-cathelicidin function in autophagy have been studied in 
host responses to Mtb infection. One strategy by which Mtb subverts host innate defense 
is the inhibition of LL-37 and ATG (beclin-1 [BECN1] and autophagy related 5 [ATG5]) 
expression in human macrophages (55). Previous studies have demonstrated the role 
of the vitamin D pathway in overcoming intracellular Mtb infection through autophagy 
activation and cathelicidin induction (56). Early studies identified a link between vitamin 
D autophagy function and Mtb clearance via LL-37 in human macrophages (11,57). The 
combined effects of retinoic acid and vitamin D3 have been reported to activate autophagy, 
to increase phagocytosis of Mtb and restrict intracellular Mtb growth in human monocytic 
tetrahydropalmatine (THP)-1 cells (58). It has also been reported that 4-phenylbutyrate (4-
PBA) and vitamin D, separately or in combination, function as efficient inducers of autophagy 
through LL-37 expression and promote the co-localization of LL-37 with autophagosomes, 
thereby potentiating intracellular killing effects against Mtb (55). Importantly, either the 
cell-autonomous induction of LL-37 or exogenous synthetic LL-37 participates in vitamin 
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D-induced autophagy activation (11,55). The detailed mechanisms by which LL-37 mediates 
autophagy in the context of Mtb infection is discussed in the following session.
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CAMP (LL-37)

1,25(OH)2D3

Mtb

Autophago-
lysosome

Autophagy proteins
(BECN1, ATG5)

Autophagosomes
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Pneumocystis

Cathelicidin
Autophagy genes
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fumigatus

Basal autophagy in the
early stages; prevents
pathological damage
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Activation of
PDIA3 receptor↑

Mtb

LL-37, AMPK,
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↑

Rotavirus

BECN1,
cathelicidin↑

HIV

Autophagy genes
transciption↑
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Atg16L1, LC3II
IL-1β

↑
↓

Vitamin D
autophagy

Figure 1. Vitamin D-mediated autophagy in antimicrobial host defense during infection. (A) Vitamin D-LL-37 functions in Mtb clearance through autophagy 
activation. Vitamin D3 treatment alone, or combined with retinoic acid or 4-PBA, or exogenous LL-37 via P2X7R, results in the activation of functional VDR 
signaling to trigger expression of cathelicidin, a secondary messenger for autophagy activation through transcriptional activation of ATGs and enhancement 
of autophagic flux, in human monocytes/macrophages. The activation of VDR-cathelicidin-mediated autophagy is beneficial for combatting intracellular Mtb 
infection. (B) Vitamin D-induced autophagy in various infections. Vitamin D signaling has been found to enhance autophagy in host cells during infection by Mtb, 
Salmonella, Helicobacter, Aspergillus, hepatitis C virus, HIV, or Pneumocystis murina. The known mechanisms involved in vitamin D-mediated autophagy are 
shown in the box of each pathogen. 
VDRE, vitamin D response elements.
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Several studies have explored the role of vitamin D-induced autophagy in various pathogenic 
infections. A recent study of Helicobacter pylori infection showed that vitamin D treatment 
improved lysosomal acidification and degradation through activation of the protein disulfide-
isomerase A3 receptor, promoting autolysosomal function and antibacterial responses, even 
against antibiotic-resistant bacteria (54). Vitamin D signaling also enhances the expression of 
Atg16L1 and LC3II, as well as the abundance of LC3 punctae in intestinal epithelial cells during 
Salmonella infection (59). In this context, vitamin D-mediated Atg16L1 expression counteracts 
IL-1β expression (59), suggesting a role for vitamin D in the activation of autophagic clearance 
of bacteria and prevention of excessive harmful inflammation (59). Vitamin D-mediated 
autophagy also contributes to antifungal immunity. In studies of Aspergillus fumigatus infection 
models, whose pathology is related to excessive autophagy, vitamin D deficiency has been 
shown to cause defective pulmonary resistance to A. fumigatus. Mechanistically, vitamin D 
functions in the maintenance of basal autophagy in the early stages of infection and prevents 
pathological damage induced by excessive autophagy (60). Together, the findings of these 
studies suggest that vitamin D plays a pivotal role in controlling optimal and efficient levels of 
autophagy to improve host defense against diverse pathogens.

In addition to bacterial and fungal infection, vitamin D-mediated autophagy plays an important 
role in the regulation of antiviral host defense. In human macrophages, vitamin D treatment, 
even at physiologically relevant concentrations, can enhance autophagy to suppress the 
replication of HIV infection through transcriptional activation of autophagy genes (61). In 
patients with hepatitis C virus infection only or combined with hepatocellular carcinoma, 
vitamin D and VDR levels are depressed, and correlated with serum concentrations of LC3 and 
caspase-3, suggesting disturbance of autophagy and apoptosis function in these patients (62). 
It remains unclear whether vitamin D supplementation would recover autophagy activation 
in such patients. In rotavirus infection, vitamin D supplementation has been reported to 
upregulate autophagy gene BECN1 expression and autophagic flux, and increase porcine 
cathelicidin levels in virus-infected porcine intestinal epithelial cells (63). Since numerous 
viruses subvert, block, and even hijack host xenophagy systems (64), whether vitamin 
D-induced autophagy restricts or favors viral replication/survival in host cells may depend on 
the individual virus and host cell types, as well as different pathogenic mechanisms.

Vitamin D supplementation increases the efficacy of the drug primaquine in a murine 
infection model with Pneumocystis murina. Treatment with vitamin D enhances the number 
of phagocytes, decreases inflammatory cytokine production, and enhances cathelicidin/
autophagy gene expression (65). These results show the beneficial effects of vitamin D in the 
enhancement of host defense and amelioration of excessive inflammation during treatment 
of Pneumocystis infection (65), although the regulation of cathelicidin in autophagy and 
inflammation was not addressed in this study. Given the low vitamin D levels observed in TB, 
HIV, and other infectious diseases (42,43), these findings provide new insights into potential 
approaches to developing vitamin D-based autophagy adjunctive therapy against various 
infections. However, it remains largely unknown which autophagic biomarker(s) might be 
useful in monitoring clinical stages and/or disease outcomes. Future studies are needed to 
identify useful autophagic status markers that are linked to clinical parameters and vitamin D 
levels in individual patients during infection.

Regulatory mechanisms involved in vitamin D-induced autophagy
Vitamin D signaling regulates autophagy at different steps: initiation, elongation, 
maturation, and degradation (23). Mechanistically, vitamin D/VDR signaling activates 
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autophagy through multiple pathways, including triggering intracellular calcium release/
calcium-dependent kinases and inhibition of the mTOR, a negative regulator of autophagy 
(23,56). Notably, the lipoprotein LpqH, a mycobacterial TLR2/1 agonist, activates autophagy 
linked to functional VDR signaling and mediated by the adenosine monophosphate-activated 
protein kinase (AMPK) pathway (12). AMPK is an autophagy-activating kinase essential 
to various stages of the autophagy pathway and activation of lysosomal function through 
induction of transcription factor EB (66). The treatment of human macrophages with 4-PBA 
alone, or combined with vitamin D, has been shown to induce LL-37-mediated autophagy via 
the AMPK pathway to enhance the intracellular killing of Mtb (55). Since AMPK is a master 
regulator of anti-mycobacterial innate immune defense through multiple signaling pathways 
(67), the interplay between cathelicidin and AMPK signaling is likely to involve synergistic 
interaction through activation of several innate effector systems within phagocytic cells.

Redox status is crucial for the pathophysiology of numerous diseases, and strongly related 
to vitamin D-mediated signaling. For example, recent ex vivo analysis of redox potential in 
critically ill children showed that plasma LL-37 levels did not significantly differ from vitamin 
D levels; however, vitamin D sufficiency was closely associated with reduced oxidative 
stress in pediatric critical illness (68). Moreover, another epidemiological study found 
the relationship between serum 25D3 levels and plasma thiol/disulphide redox systems 
(69). The relevance of ROS functioning, as signaling molecules in autophagy regulation, 
has been suggested in the context of the vitamin D-cathelicidin axis during infection and 
inflammation; 1,25D3 leads to significant ROS production, which promotes autophagy (70) 
and antimicrobial activity (71). Indeed, TLR2-induced cathelicidin expression is mediated by 
ROS signaling in human monocytes/macrophages (72). Given the critical role played by ROS 
signals in autophagy and vice versa (73), future studies are needed to examine the function 
of the vitamin D-cathelicidin axis in redox homeostasis regulation and its ultimate link to 
autophagy activity.

Cathelicidin as a regulator of vitamin D-induced autophagy during infection
The role of the vitamin D-cathelicidin axis in antibacterial autophagy has been widely 
studied in mycobacterial infection. In human monocytes/macrophages, 1,25D3 treatment, 
through cathelicidin induction, robustly induces autophagosome formation, increases Mtb 
phagosomal maturation, and promotes antimicrobial responses against Mtb (11). Vitamin D 
treatment also enhances cathelicidin production and autophagic antimicrobial effects against 
Mycobacterium marinum, a pathogen causing skin lesions, in human THP-1 cells (74). Functional 
vitamin D signaling activation triggered by TLR2/1 leads to increased antimicrobial responses 
against Mtb infection through cathelicidin and autophagy activation (11-13,75). Vitamin 
D-mediated antimicrobial responses to coinfection by HIV and Mtb have been shown to be 
mediated by cathelicidin-dependent autophagy and enhancement of phagosomal maturation 
(32,33). Interestingly, TLR8 activation triggers gene expression for vitamin D signaling 
and human cathelicidin to the vitamin D-cathelicidin-mediated autophagy pathway, which 
is required for HIV restriction in human macrophages (14). A recent study showed that 
the combination of IL-12 and IL-18 enhances autophagy and anti-mycobacterial immune 
responses in human macrophages and pulmonary epithelial A549 cells. The protective 
host defense depends on the production of IFN-γ, VDR-derived antimicrobial peptide 
cathelicidin, and autophagy, but does not involve caspase-mediated apoptosis (15). Together, 
these findings suggest that numerous innate immune signals including TLR2/1, TLR8, and 
cytokines (IL-12+IL-18) are linked to a cell-autonomous defense mechanism, the CAMP/
autophagy pathway, to promote antimicrobial action against Mtb in various human host cells.
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Although it is not fully understood, the mechanisms by which cathelicidin regulates the 
induction of autophagy are mostly studied in mycobacterial infection, as summarized in 
Fig. 2. Vitamin D-induced autophagy activation is at least partly mediated by cathelicidin-
mediated transcriptional activation of autophagy genes, including BECN1 and ATG5 (11). 
Similarly, a more recent study showed that the bioactive form of vitamin D enhanced the 
gene expression of ATG5, BECN1, and a mannose receptor in Mtb-infected monocytes/
macrophages; these gene expression levels were lower in pulmonary TB patients (76). 
Importantly, a positive correlation has been reported between the expression of ATG5 
and BECN1 and that of cathelicidin in monocytes/macrophages from healthy controls and 
TB patients (76). This result suggests that vitamin D-induced cathelicidin, as a secondary 
messenger, plays a role in transcriptional activation of autophagy genes, which are essential 
to all steps of the autophagy process (77). However, it remains an open question of how 
cathelicidin contributes to the transcriptional activation of autophagy genes in innate 
immune cells. LL-37 activates vitamin D and PBA-induced autophagy through an autocrine 
or paracrine pathway and that LL-37-mediated autophagy is associated with various 
intracellular signaling pathways, including the P2RX7 receptor, intracellular Ca2+ release, 
and the AMPK, and PI3K pathways (55). These findings suggest that cathelicidin-induced 
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autophagy crosstalks with multiple intracellular signaling proteins and receptors, as well 
as other secondary messengers. Further studies are required to clarify the mechanism by 
which cathelicidin interacts with other transcription factors and/or regulates the signaling 
pathway, ultimately leading to the activation of autophagy at the transcriptional and post-
translational levels.

To date, few mechanisms have been suggested for the regulation of vitamin D-cathelicidin 
signaling in host cells. A role for prostaglandin E2 (PGE2), a lipid mediator of inflammation 
and immunity, in vitamin D function has been identified (78). PGE2 triggers the cyclic AMP/
protein kinase A pathway to induce inhibitory transcription factor signaling involving 
the E prostanoid (EP) 2 and EP4 receptors, thereby inhibiting cathelicidin expression and 
autophagy during Mtb infection. PGE2-mediated impairment of cathelicidin expression 
and autophagy inhibition promotes intracellular Mtb growth in human macrophages (78). 
Most studies have indicated a link between cathelicidin in vitamin D-induced autophagy and 
antimicrobial responses. However, one study reported that the vitamin D-cathelicidin axis 
does not trigger autophagy against HIV infection, although vitamin D-mediated induction 
of autophagy was found to be beneficial in the inhibition of HIV-1 replication (61). Thus, 
the involvement of cathelicidin in vitamin D-mediated autophagy may depend on the type 
of pathogen; future studies should clarify this issue in relation to a more extended range of 
status, cell types, pathogens, and diseases.

VITAMIN D-CATHELICIDIN SIGNALING IN THE 
REGULATION OF INFLAMMATION
The vitamin D-cathelicidin axis and inflammation activation
The balance between protective immunity and inflammation is vital to control intracellular 
bacterial growth while minimizing immune-mediated tissue damage. Numerous studies have 
reported anti-inflammatory effects of vitamin D in a variety of human diseases, including 
inflammatory bowel disease (IBD) (79), diabetes (80), atherosclerosis (81), and autoimmune 
diseases (82,83). However, the function of cathelicidin in the context of vitamin D signaling 
remains to be characterized in the regulation of inflammation, with some studies suggesting 
that cathelicidin promotes inflammation in other diseases (24,84). In this section, we 
focus on recent findings on the role of vitamin D-cathelicidin axis in the regulation of 
inflammatory responses during infection and inflammation (Fig. 3).

Several studies have identified the potential mechanisms by which cathelicidin promotes 
inflammatory responses. Human cathelicidin LL-37 efficiently senses and delivers the CpG 
motifs of bacterial DNA to immune cells, regardless of its bactericidal properties (85), 
suggesting a potential avenue for the development of vaccines and anti-cancer therapies 
based on the ability of LL-37 to deliver CpG/TLR9 agonists. However, other studies suggested 
a pathogenic role for LL-37 in autoimmune and inflammatory diseases. In atherosclerotic 
plasma and plaques, the mtDNA-LL-37 complex is enhanced, not degraded, by DNase II, 
resulting in the activation of TLR9-induced inflammatory responses (86). Systemic lupus 
erythematosus patients have a complex of AMPs and self-DNA in their sera; these complexes 
can activate innate plasmacytoid dendritic cells (pDCs) through TLR9 (87). Combined with 
the strong implication of links between vitamin D signaling and both autoimmunity and 
cardiovascular diseases (81,88), future studies must clarify whether and how the LL-37—self-
DNA immune complex can be degraded and resolved through vitamin D treatment. Another 
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issue that may regulate pathogenesis is cell type-specific expression of pattern recognition 
receptors such as TLR9 and downstream immune functions for different cell types in the 
local environment, i.e., pDCs vs. inflammatory macrophages.

An immune alarm function for cathelicidin in the upregulation of proapoptosis and 
inflammasome activation during bacterial infection to enhance host protective immunity 
has been suggested (89,90). During Mtb infection, vitamin D functions in the general 
boosting of cytokine and chemokine levels, particularly via the induction of IL-1β, which 
controls the intracellular Mtb burden in macrophages through DEFB4/HBD2 production (36). 
The protective role of IL-1 in anti-mycobacterial responses has been reported in TB mouse 
models, suggesting a function for IL-1/IL-1R as a critical regulator of host defense (91). In 
patients with chronic obstructive pulmonary disease (COPD; n=215), high sputum hCAP18/
LL-37 levels were associated with the risk of acute COPD exacerbation, suggesting that the 
local generation of hCAP18 is associated with airway inflammation (92). Sepsis patients have 
been reported to have lower vitamin D levels (93,94), but increased serum cathelicidin levels, 
which may be involved in the pathogenesis of systemic inflammation (93). Notably, vitamin D 
administration has been shown to reduce alveolar inflammation and cell damage in a sepsis 
model (94); however, this study did not address whether cathelicidin levels are modulated 
by vitamin D treatment. Several reports have indicated that high cathelicidin levels, but 
low vitamin D status, in chronic inflammatory diseases such as rosacea (95) represent the 
involvement of excessive cathelicidin in inflammatory disease pathogenesis. These reports 
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suggest the involvement of an altered vitamin D-cathelicidin axis in the pathogenesis of a 
variety of acute and chronic inflammatory diseases.

In contrast, several studies have reported a role for inflammatory cytokines in vitamin 
D-mediated antibacterial activity. For example, TNF-α/IL-1β treatment of primary bronchial 
epithelial cells inhibited vitamin D-induced hCAP18/LL-37 expression and killing effects 
against H. influenzae; interestingly, TNF-α/IL-1β treatment led to increased expression of 
CYP24A1 (a vitamin D-degrading enzyme), suggesting that chronic inflammation results 
in the impairment of vitamin D-mediated protective responses (96). Thus, in pathological 
settings with altered regulation of the vitamin D-cathelicidin axis, cathelicidin initiates cell-
type-specific inflammatory damage that results in inappropriate inflammation, which may, 
in turn, affect vitamin D-mediated innate effector responses.

The inhibitory role of vitamin D in inflammation
Since vitamin D is a well-known immunomodulatory agent, the inhibitory role of 1,25D3 
in inflammation has been widely studied in innate immune responses. In TLR signaling, 
vitamin D can decrease the expression of various TLRs (TLR2, 4, and 9), and inhibit the 
production of proinflammatory cytokines, including IL-6, IL-23, TNF-α, inducible nitric oxide 
synthase, IL-1, and various T cell-recruiting chemokines in monocytes/macrophages (97). It 
has been demonstrated that vitamin D inhibits LPS-induced cytokine production through the 
activation of MAPK phosphatase-1 (MKP-1) signaling in monocytes and macrophages (98). 
The expression of a variety of chemokines has been shown to be downregulated by 1,25D3 in 
PBMCs from pulmonary TB patients (99). Recent studies have shown that 1,25D3 treatment 
of PBMCs from TB patients and healthy controls has an anti-inflammatory effect through the 
inhibition of proinflammatory cytokines and chemokines (100,101). Vitamin D3 treatment 
of PBMCs has also been shown to significantly upregulate CD4+Foxp3+ Tregs (101). However, 
the role of cathelicidin in vitamin D-induced inhibitory function in inflammatory responses 
remains unclear. In a previous study using a cigarette smoke model, vitamin D treatment was 
found to reduce inflammatory cytokine levels, but enhance cathelicidin expression (102), 
suggesting that vitamin D plays dual roles in airways, attenuating airway inflammation, and 
the promotion antibacterial host defense.

Importantly, vitamin D administration in human TB patients resulted in a rapid drop in 
inflammatory cytokine and chemokine generation during antibiotic treatment, suggesting 
a vitamin D-mediated resolution effect on hazardous inflammation (103). A recent meta-
analysis showed that adjunctive vitamin D accelerates sputum culture conversion in 
multidrug-resistant TB patients however; it did not influence drug-sensitive TB (104). 
This finding suggests that vitamin D-adjunctive therapy can improve clinical outcomes 
by controlling harmful inflammation and tissue damage during infection or treatment. 
However, there is little evidence that cathelicidin has a general function in vitamin 
D-mediated inhibition of inflammation, except in intestinal inflammation, which is 
discussed in the next section.

Vitamin D and cathelicidin in the regulation of intestinal inflammation
A large body of evidence shows that VDR function is connected to cathelicidin in intestinal 
homeostasis, barrier function, and gut inflammation regulation. Studies using mouse IBD 
models have found that AMP production via VDR signaling is responsible for modifying 
the intestinal microbiota and enhancing bacterial clearance at barrier sites in addition to 
immune cells (17). For example, the treatment of intestinal epithelial cells with probiotic 
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Lactobacillus rhamnosus strain GG and Lactobacillus plantarum resulted in increased VDR protein 
and cathelicidin expression. Probiotic treatment also confers a protective effect against 
Salmonella-induced colitis depending on VDR signaling and enhances the abundance of 
Paneth cells to increase AMPs (105). Regardless of VDR signaling, several studies have also 
shown beneficial roles for cathelicidin in the maintenance of intestinal homeostasis. In 
intestinal epithelial cells, cathelicidin amplifies TLR4 responses and protein expression and 
promotes epithelial antimicrobial defenses against Escherichia coli (106). Also, another recent 
study showed that LL-37 mRNA expression was significantly increased in mucosal tissues of 
subjects with ulcerative colitis and Crohn's disease and that LL-37 had antimicrobial effects 
interacting with LPS (107).

Murine CRAMP (mCRAMP) is induced by double-stranded RNA in intestinal epithelial cells, 
and intra-rectal administration of double-stranded RNA suppresses intestinal bacterial 
load and inflammation during Shigella infection through the induction of mCRAMP (108). 
Using CRAMP-deficient mouse models, it was recently reported that CRAMP plays an 
important role in the balance of colon microbiota and maintenance of intestinal mucosal 
homeostasis (109). However, it remains unknown whether and how vitamin D administration 
has any beneficial effect on cathelicidin-mediated protective responses against intestinal 
inflammation. Future studies are required to clarify the roles and mechanisms by which 
cathelicidin regulates host-pathogen interaction during intestinal homeostasis in the context 
of VDR signaling.

The vitamin D-cathelicidin axis: a key link between innate and adaptive 
immunity
Accumulating data suggest the function of vitamin D in adaptive immunity regulation in 
connection with innate immunity, in terms of mycobacterial infection. Fabri et al. (13) showed 
that IFN-γ-mediated antimicrobial responses in human macrophages were mediated by 
vitamin D, suggesting a role for vitamin D in acquired immunity against Mtb infection; notably, 
25D3 treatment of human macrophages upregulated IFN-γ-induced antimicrobial responses, 
antimicrobial peptide expression, autophagy, and phagosome-lysosome fusion (13). Previous 
studies have also shown that pulmonary TB patients with vitamin D deficiency had depressed 
LL-37 levels in granulomatous lesions, but increased levels of IgG-secreting B cells and Tregs 
in TB lesions (110). Although these findings suggest that vitamin D-deficient TB patients have 
weak antibacterial responses as well as immunosuppression at disease sites (110), little is 
known about the molecular link between the vitamin D-cathelicidin pathway and Treg function 
in TB patients. A recent study showed that glucocorticoid-mediated cathelicidin induction is 
independent of the vitamin D signaling pathway, and failed to enhance antimicrobial responses 
against intracellular BCG mycobacteria. IFN-γ enhances, but glucocorticoid treatment 
decreases, lysosomal acidification of BCG via the expression of TCIRG1, a vacuolar H(+)-
ATPase a3 subunit (111). Together, these findings indicate that cathelicidin production may 
be insufficient for host defense, requiring another key signaling of lysosomal acidification, 
presumably combined with IFN-γ, to augment anti-mycobacterial activity.

To support this hypothesis, a recent study showed that co-treatment with IFN-γ and IL-
17A upregulated autophagy and autophagosome formation in primary monocytes from 
healthy controls and high-response TB patients; this effect was found to be related to anti-
mycobacterial responses in human macrophages (112). However, a low-response group of TB 
patients exhibited a depressed autophagic response by monocytes in response to exogenous 
IL-17A (112). In contrast, cytokine IL-4 inhibited TLR2/1-induced, vitamin D-mediated 
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antimicrobial responses in human monocytes (113). IL-4 alone, or combined with the TLR2/1 
ligand, induced catabolism of 25D3 through vitamin D-24-hydroxylase gene expression (113). 
Future studies should explore the reasons for intrinsic autophagy response defects among 
certain populations of TB patients.

In addition to Mtb infection, IFN-γ treatment of human Langerhans cells, specialized 
dendritic cells in the skin, upregulates cathelicidin production and autophagy activation and 
promotes the fusion of M. leprae phagosomes with lysosomes. Importantly, the frequency of 
Langerhans cells that contain both cathelicidin and autophagic vesicles is higher in self-
healing lesions than in progressive lesions. In addition, IFN-γ-induced autophagy promotes 
the ability of Langerhans cells to present Ags to T cells (114). A combination of CD40–CD40 
ligand signaling and IFN-γ induced gene expression in CYP27b1-hydroxylase, which is 
essential for functional VDR signaling activation through the conversion of 25D3 to active 
1,25D3, in human monocytes (115). The activation of functional VDR signaling upregulated 
cathelicidin and DEFB4 expression and activated autophagy in human monocytes (115). 
These findings suggest that vitamin D signaling contributes to a link between innate host 
defense and adaptive immune responses via T cell-mediated mechanisms involving CD40L 
and IFN-γ (13,115).

CLINICAL TRIALS OF VITAMIN D-CATHELICIDIN AXIS IN 
INFECTIOUS DISEASES
It is generally thought that inadequate levels of vitamin D are linked to an increased 
susceptibility to infectious diseases (2,116), yet clinical trials with to prevent or treat 
infectious diseases by vitamin D supplementation have yielded mixed results. So far, there 
have been many clinical studies of vitamin D supplements on human infectious diseases 
such as sepsis, viral infection, TB, pneumonia, peritonitis. Among the clinical studies with 
vitamin D treatment, several studies for patients with sepsis and HIV infection reported 
that the levels of cathelicidin correlate with the clinical responses and the cathelicidin 
levels after supplementing of vitamin D (117-119). In addition, several other studies on TB, 
bronchiectasis, and acute respiratory infection reported the serum cathelicidin levels for 
monitoring anti-infectious effects after supplementation of vitamin D (120-122). It was noted 
that vitamin D significantly increased the serum cathelicidin levels, which correlate with 
the improved clinical outcome of infectious diseases (121,122). These data provide strong 
evidence that vitamin D supplementation contributes to beneficial roles in human infectious 
diseases through the regulation of cathelicidin production. Studies showed that vitamin D 
supplementation in children with vitamin D deficiency markedly decreased the incidences 
of influenza A and acute respiratory tract infection (123,124). The most beneficial effect 
was observed in individuals with the lowest serum 25D3 levels, suggesting the need of new 
studies focused in this clinical group.

TB is the most widely studied infectious disease associated with vitamin D treatment; 
however, there are still debates in the effectiveness of vitamin D therapy. In patients with low 
baseline serum vitamin D levels, supplementation of high doses of vitamin D accelerated 
clinical and radiologic improvements as well as the increased immune activation (125,126). 
These studies indicate that the measurement of vitamin D and cathelicidin levels may be 
helpful for screening and selection of appropriate patients for vitamin D-based, host-directed 
therapy against TB. Decreased vitamin D levels are often associated with increased risk of 
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TB in HIV-positive patients (127), suggesting that vitamin D may play an important role in 
the case of immune-compromised state such as HIV co-infection. Vitamin D levels have 
been shown to be depressed in bronchoalveolar fluids from HIV-positive individuals (128). 
Combined with the finding that vitamin D treatment restores innate response in HIV-positive 
macrophages impaired by Mtb infection (128), vitamin D supplementation may help to 
restore defective innate effector functions at the physiological level. These findings support 
the potential application of vitamin D as adjunctive therapy for TB infection in HIV-positive 
patients through boosting antimicrobial peptide cathelicidin LL-37 production.

Table 2 summarizes the clinical trials of vitamin D supplementation with or without measuring 
cathelicidin levels in patients with several infectious diseases, including TB, sepsis, respiratory 
infections, etc. In some studies, detailed results/outcomes are still pending. Depending 
on the disease categories and patient criteria, vitamin D treatment can be either beneficial 
or non-efficacious. Nevertheless, the arsenal of vitamin D-based therapy could potentially 
offer favorable immunomodulation as host-directed therapy for various infectious diseases, 
particularly TB. Additionally, vitamin D response during infection remains to be monitored 
and interpreted in terms of the levels of antimicrobial peptide cathelicidin, which may predict 
the response of vitamin D treatment. Therefore, innovative clinical trials should be proposed 
or designed with regard to the subgroup selection of patients and functional monitoring of 
immune and autophagic systems based on cathelicidin levels.

CONCLUSION

In this review, we highlight the roles of vitamin D-cathelicidin signaling in cell-autonomous 
protection, autophagy regulation, and immune response modulation in host cells against 
various pathogen infections and inflammatory diseases. Functional VDR signaling activation, 
which is associated with cathelicidin induction, is clearly the best-studied area in the field 
of vitamin D-mediated antimicrobial responses to eradicate a broad spectrum of pathogens. 
Cathelicidin is involved in shaping our immune system to promote cell-autonomous defense 
mechanisms, simultaneously maintaining a balance with inflammation during infection. 
Recent studies have revealed key roles for vitamin D-induced cathelicidin in the maintenance 
of homeostasis as an autophagy process that is closely regulated by other intracellular 
signaling pathways, including calcium and AMPK. Indeed, vitamin D-cathelicidin interacts 
with other effector systems such as autophagy and lysosomal function, possibly converging 
into a dedicated protective role by preventing excessive immune pathology against a variety 
of infections. Nevertheless, several aspects in this field are only beginning to be understood; 
many open questions remain, including how the vitamin D-cathelicidin axis interconnects 
with key innate effector systems (e.g., autophagy and lysosomal acidification) and which 
factors are critically involved in the coordinated control of innate and adaptive immunity to 
promote protective immune responses during various infections. Clearly, further research 
is needed to manipulate vitamin D-cathelicidin signaling in different biological contexts. 
Topics for further study include the exact function of vitamin D-antimicrobial immunity 
in patients with various infectious diseases at different clinical stages, considering genetic 
variation in VDR genes and sera vitamin D levels.

Despite continuing efforts to develop new antibiotics, multidrug-resistant infections are 
emerging as a major health burden worldwide, with high associated morbidity and mortality. 
The activation of autophagy by VDR signaling is anticipated as a promising host-directed 
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therapeutic strategy, even against drug-resistant bacterial strains (129). Understanding the 
mechanisms by which vitamin D-cathelicidin regulates innate host defense systems, in the 
context of autophagy and immune pathways, is of prime importance for exploring strong 
candidates for host-directed therapeutics against diverse infectious diseases. Vitamin D is 
strongly clinically associated with acute respiratory tract infections, parallel to vitamin D 
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Table 2. Clinical studies of vitamin D-cathelicidin in infectious disease
Study name Study type Outcomes measurement & Results Interventions Clinicaltrials.gov 

identifier (references)
Sepsis & infectious disease

Vitamin D in ventilated ICU patients* Interventional 
(phase 2)

Concentration of plasma 25(OH)D 
and LL-37 level

Dietary supplement: 
vitamin D

NCT01372995

Cholecalciferol supplementation for sepsis in the ICU Interventional Change in vitamin D Status and 
immunological profiles

Dietary supplement: 
vitamin D

NCT01896544

Effects of vitamin D and omega-3 fatty acids on 
infectious diseases and hCAP18*

Interventional 
(recruiting)

hCAP18 (LL-37) level Vitamin D and omega-3 
fatty acids

NCT01758081

Effect of high dose vitamin D3 in smokers and non-
smokers with and without HIV*

Interventional 
(recruiting)

Difference in vitamin and peptide 
LL-37 levels

Dietary supplement: 
vitamin D

NCT03270709

Effects of smoking and vitamin D3 on the levels of 
human cathelicidin peptide LL-37*

Observational Serum D3 vitamin and LL-37 levels Cross-sectional 
observation

NCT03923218

Randomized trial of vitamin D supplement to prevent 
influenza A

Interventional Vitamin D supplementation may 
reduce the incidence of influenza A

Dietary supplement: 
vitamin D

UMIN000001373 (124)

Randomized trial of vitamin D supplement and risk of 
acute respiratory infection

Interventional Vitamin D supplementation reduced 
acute respiratory infection among 
children with vitamin D deficiency

Dietary supplement: 
vitamin D

NCT00886379 (123)

TB
Clinical trial of PBA and vitamin D in TB* Interventional 

(phase 2)
PBA and vitamin D promoted 

immunomodulation to improve TB 
treatment outcomes

Oral sodium 
Phenylbutyrate, 
cholecalciferol

NCT01580007 (120,122)

PBA and vitamin D induced 
intracellular killing of MTB by 

macrophages with the elevation of 
LL-37

Vitamin D3 and the association with cathelicidin 
expression in patients with active TB*

Observational Severe forms of intrathoracic TB may 
be associated with lower vitamin D3 

status and lower of LL-37

Cross-sectional 
observation

(45)

The impact of vitamin D on TB among Koreans Observational Vitamin D deficiency is significantly 
prevalent in TB patients compared 

to people without TB

Cohort study NCT01137370

Role of vitamin D in innate immunity to TB Interventional Vitamin D supplementation had 
significant favorable effects on 
serum 25(OH)D concentrations

Dietary supplement: 
vitamin D

NCT01244204 (130)

Trial of adjunctive vitamin D in TB treatment Interventional 
(phase 3)

Administration of vitamin D 
increased serum 25(OH)D in TB 

patients.

Adjunctive vitamin D NCT00419068 (131)

Replacement of vitamin D in patients with active TB Interventional Cytokine response Intramuscular injection 
of cholecalciferol

NCT01130311

A study the effect of vitamin D to conventional 
treatment in new pulmonary TB patients

Interventional Vitamin D supplementation did 
not reduce time to sputum culture 

conversion.

Supplemental high-dose 
oral vitamin D

NCT00366470 (132)

Pneumonia & peritonitis
Study of vitamin D for the prevention of acute 
respiratory infections in children*

Interventional Serum of cathelicidin, 25(OD)-D 
levels

Dietary supplement: 
vitamin D

NCT02046577

Vitamin D3 supplementation in adults with 
bronchiectasis*

Interventional Serum of cathelicidin, 25(OD)-D 
levels

Dietary supplement: 
vitamin D

ACTRN12607000641493 
(121)

Vitamin D supplementation prevent early pneumonia Interventional Prevalence of pneumonia, all-cause 
mortality

Dietary supplement: 
vitamin D

NCT00877422

Vitamin D supplementation and respiratory index of 
severity in children in pneumonia

Interventional 
(phase 4)

Respiratory index of severity in 
children

Supplemental 
cholecalciferol

NCT02936895

The effect of vitamin D supplement on the prevention 
of peritoneal dialysis-related peritonitis

Interventional Change in serum 25(OH)-vitamin 
D level

Supplemental 
cholecalciferol

NCT03264625

Further details for trial with NCT numbers can be accessed at http://clinicaltrials.gov.
ICU, intensive care unit; NCT, national clinical trial; UMIN, University hospital Medical Information Network; ACTRN, Australian New Zealand Clinical Trials Registry.
*Clinical studies that measured the level of LL-37 in patients' samples.

https://immunenetwork.org
http://clinicaltrials.gov/ct2/show/NCT01372995
http://clinicaltrials.gov/ct2/show/NCT01896544
http://clinicaltrials.gov/ct2/show/NCT01758081
http://clinicaltrials.gov/ct2/show/NCT03270709
http://clinicaltrials.gov/ct2/show/NCT03923218
https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000001667
http://clinicaltrials.gov/ct2/show/NCT00886379
http://clinicaltrials.gov/ct2/show/NCT01580007
http://clinicaltrials.gov/ct2/show/NCT01137370
http://clinicaltrials.gov/ct2/show/NCT01244204
http://clinicaltrials.gov/ct2/show/NCT00419068
http://clinicaltrials.gov/ct2/show/NCT01130311
http://clinicaltrials.gov/ct2/show/NCT00366470
http://clinicaltrials.gov/ct2/show/NCT02046577
https://anzctr.org.au/ACTRN12607000641493.aspx
http://clinicaltrials.gov/ct2/show/NCT00877422
http://clinicaltrials.gov/ct2/show/NCT02936895
http://clinicaltrials.gov/ct2/show/NCT03264625
http://clinicaltrials.gov


status and incidences of airway infections (16). Current findings provide promising evidence 
for the protective effects of vitamin D on respiratory tract infections, including TB (16). To 
date, vitamin D supplemental therapy has been the most widely used potential treatment 
in TB clinical trials. However, further evidence of the cathelicidin levels and its efficacy as 
a prerequisite before vitamin D supplementation move into clinical routine in infectious 
diseases. Further translational knowledge about vitamin D-cathelicidin axis should be 
accumulated to support the clinical application of vitamin D in various acute and chronic 
infectious diseases for prevention and/or to offer improved outcomes.
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