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Abstract: In the last two decades, microneedles (MNs) have received significant interest due to
their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have
found applications in a range of research and development areas in drug delivery. They have been
prepared using a variety of materials and fabrication techniques resulting in MN arrays with different
dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters
play crucial roles in determining the drug release profiles from the MNs. Developing mathematical
modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances.
These will then be helpful for pharmaceutical and biotechnological industries as well as professionals
working in the field of regulatory affairs focusing on MN based TDD systems. This is because
modelling has a great potential to reduce the financial and time cost of both the MNs’ studies and
manufacturing. For example, a number of robust mathematical models for predicting the performance
of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical
properties of the skin. In addressing these points, this review paper aims to highlight the current
status of the MN modelling research, in particular, the modelling, simulation and optimisation of
the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is
discussed within this paper. Thus, this review paper provides a better understanding of the modelling
of the MN mediated drug delivery process.
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1. Introduction

The microneedle (MN) system has received significant interest in the last two decades as an
important method for transdermal drug delivery (TDD). The MNs consist of micron size needles
that facilitate drug molecules to overcome the stratum corneum (SC), the outermost layer of skin,
without triggering the nerve ending within the dermis [1,2]. Thus, painful events such as in the case of
applying a hypodermic needle can be averted [3]. Since the first demonstration of the applicability
of MN in 1998 [1], it has been recognised as an alternative to traditional methods for the delivery
of vaccines, drugs and cosmetics [4]. For example, MNs have been employed recently to improve
the transdermal permeation of insulin [5], caffeine [6], human growth hormone [7], lidocaine [8],
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ovalbumin [9], bovine albumin [10], bevacizumab [11], rapamycin [12], Calcein [13], parathyroid
hormone [14] and levonorgestrel [15]. MNs have also been explored for the delivery of other molecules
such as peptides, ocular drugs and cancer drugs [16].

As shown in Figure 1a, the publications related to MNs have grown in the last two decades at
an impressive rate. It seems that the reported MN research is mainly focused on two broad areas:
(i) MN-based process developments and (ii) MN fabrication strategies. Under (i), laboratory-based
experimental studies of various molecules, vaccines and microparticles delivery through the MN and skin
have been conducted [17–19]. While under (ii), various technologies such as micro-electromechanical
systems (MEMS) [20,21], laser cutting [22,23], 3D printing [24,25], and lithography [26–28] have been
applied for production of MN.

Pharmaceutics 2020, 12, x FOR PEER REVIEW 2 of 30 

 

transdermal permeation of insulin [5], caffeine [6], human growth hormone [7], lidocaine [8], 
ovalbumin [9], bovine albumin [10], bevacizumab [11], rapamycin [12], Calcein [13], parathyroid 
hormone [14] and levonorgestrel [15]. MNs have also been explored for the delivery of other 
molecules such as peptides, ocular drugs and cancer drugs [16]. 

As shown in Figure 1a, the publications related to MNs have grown in the last two decades at 
an impressive rate. It seems that the reported MN research is mainly focused on two broad areas: (i) 
MN-based process developments and (ii) MN fabrication strategies. Under (i), laboratory-based 
experimental studies of various molecules, vaccines and microparticles delivery through the MN and 
skin have been conducted [17–19]. While under (ii), various technologies such as micro-
electromechanical systems (MEMS) [20,21], laser cutting [22,23], 3D printing [24,25], and lithography 
[26–28] have been applied for production of MN. 

  
(a) (b) 

Figure 1. (a) Number of journal articles published related to microneedles (MNs) according to Scopus 
in between 2000–2020, (b) distribution of papers according to different MN applications (accessed on 
17 March, 2020). 

Mathematical modelling of the MN systems is an area of growing research where the theories 
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and optimisation of MN systems. However, it is obvious that most of the research in the field of MN 
is focused towards an aspect of experimental or/and fabrication technique. The attention towards the 
modelling has been ignored generally as researchers tend to focus more on characterisation and 
fabrication of the MNs. The exact reason for a significantly less efforts on development of modelling, 
simulation and optimisation tools for MNs is not known. We believe this is due to a lack of sufficient 
number of parameters for applying the relevant theories as well as the expertise and interests needed 
for modelling these systems. An analysis of these publications is shown in Figure 1b, which confirms 
this observation. In fact, the small number of publications related to modelling of MN systems (7%) 
suggests that the attention in this regard is insufficient at the moment. Focusing more research efforts 
toward the prediction of MN performance via modelling should help direct the overall research effort 
towards critical areas that need addressing within the MN research and development. A review of 
the existing mathematical models is, therefore, essential to bring together the work done so far on 
MNs and, identify, the key areas which need further studies. 

The possibility of developing modelling tools towards achieving MN optimisation and testing 
in support of experimental studies is beneficial and attractive. It can save both the costs and time by 
eliminating the need for many time-consuming and expensive experimental trials. Modelling MN 
based TDD typically deals with the simulation of three coupled sub-domains i.e., MNs, skin, and 
bloodstream. As shown in Figure 2, the drugs diffuse from the individual MN to the epidermis and/or 
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Figure 1. (a) Number of journal articles published related to microneedles (MNs) according to Scopus
in between 2000–2020, (b) distribution of papers according to different MN applications (accessed on
17 March 2020).

Mathematical modelling of the MN systems is an area of growing research where the theories
governing drug transport and delivery through the skin can be suitably applied for the development
and optimisation of MN systems. However, it is obvious that most of the research in the field of MN
is focused towards an aspect of experimental or/and fabrication technique. The attention towards
the modelling has been ignored generally as researchers tend to focus more on characterisation and
fabrication of the MNs. The exact reason for a significantly less efforts on development of modelling,
simulation and optimisation tools for MNs is not known. We believe this is due to a lack of sufficient
number of parameters for applying the relevant theories as well as the expertise and interests needed
for modelling these systems. An analysis of these publications is shown in Figure 1b, which confirms
this observation. In fact, the small number of publications related to modelling of MN systems (7%)
suggests that the attention in this regard is insufficient at the moment. Focusing more research efforts
toward the prediction of MN performance via modelling should help direct the overall research effort
towards critical areas that need addressing within the MN research and development. A review of the
existing mathematical models is, therefore, essential to bring together the work done so far on MNs
and, identify, the key areas which need further studies.

The possibility of developing modelling tools towards achieving MN optimisation and testing
in support of experimental studies is beneficial and attractive. It can save both the costs and time
by eliminating the need for many time-consuming and expensive experimental trials. Modelling
MN based TDD typically deals with the simulation of three coupled sub-domains i.e., MNs, skin,
and bloodstream. As shown in Figure 2, the drugs diffuse from the individual MN to the epidermis
and/or dermis region of skin and subsequently reach the bloodstream. Figure 2 also shows the length
scale and stages of drug transports in the MN. The differences in drug delivery behavior within the
skin is due to the difference in the properties of different layers of skin.
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Keeping the above points in mind, this review aims to present the current status of various
modelling approaches for MN design and their utilities. This article also highlights the ways in which
skin properties can be incorporated in the modelling of MN based TDD. For completeness of the
discussion in this paper, we will briefly discuss the key features of the MNs, and the parameters
required for carrying out mathematical modelling of these systems. Published case studies on various
types of MNs are also highlighted in the latter part of the paper. We believe that this is the first review
paper that entirely focuses on reviewing the state of the published work on mathematical modelling,
simulation and optimisation of MNs.

2. MN Features

Some understanding of the MN features is necessary as the first step in the modelling process.
This is because reasonable design criteria are necessary to guarantee that a MN array is functioning
well during drug delivery [29] or extracting interstitial skin fluid [30]. Previous researchers have
come up with a variety of MN types for effective drug permeation and transport in the skin. Various
materials have also been used to fabricate these MNs, e.g., metals, polymers, and others. These are
all key information for a modelling, simulation and optimisation tool. We will, therefore, discuss
these key features of MNs in brief, and in particular, the different types of MNs developed so far and
materials used for MN fabrication. We discuss various designs of MNs investigated by the researcher
for efficient drug delivery into the skin. As these issues have been discussed in earlier papers (e.g., [2]),
they are only discussed briefly in this section so as to ensure completeness of the paper as well as to
facilitate the discussion better in the latter part of the paper.

2.1. Morphological Variation of MNs

Morphologically, MNs are categorised into five types, namely, hollow, solid, coated, dissolving,
and swellable MNs [31]. As discussed in numerous reviews [3,4,32] on the topic, the MN types
must be properly chosen according to their applications. Hollow MNs perform in the same way as
regular hypodermic needles but have much shorter capillaries within them. The chosen liquid drug
formulation is pressurised through micron-size holes in these MNs [33]. The hollow MNs are also
applicable for fluid extraction [34,35] and solute monitoring [36,37]. However, their usage is limited by
inherent structural weakness due to the thin walls and fabrication complexities. Solid MNs have high
material stiffness and more stable structures than the hollow MNs and, they can penetrate the skin more
effectively than hollow MNs [38]. Solid MNs are penetrated into the skin, which are then detached with
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a view to creating micron size channels in the skin. A transdermal patch or micro-emulsion of drug is
then applied creating a reservoir for TDD [8,39–41]. This type of MNs requires a two-step application,
which may make them less convenient for patients. The appearances of coated MNs, which are coated
with a drug formulation on the MN surfaces, has resolved this problem. After the application of drug
coated MNs in the skin, the coating is dissolved in the skin [42–44]. However, the drug loading amount
is relatively low in coated MNs, which limit their applications in the case of high dose delivery [45].
The dissolving MNs are designed to be more suitable for the delivery of rapid/controlled release
formulations, or in situ-forming implants [46,47]. It is made up of polymers and can deliver large
molecules, micro-particles, or vaccines. They have the capacity to load larger amounts of drug in the
polymeric matrix. The foundations of the swellable MN mechanism involves the absorption of local
moisture within the skin and opening up the pore-space within the polymeric matrix, enabling the
delivery of the drug from the needle into the skin by diffusion [48,49]. The swellable needle patch can
be removed after the drug delivery process is complete. This reduces the risk of infection and skin
irritation due to polymer dissolution in the skin [50].

However, there are still withstanding issues, such as the manufacturing cost and complexities,
toxicity, and the physicochemical properties of the drug molecules that limit the range of applications
needing further attention [51–54]. Thus, from the above discussion, it is evident that each MN has
significant merits and demerits in terms of its applications to drug delivery. MN modelling and
optimisation tools have the potential to screen the appropriate choice of a MN type in a given case.

2.2. Materials of MN

Of the key MN features, namely, the material of fabrication of the MNs is a critical factor in the
preparation and application of different kinds of MNs. Different designs of MNs require specific
properties of materials for preparation. These aspects become important for developing mathematical
models of these systems as well. Silicon is known to be the material of the first MNs used for
drug delivery due to the advent of MEMS technology during the 1990s [1,55,56]. Silicon or glass
provides significant flexibility in MN fabrication processes that can be used to shape them and can be
micro-structured in a variety of desirable shapes and sizes. However, various metals (e.g., stainless steel)
have also been used widely in preparing solid MNs due to their good mechanical strengths. These MNs
overcome the skin barrier functions and enhance drug permeability. The MN that have been prepared
using these materials are: (i) solid [57,58], (ii) hollow [59,60] and (iii) coated MNs [61]. However,
the above MNs suffer from various disadvantages like skin irritation and expensive fabrication
processes [62]. For example, there is a possibility that the glass MNs may break in the skin and cause
safety concerns [63].

The limitations of metal and inorganic MNs such as expensive production processes and bio-
incompatibility have led to the development of polymeric MNs. These polymers can be used to
prepare solid [13], coated [64], dissolving [65] and hollow MNs [66]. Polymeric MNs are easy to
fabricate on larger scales and can be loaded with the chosen drug on the MN tips and/or base or
they can be coated on the MN tips with high loading amounts. Depending on how they perform,
the MNs can be grouped into dissolvable, swellable and biodegradable MNs. The polymers for the
MNs have excellent biocompatibility, biodegradability, low toxicity, strength/toughness and low cost.
They include poly(methyl methacrylate) (PMMA), poly-L-lactic acid (PLA), poly-glycolic acid (PGA),
polylactide-co-glycolide acid (PLGA), poly(carbonate), cyclic olefin copolymer, poly(vinylpyrrolidone)
(PVP), poly(vinyl alcohol) (PVA), polystyrene (PS), poly(methyl vinyl ether-co-maleic anhydride)
(PMVE/MA), SU-8 photoresist, polysaccharides and others. Details about these polymers and their use
have been studied in other review papers [19,31] and are not discussed in detail in this paper.

With the development of dissolving MNs, researchers have started to encapsulate drugs and
vaccines in polymers for TDD, which make the biocompatibility of these polymers a top priority for
their design [67,68]. MNs have been produced from biopolymers such as silk fibroin proteins [69]
extracted from the Bombxy mori silkworm and were micro-molded into an array of MNs. The silk
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fibroin MNs has enough mechanical strength to pierce the model skin (porcine skin), and they have
been shown to be suitable for encapsulating methylene blue used as a model drug. Other early works
also developed MNs from maltose [70]. Olatunji et al. [71] prepared MNs from fish scales to achieve
low cost as well as good biocompatibility. Polymers are also blended with other materials in the
desired proportion to improve the drug release profile [72,73]. The drug transport behaviour from MN
is another factor for its choice [74].

2.3. Various Design of MNs

As we analyse the key MN features, it is imperative to consider the designs of these MNs more
carefully as they are important for the modelling purposes. There are, in fact, a number of special
designs amongst the MNs depending on their applications, for instance, one may consider the pocketed
solid MNs for the higher load of drugs [75] and hollow MNs with multiple output ports [76]. These MNs
are slightly modified from the basic MNs types discussed above and extend the utilities of the MNs in
different ways. The success of MNs products and fabrication process highly depends on the reliability
of these MN’s design for the chosen application.

Several studies have adopted the tapered MN design for drug delivery. Olatunji et al. [71]
modelled the force on MNs produced from fish scales using the tapered needle design with varying
tip dimensions. The study focused on fabricating fish scale biopolymer based MNs having adequate
mechanical strength so as to permit the penetration of MNs into the skin without fracture. The modelling
strategy employed by them is discussed in Section 4.1. Using simulations, they investigated the design
of MNs of different structures and different materials prior to fabrication. This reduced the time
and cost, which would have been involved in designing a wide range of MNs and carrying out skin
insertion tests or mechanical strength tests on them.

Zhang et al. [77] employed the tapered design to model gene delivery into the body using a novel
MN-based gene gun. They developed a model to represent the relationship between the delivery
of microparticles using the MN-gene gun and MN parameters such as length and microparticle
size. The tapered design has also been used to model amniotic fluid extraction for testing for Down
syndrome in fetus using MNs [78]. By simulation analysis of various MNs and process parameters,
the researchers were able to predict that longer MN lengths and insertion using vibratory action would
result in more effective insertion into the skin and extraction of amniotic fluid. Simulation of pressure
distribution along dual radii MN design has been used to investigate the fluid extraction using the
tapered MN, as shown in Figure 3 [79]. The dual radius design whereby the upper part of the MN has
a slightly higher radius than the lower part is applied to prevent the clogging of fluids, which is often
associated with the small lumen of hollow MNs as a result of the micro nature of MNs.Pharmaceutics 2020, 12, x FOR PEER REVIEW 6 of 30 

 

 
Figure 3. Pressure distribution along dual radii MN array (adopted from [79]). 

 
Figure 4. Two different capillary phenomena used in modelling of crown shaped MNs (adopted from 
[80]). 

 
Figure 5. Merged-tip MN (adopted from [81]). 

Figure 3. Pressure distribution along dual radii MN array (adopted from [79]).



Pharmaceutics 2020, 12, 693 6 of 31

In an innovative approach to hollow MN design, crown-shaped MNs, which did not have an actual
lumen but can be used for fluid extraction, were presented [80]. The quadruplets MNs, as they are
referred to, were fabricated using X-ray lithography. This MN design is based on the generated capillary
force between the nanosized slits that make up the boundaries of the MNs. This is demonstrated in
Figure 4. A modified capillary model was derived for the quadruplet MNs since the typical capillary
model for flow in a tube does not apply in this case. The predicted capillary height matched with
experimental values.
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Lim et al. [81] have come up with a new design for use as a MN known as merged-tip MNs.
These MNs are fabricated using photolithography using poly (ethylene glycol) diacrylate (PEG-DA)
resin. MNs are dipped in a solution, and the solvent gets trapped in a solution by capillary force,
as shown in Figure 5.
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Recently, Chen et al. [82] have also fabricated MN geometry, which imitates a honeybee stinger
using magneto-rheological drawing lithography. The authors designed microbarbs on the MN surface
with the help of an ex-situ magnetic field (Figure 6). The authors subsequently performed modelling
studies to show that the barbs reduced friction force, which facilitated an easy insertion of the MNs
into the skin.
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From the above discussion, it is evident that different MN structures have been fabricated by the
researchers for efficient transfer of drugs into the skin. These systems are then considered at various
bodies that approve MN based products, e.g., the US Food and Drug Administration [83]. For these
approvals, controlling the variability of MN as a product during their manufacturing and achieve the
desired clinical performance of these systems still remains as one of the key challenges. We believe
the incorporation of the Quality by Design (QbD) concept into the MN manufacturing practice can
be helpful in addressing this challenge [84]. This notion is supported by The International Council
on Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, which provides a
framework for adopting a QbD approaches for designing and manufacturing of MNs [83].

In addressing the same issue of controlling variability of MN characteristics, the design of
experiment (DoE) analysis was exploited by Jing et al. [85] for fabricating sharp tip silicon MN array
by a dry etching process. Similarly, Held et al. [86] incorporated DoE while fabricating silicon MNs.
Coupling QbD, DoE, and mathematical modelling and simulation studies with the typical steps for
laboratory experiments and fabrication processes should certainly help in achieving improved quality
of MNs.

3. MN Modelling Approaches

During the modelling of MNs, one needs to convert either the conceptual or the real MN design
into a computational domain, which can be used to run numerical simulations or other modelling
exercise (e.g., approaches using applied mathematics concepts using a direct solution of governing
equations). It seems that the first work which reported MN modelling was in 1999 when the authors
looked at modelling fluid extraction using hollow MNs [76]. These authors used numerical simulations
to study the performance of micromachined MNs with channels for coupling flow. In general, it is
observed that the mathematical models have been used mostly to verify the performance of the designed
MNs [87]. After the computational domain is created, the properties of both the MNs and MNs treated
skin need to be selected following the required conditions in the design stage. MN properties include
the mechanical properties of the MN structures (e.g., Young’s modulus, Poisson’s ratio, ultimate tensile
strength, etc.) for insertion studies [88] and properties of the loaded drug formulation determines
the diffusion process. The skin properties (e.g., thickness, Young’s modulus, porosity, etc.) are also
related to the permeation behaviour which will affect the diffusion of the drug molecules in the MNs
treated skin [89] and the deformation of the skin due to MNs insertion [90–92]. We consider these
points further as discussed in various sub-sections below.

3.1. Parameters for MN Modelling

One of the main objectives of MN modelling is to obtain the required design parameters of MNs
so that the desired/optimum MN performance can be achieved. The outputs of such modelling exercise
are typically the penetration depth and drug release rate from MNs. These outputs are related to
various parameters of both skin and MN [71,93]. The factors responsible for MN performance are its
chemical compositions and geometric parameters such as needle height, tip-radius, base diameter,
needle geometry, needle thickness, and needle density, etc. (Figure 7). The water absorption rate is
also an influential criterion that should be kept in mind while modelling the dissolving and swellable
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MNs [94]. Skin viscoelasticity determines the amount of force required by MN patch to penetrate
the skin [90]. To obtain effective improvement of skin permeability, effects of different MN tip radius,
length, and number in an array have been modelled in previous studies [95–102]. Other researchers
have focused on modelling the specific MN application method [103,104].
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The dimensions of the designed MNs need to be converted into input parameters for modelling,
so the created computational domain is usable for further modelling and simulation exercises.
The generated domain is a substitute for the designed MNs for the computer simulation where different
tests can be achieved within that domain. For example, a computational domain of a hollow MN
created in the computer program ‘Ansys’ is shown in Figure 8 [105].
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The parameters involved to describe the MNs geometry are input to the computer program as
well as the alignment of those MNs for a modelling process. For the parameters describing MNs’
geometry and arrangement on the MNs patch, there are five key aspects which have been analysed
and discussed: the penetration depth/MNs length, both tip and base diameter of the MNs, center to
center spacing between two MNs, numbers of MNs in the array and the distribution of the MNs in an
array (square, diamond, triangle, rectangle or special design [106]). However, these parameters do not
individually affect the drug diffusion rate, and they are connected as a synergetic system. Therefore,
new parameters are introduced to define the relationships between these MNs parameters, thereby
describing the system properly for the purpose of optimisation. For example, a parameter called aspect
ratio (α) can be selected to define the relationship between two key parameters: (i) MN base radius
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‘R’ and (ii) center to center spacing ‘Pt’ (Pitch) [106]. α describes the ratio of the pitch over a MN
base radius so the arrangement of the MNs on a patch can be confirmed according to the conditions
that are limited in a MN design stage. Following the definition of MNs geometry and arrangement,
other parameters need to be input accordingly for different purposes of the simulation. The parameters
related to skin are also needed to be included for an effective diffusion study of the therapeutic using
the MN [107]. In the above studies by Das and his group members, the partition coefficient for the
drug at the skin/blood capillaries was not determined.

Skin composes of different layers (i.e., SC, viable epidermis (VE) and dermis (DE)), which have
different mechanical strengths and molecular diffusivities values (Figure 2). Modelling of MN pierced
skin, therefore, often focus on using different parameters that reflect the skin properties, e.g., skin insertion
force and penetration depth. For instance, it has been suggested that solid MNs have a higher stiffness
than hollow and dissolving MNs [71]. The insertion force is further related with MN tip angle and radius
of tip’s curvature. We will discuss these aspects further in the latter part of the review.

Once the appropriate skin domain and their properties are chosen, the domain is used for
simulation of drug permeation studies, which require information about the related drug molecules.
Parameters of the molecules, such as the molecular weight and partition coefficient, can affect the drug
diffusion coefficient. To demonstrate how molecular weight affects diffusion rates, Gomaa et al. [89]
selected a series of six structurally related ionic xanthene dyes with a diverse range of molecular
weights to run the simulation on MN treated porcine ear skin. The molecular weights of the six dyes
ranged from 366.80 Da (Rh 110) to 10,000 Da (RITC-D). The results of this study confirmed that the
molecular weight is one of the significant factors that affects the molecular diffusion rate in the skin in
general, and MN pierced skin in specific.

3.2. MN Modelling Tools

A number of computer-based tools have been developed for MN modelling using both in-house
programming and commercial software. These tools are usually developed for specific modelling
purposes. For instance, when the parameters such as the aspect ratio (α) were needed to be tested
for the optimisation of the squared MNs patch, an in-house java programming tool was developed
to achieve the purpose [106]. An optimum α was then determined so that the information may be
used to optimise the physical dimensions of MNs with greater accuracy. Furthermore, based on the
optimised parameters acquired from the program, the permeability of different drug molecules through
MNs treated skin can be predicted by using relationships for the diffusion coefficient. For example,
the correlations between diffusion coefficient and skin permeability of some sample molecules (Calcein,
insulin, bovine serum albumin, nanosphere particles with radii of 25 and 50 nm, respectively) which
were deduced from theoretical relationships are presented in Figure 11 [106].

A relatively recent study used a MATLAB-based image processing tool to acquire skin pore
profiles from histological images that show the cross-sectional views of MNs treated skin [107].
The computational domain in this study was directly obtained from the histological images of MN
treated skin and used for computer simulations of drug delivery (Figure 9). Zhang et al. [77] have
also developed a MATLAB-based tool which was used for simulating trajectories and penetration
depth of micro-particles delivery by gene gun into MN-pierced skin. The objective of the study was
to study computationally how MNs could reduce the skin resistance to particulate delivery in skin
such as those encountered in gene guns. An example particle penetration profile of the micro-particles
through the MN pierced skin layers is shown in Figure 10.
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The diffusion profiles in the computational domain are generally simulated using commercial
software that are based on a numerical method such as the finite element method (FEM), e.g.,
COMSOL [71,108], Ansys [105,109,110], Preview [90] and Abaqus [38]. After the designed models are
imported into that software, the diffusion results can be determined following the configurations input
by users. We discuss these points in more detail in the next section of this paper.
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4. Case Studies on MN Simulation and Optimisation

This section highlights the key work done by various researchers in modelling MN-based TDD.
The review is organized according to key aspect of MN based drug delivery addressed in the paper.

4.1. Simulation of MN Insertion Force and Effect of Skin Properties

As discussed above, various MNs have been developed in the past to allow for TDD. The particular
MN designs rely on the manufacturing techniques used for fabrication, and their success is totally
dependent upon their ability to puncture the skin [90]. However, the skin has a viscoelastic property,
and therefore, this should be considered while carrying out modelling MN insertion behaviour.
Sufficient force is required to ensure that the MNs are properly penetrated into the skin. Numerous
studies have been focused on characterizing the MN insertion behaviour into the skin using various
imaging methods and by performing MN penetration measurements using in vivo and ex vivo skin
tissue [2,85,93,112,113]. Based on different experimental data and skin properties, researchers have
now developed mathematical models to study the effective insertion force [112]. These models
can predict the force required without the need of carrying out expensive and time-consuming
insertion experiments.

Aoyagi et al. [114] carried out a FEM simulation study for hollow MNs and demonstrated that
the maximum stress is encountered at the tip of the MN, and that the sharper the MN tip angle are,
the easier it is for the MNs to penetrate the skin. Kong et al. [115] studied the implications of MN
geometry and skin mechanical properties on the insertion force using FEM. They used tapered hollow
metallic MN of different geometries (e.g., wall angle and thickness, tip area, etc.) to simulate the
deformation and failure of skin tissue and the required insertion force of MN using different stiffness
and failure stresses. A needle was inserted into the skin with uniform velocity of 1.1 mm/s under
the assumption that this is a quasi-static process. The simulation results showed that the insertion
force magnified linearly with enlargement of tip area of the MN and reduced with an increase in wall
angle. It was also shown that the thickness of different layers of skin have a negligible effect on the
insertion force [115].

As part of numerical modelling of MN systems, one is required to generate the specific numerical
meshes of the computational domain over which the governing equations of the specific numerical
model can be solved. The following two examples illustrate this point further. Groves [90] has
analysed the mechanical behaviour of skin when the MNs are inserted into it. They have carried
out a series of predicative FEM analyses of human skin behaviour, which incorporate the epidermis,
dermis and hypodermis. Groves [90] used the Ogden model of hyperelasticity to determine the
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mechanical characteristics of all three skin layers when MNs are inserted. For the case of solid MNs,
the simulation is mainly focused on the skin deformation during insertion rather than the deformation
of the MNs themselves. Unlike Aoyagi et al. [114], the deformation of the solid MNs was ignored
during the analysis of MNs insertion, and therefore, only the mechanical properties of skin have been
used in the modelling. Figure 12 shows an image of the numerical mesh used by Groves [90] in their
analyses. The average number of elements was 12000 in their numerical mesh and axial symmetry of
the computational domain was assumed to reduce the computational time.
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Boonma et al. [91] used fine triangular mesh to study the deformation of tissue and calibrate
the magnitude of the stress tensor around the insertion site of MNs. In their mesh, only the
deformation of skin was recorded, and the modified domain was then employed for conducting further
numerical simulations [91].

The dissolving MNs consisting of polymers are relatively soft compared to the solid MNs
(polymeric). Hence, the mechanical properties of dissolving MNs are imperative to be measured
in order to optimise the formulation of the MNs and the maximum load it can bear. An example
model [88] of dissolving MNs that consists of carboxymethylcellulose and maltose (CMC/MAL) is
shown in Figure 13.
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Figure 13. (a) Carboxymethylcellulose and maltose (CMC/MAL) dissolving MNs pierce skin sample
under 5N load; (b) the buckling force is predicted based on the mechanical properties of the MNs
(adopted from [88]).



Pharmaceutics 2020, 12, 693 13 of 31

Olatunji et al. [112] analysed various combinations of forces acting during MN insertion in skin as
given in Equation (1).

Finsertion = Fbending + Findentation + Fcutting + Fbuckling + Ffriction (1)

where Fbending is the force that can bend the skin, Findentation is the force that the MNs start disrupting the
SC layer, Fcutting is the force that the MNs start piercing into the skin, Fbuckling is the force causing skin
deformation and Ffriction is the frictional force during the MNs penetration. The forces were calculated
for conical shaped MN using FEM and results were compared with experimental data. The results of
those force components were shown to be not only dependent on the mechanical properties of the skin
but also affected by the geometry and alignment of the MNs on the patch. The deformation of the skin
caused by those forces could be different from the shape of the MNs, thereby changing the results of
the simulation. Simulation results from the FEM agreed well with the experimental results carried out
using neonatal porcine skin mounted on Franz diffusion apparatus.

Recently, Kim et al. [116] have developed a touch activated MN drug delivery patch and the
authors have performed a modelling study to determine the effects of the applied force on the quantity
of drug permeated from the MN into the skin. The relationships between normal force, quantity of
drug release, wetting area of skin and quantity of drug permeated were expressed in the form of simple
equations with a view to improve the user-friendliness of the developed approach.

From the above discussion, it is evident that most of the modelling for MN insertion in skin
have been performed taking into account a single MN rather than the design of the whole MN array.
This seems to limit the range of validity of these results because an accurate calibration of the insertion
force should take into account both the individual MN design as well as the particular distribution of
the individual MNs on the patch (e.g., square or rectangular distribution of the MN), e.g., to investigate
the effect of MN interspacing (pitch width) on the insertion force.

4.2. Simulation of MN Enhanced TDD

Once a particular MN design is converted into a modelling domain (e.g., Figure 8) and suitable
numerical meshes are created (e.g., Figure 12), the effective TDD study can be simulated based on
parameters discussed in the previous section (e.g., Section 3.1; Figure 7). MNs create holes in the skin,
which cause the drug molecules to penetrate the skin and reach the systemic circulation (Figure 2).
These holes are more often chosen for simulation instead of the MNs model itself as the holes are
directly connected to the skin. As a result, a complete simulation of TDD using the MNs can be
considered as a system in which the MN is just one crucial component. The system conventionally
consisted of three components: the MNs (or the holes they create), the skin and blood stream, which can
be further extended (e.g., different skin layers) for higher model accuracy. For example, the three
components system for pharmacokinetic study can be expressed as Equation (2) which defines the
cells in skin as ‘bricks’ that blocks the drug molecules and reduce the diffusion rate [117]:

Vb
dCb

dt
=

(dQ
dt

)
Sa −KeCbVb (2)

Vb
dCb

dt
=

(dQ
dt

)
Sa − (Ke + K12)CbVb + K21CtVt (3)

Vt
dCt

dt
= K12CbVb −K21CtVt (4)

where K12 and K21 are the transfer rate between skin reservoir and blood circulation, Ct is the
concentration in the skin reservoir and Vt is volume of distribution in the skin reservoir. Although
the pharmacokinetic model can display the mass transfer status of all components in the system at
both transient and steady states, the parameters such as K12, K21 and Ke are difficult to quantify.
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Therefore, the blood stream is sometimes assumed to have 100% absorption on drug solutions to avoid
the complexity and back diffusion of the drug molecule into the skin is ignored [117].

Milewski et al. [118] developed a diffusion-compartmental mathematical model-based quantitative
in vitro–in vivo correlation for drug transport across MN treated skin. The model considered two parallel
permeation pathways (intact skin pathway (ISP) and microchannel pathway (MCP)), barrier-thickness-
dependent diffusional resistance, microchannel closure kinetics, and drug pharmacokinetics. It was
defined that all mass transfer resistance comes primarily from viable tissue (VT). The total flux (JTOT) was
defined as [118]:

JTOT = fISPJISP + fMCPJMCP (5)

where fISP is the fractional skin surface area of the intact skin pathway, JISP is the flux through the intact
skin pathway, fMCP is the fractional skin surface area of the microchannel pathway, and JMCP is the flux
through the microchannel pathway. The cumulative amount-time profiles for skin layer (SC and viable
tissue (VT)) were solved using Fick’s law of diffusion. In addition, they considered microchannel closure
process which affect the drug transport in vivo. The permeability of the microchannel was interpreted
with respect to the fractional skin surface area of the microchannel that remains open. The pore closure
process affects the drug diffusion process and Equation (5) was modified by incorporation of new
parameter for skin closure given by:

JTOT = fISPJISP + fOMFfMCPJMCP (6)

Here fOMF stands for the open microchannel surface area fraction. The value of fOMF is unity
for the in vitro process and Equation (6) changes to Equation (5). The drug is taken away by the
systemic circulation once it crosses the viable skin tissue. A regression analysis was performed on drug
pharmacokinetic data which showed a good match with the microchannel closure rate and in vitro
permeation data.

Rajoli et al. [92] developed a physiologically based pharmacokinetic (PBPK) model for modelling
MN arrays containing cabotegravir and rilpivirine. The intradermal compartment is divided into
four sub-compartments (i.e., SC, VE, DE and hair follicles (HF)) as shown in Figure 14. The value of
different parameters indicated in Figure 14 are not discussed here and can be obtained from the paper
Rajoli et al. [92]. The authors studied the effect of needle length, MN hole radius and release rate on
the pharmacokinetics of rilpivirine. The model proved to be efficient in designing a novel formulation
for chronic transdermal drug administration of the drugs.
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4.3. Governing Equations for Drug Transport in MN Treated Skin

The skin layers perform as obstructions between the drug formulation in MNs and blood stream
at different length scales (Figure 1). The diffusion of the drug molecules is therefore hindered, thereby,
causing a concentration gradient in the skin. The diffusion profile of the drug molecules in the MNs
treated skin is typically simulated using Fick’s law in which a diffusion coefficient is employed to relate
the concentration variation within the skin with the diffusion flux. The steady and transient state of
diffusion can apply Fick’s first (Equation (7)) and second laws (Equation (8)), respectively.

Jss = −D
dC
dx

(7)

∂C
∂t

= D
∂2C
∂x2 (8)

Here Jss is steady state flux, D is the diffusion coefficient, C is the drug concentration in the skin and x
is the depth from top surface of the skin. The effective diffusion coefficient, which is related to the
properties of the skin and size of the drug molecules, is approximated using Stokes–Einstein equation
(Equation (9)) for drug transport through MN-pierced skin [119].

D =
kBT
6πηr

(9)

Here, kB is the Boltzmann’s constant, T is the absolute temperature, η is the viscosity of drug
molecule and r is the radius of the drug molecules. McAllister et al. used Equation (9) to determine the
drug diffusion coefficient in the drug solution within the holes created by the MNs. The authors then
used a hindrance factor to work out the effective diffusion coefficient within skin. However, skin has
different layers and complicated inner structures which are likely to make the values of effective
diffusion coefficient calculated from this approach inaccurate.

Due to the special characteristics of skin, three other methods have been introduced in the literature
in order to increase the accuracy of the calculations for drug diffusion coefficient as discussed below:

1. The diffusion coefficient can be deduced from the partition coefficient considering skin as a
multilayer structure. The values of the diffusion coefficient are different for each layer of the skin,
which can be calculated separately using Equation (10) [120].

D = −
Jssh

Ki/jc0
(10)

Here, Ki/j is the partition coefficient between different diffusion compartments (donor compartment,
SC, VE and DE), h is the thickness of the skin layer and c0 is the initial drug concentration in the
skin layer.

2. To further explore the properties of different layers, the skin is considered as a porous material in
which tortuous channels are defined to exist as pathways for the transportation of drug molecules.
Equation (9) provides diffusion coefficients for every layer in the skin. While the drug molecules
are inside those channels, the hindrance factor H(λ) also needs to be included where λ is the
ratio of molecule radius over skin pore radius. Therefore, the size of the molecules decides the
significance of the hindrance factor. Equation (11) shows the hindrance factor in cases where λ is
less than 0.4 [121].

H(λ) =
(
1− λ2

)(
1− 2.104λ+ 2.09λ3

− 0.095λ5
)

(11)



Pharmaceutics 2020, 12, 693 16 of 31

After the hindrance factor is calculated, it is imported into Fick’s law along with the porosity and
tortuosity of the skin which have been shown in Equations (12) and (13) [121,122].

Jss = −
ε

τ
D∞H(λ)

dC
dx

(12)

∂C
∂t

=
D∞H(λ)

τ2
∂2C
∂x2 (13)

where D∞ is the diffusion coefficient of the drug solution at infinite dilution, τ is the tortuosity of
the channels and ε is the average porosity of the skin.

3. The third method aims to acquire the diffusion coefficient via experiment where the time lag
(the time duration when the diffusion reaches its steady state) needs to be measured. Although
this method considers the skin as homogeneous material, the diffusion coefficient is still more
accurate than that obtained using Equation (6). The theoretical relation between the diffusion
coefficient and the time lag is shown in Equation (14) [123]:

D =
l2

6tlag
(14)

where tlag is the time lag and l is the thickness of the skin. There are also other studies which
consider factors such as back diffusion of the drug molecules in skin [124], however, they are not
elaborated in this review.

Recently, Rzhevskiy et al. [125] have developed a correlation to determine the microporation
enhanced transdermal drug flux. The equation is based on simplified assumptions and parameter
approximation as shown in Equation (15).

J ≈ 0.36nprpMW−0.6Cv (15)

where Cv, np, rp and MW are the vehicle drug concentration, skin pore density, pore radius and the
molecular weight of the drug, respectively. The validity of the equation has been confirmed by a
regression analysis of literature data. The equation has been further validated by performing in vitro
experiments on human abdominal skin with three different drug molecules.

4.4. Simulations of TDD in MNs Treated Skin

The MNs act as the drug delivery vehicle in the system where all the alterable parameters
are included. The parameters that are related to the geometry and alignment of MNs have been
mentioned in Section 3. Those parameters must be combined with the MN types to complete the
simulations. With a view to illustrate these points clearly, we divide the discussions according to the
MN types. Modelling of swellable MNs is an area which has not been explored fully yet and needs
further attention.

4.4.1. Simulation of Solid MNs

The solid MNs can be either coated with drugs while insertion (coat and patch) or used to
create pores on the skin where drugs will be applied after the MNs are removed (poke and patch).
The poke with patch method has more capacity for drug loading, so the pores created by MNs
should be considered as reservoir for drug solutions. The permeability (K) inside the reservoir can be
described by [119].

K = f
D
L

(16)

where, f is the fractional area of the pore over the skin and L is the length of the pore. The shape of the
pore created by MNs is related to the MNs’ geometry. To optimise the MNs enhanced diffusion in the
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system, the crucial factor is the arrangement of MNs on the patch. Based on the imported MNs model,
there is a function (g) introduced to characterise the pores on a square patch and is given by [111].

g =
n2R2

A
(17)

where, f is the fractional area of the pore over the skin and L is the length of the pore. The shape of the
pore created by MNs is related to the MNs’ geometry. To optimise the MNs enhanced diffusion in the
system, the crucial factor is the arrangement of MNs on the patch. Another important condition is that
the pitch Pt is defined as the center to center distance between two adjacent MNs. It ensures that the
MNs on a patch do not overlap with others and avoid a disordered pattern [111].

Pt =

√
A

n
≥ αR (18)

where α is the aspect ratio of the pitch and must be greater than 2 to avoid overlap.
Equation (18) indicates the MNs on patch are arranged in square pattern. To achieve other patterns

such as triangular, diamond or rectangular, the pitch component in transverse direction (Ptn) and
longitudinal direction (Ptm) must be specified. After the pattern has been chosen, the optimised α will
be deduced so that the relationship between pitch and the parameters in Equation (17) can be found.
By applying Fick’s law, the correlation between the permeability and diffusion coefficient of different
drug molecules based on those optimum parameters can be calculated which are shown in Table 1.

Table 1. Correlations of permeability (K) of drug molecules for different patterns of MNs patch. K is
related to the diffusion coefficient (D) as discussed by Al-Qallaf and Das [111].

MN Distribution in a Patch Permeability (cm/s)

Square K = 1.6185 × D − 0.0008
Diamond K = 0.8125 × D − 0.0029
Triangular K = 0.936 × D − 0.0007

Rectangular K = 1.622 × D − 0.0002

Uppuluri et al. [101] analysed the implications of different MN geometries (e.g., length, number
of MNs and shape) on the TDD of rizatriptan drug molecules. A scaling analysis was carried out using
the Buckingham π theorem, which defined the interplay among different dimensionless parameters of
drug concentration and MN geometry as shown in Equation (19) [87].

Ct

Cs
= K

◦

[
SaL4Ke

VbhD

]n

(19)

where Ct and Cs represent the drug concentrations in blood and MN, respectively, K◦ is a dimensionless
constant, n is unknown power, Sa is the surface area of MN patch, Ke is an elimination rate constant,
h is the thickness of skin, L is MN length, Vb is volume of receptor fluids (in vitro) and D is the diffusion
coefficient of drug in untreated skin. Correlations for dimensionless concentrations with different
dimensionless parameters of MNs are as shown in Equations (20) and (21).

Ct

Cs
= 4.864× 10−3

[h
L

]−1.592
for 0.8 ≤

h
L
≤ 2 (20)

Ct

Cs
= 0.224

[
Sa

L2

]−0.798

for 78.5 ≤
Sa

L2 ≤ 491.5 (21)

Good correlations were observed between the dimensionless concentrations determined theoretically
as well as experimentally [101].
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Lyashko et al. [126] developed an analytical approach for modelling and optimisation of drug
concentration for solid MN treated skin. They considered the MNs as point sources of drug concentration
and solved a convection-diffusion equation to work out the concentration of drug as functions of time
and distance. The paper also tried to investigate the existence of a unique solution for mathematical
problems for Fick’s law with the chosen initial and boundary conditions and provided the proof of the
existence of the mathematical solution.

Numerical simulations have also been performed for solid MNs coated with drug formulations.
Römgens et al. [38] performed computational modelling to find the optimum geometry of MN array
based on the number of antigens presenting cells, which were defined to depend on the induced
immune response. Three-dimensional FEM was done on Abaqus describing the diffusion and kinetics
of antigen transfer into the skin. The set of governing equations was solved to study the effects of
various MN parameters (MN array interspacing, length, base radius, drug loading and release rate) on
the number of activated cells in both the epidermis and dermis. The simulations could identify the
optimum values for center-to-center distance of MNs for the applied drug dose. Also, it was shown
that the length of the MN influenced the immune response with base radius and release rate causing
minimal effect.

4.4.2. Simulation of Hollow MNs

Hollow MNs have narrow capillaries that can infuse drug solution into the skin. Various numerical
simulations have been completed on flow and structural analysis of MNs. Shibata et al. [127] performed
experimental and simulation studies to determine the mechanical stability of hollow MNs made from
silicon dioxide. Bodhale et al. [109] performed structural and computational fluid dynamics (CFD)
analyses of hollow side-open polymeric MNs for TDD application. They proposed a hollow MN with
both cylindrical and conical part with holes on the side of MN. The simulation results for axial and
bending stresses are shown in Figure 15. The simulation results showed minimum deflection of tip
due to applied pressure at the tip. The CFD analysis was also carried out to determine the pressure
distribution and flow rate of the fluid flowing through the hollow MNs. Different pressure ranging
from 10–100 kPa was applied on MN based on the MN pump specifications and flow was analysed.
The numerical results showed that the pressure and velocity distribution remained uniform in the MN
array which is desirable to deliver the drug in proper proportion. The proposed design was shown to
be suitable for integrating with micropumping device for delivery of drug.
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The hollow MNs have channels that can continuously deliver drug solution into the skin. However,
the annular wall of the MNs limits the contact area of the drug solution to the skin, hence, the parameter
f in Equation (16) needs to be redefined which is shown in Equation (22) [106].

f = nπ
(R + W)2

−R2

A
(22)

where W is the annular gap width of the hollow MNs. The drug delivery mechanism of hollow MNs is
more complicated compared to the solid MNs because the drug delivery rate of hollow MNs is not
only relying on the diffusion but also depends on the injection process. Therefore, a concept of ‘moving
interface’ is introduced to describe the boundary that separates saturated and unsaturated skin tissues.
The velocity of the moving interface should be higher during the MN injection than passive diffusion
rate as given below [128]:

uint =
u0ε

ε+ (1− ε)
e−

βt
ε+ϕ(1−ε) (23)

where uint is the velocity of the moving interface, u0 is initial injection velocity, ϕ is the drug solution
absorption rate per unit volume of tissue, β is the absorption coefficient of drug taken by blood stream
and ε is the average porosity of the skin. The results indicate that higher diffusion rate can be achieved
by increasing u0 while the porosity and absorption rate of skin are considered as intrinsic variables.
In the said study, the moving interface position was measured in an assumed thickness x0 =15 µm skin
sample which is shown in Figure 16.
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Recently, Liu et al. [129] developed a model to study the relationship between the drug delivery
rate through hollow MNs and skin resistance pressure. They proposed a physically based model for
calculating the driving force for drug infusion and verified it through experiments. The resistance to
the drug delivery rate was estimated using a pressure loss calculation. The final expression for the
overall pressure balance is given in Equation (24).

F− Ff

πD2
s /4

=
8ρQ2(t)
π2

 1

N2D4
mn

+
λLt

D5
t

+
2.02

N2D4
mn

+
ζ1

D4
mn1

+
ζ2

ND4
mn

+
ζ

D4
t

+ 128µLmn

πD4
mn

Q(t)
N

(24)

In Equation (24), F is the force applied by the pump on the syringe, N is the number of MNs and Ff

is friction force between the piston seal ring and syringe wall. All of the terms included in the equations
are defined in Table 2. The values of the parameters are also included as they provide an excellent
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indication of the significance of these parameters for MNs treated skin. The authors concluded that the
drug delivery rate was mainly influenced by a resistance pressure. Liquid also tends to backflow when
the flow rate is increased to a certain value.

Table 2. Constants and variables used in Equation (24) [129].

Constants Definition Values Variables Definition Unit

Dmn Inner diameter of MN 1.8× 10−4 m Q(t) Volumetric flow rate of liquid drug m3/s

Dmn1 Inner diameter of
micro-needle cavity 1.1× 10−2 m F Force that the pump push block

applies on syringe [N]

Ds Inner diameter of syringe 8.4× 10−3 m ζ Friction coefficient at syringe outlet -

Dt Inner diameter of soft tube 1.4× 10−3 m ζ 1 Friction coefficient at connection from
soft tube to micro-needle cavity -

Lmn Length of MN 9× 10−3 m ζ 2 Friction coefficient at connection from
MN cavity to needle -

P Density of liquid drug 1000 Kg/m3 Ff Friction force between seal ring of
piston and syringe wall [N]

M Dynamic viscosity of
liquid drug 1.005× 10−3 Pa·s λ Friction factor -

N Number of MNs 5

Micropumps have been investigated in combination with hollow MNs to carry out the drug
delivery and diagnosis. Chen et al. [130] proposed an expansion model to theoretically characterise the
drug delivery rate using a hollow MN array driven by micropumps. They assumed that the infusion
through MN causes ‘spherical expansion’ and a ‘spherical diffusion’ in the tissue due to relatively high
fluid pressure in the MNs. The authors performed experiments on silicon rubber and polyacrylamide
gel, and the results from these experiments qualitatively agree with the analytic results from the
model for drug delivery. Similarly, Haldkar et al. [110] performed a modelling study on hollow MNs
integrated with micropumps for biosensor application (Figure 17). The paper analysed the effect of
the shapes of hollow MNs on the flow of liquid inside the micropumps. The MNs were modelled for
various pressure differences using FEM to achieve the required flow for biosensing. It was concluded
that pentagonal shape of MN is the best for achieving the desired mass of fluid at the biosensor location.
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4.4.3. Simulation of Dissolving MNs

Dissolving MNs are of utmost importance now for TDD as they can improve regulatory compliance
and safety for patients. The dissolving MNs have similar mechanisms to solid MNs when using poke
with patch method. However, the drug matrix in the reservoir of dissolving MNs is formulated so
that it can be released over time. Therefore, the actual amount of drug solution is a time dependent



Pharmaceutics 2020, 12, 693 21 of 31

function that is related to the dissolving rate of the drug matrix, i.e., the volume change rate of a conical
dissolving MNs is given by [131].

dvc

dt
= −π

kD

ρ

( tan θ
cos θ

)
h2

[
Cs −

(
1−β
β

)
C
]

(25)

where, vc is the volume of the dissolving MNs, kD is dissolution rate constant of the drug matrix,
ρ is the density of the drug matrix, h is the height of the MNs, Cs is the solubility of the drug matrix
in water, C is the drug concentration in the skin, β is the mass fraction of drug in the MNs and
tanθ is the original ratio of radius over the height of MNs. Equation (23) indicates the boundary
conditions of the simulation are changing with time and highly related to the dissolution rate of the
drug formula. Besides, the alignment of the MNs and mass fraction of the drug in the MNs is also
adjustable parameters that can affect the diffusion rate.

This approach was further investigated by Ronnander et al. [94] for modelling the transport
of sumatriptan from pyramidal shaped dissolving MN. They studied the effect of drug loading,
needle height, and pitch width on the release profile of sumatriptan in the skin. The change in drug
concentration in the skin with time was determined as follows [94].

dc(t)
dt

= −(KLc) + 4
[

kDtan θ
ρ cos θ

]
h2

[
βρ− c

v(t)

][
cs −

(
1−β
β

)
c(t)

]
(26)

where, KL is elimination rate constant and v(t) is volume of skin layer. The parameters KD and KL

were estimated by carrying out the nonlinear regression of experimental data. Cumulative percentage
of drug release M(t) is calculated by using the equation:

M(t) = 1−
dsP2

w(cSD(t) + c(t))(
βρvc,0 + m0

) (27)

where Pw is pitch width, CSD is drug concentration in solid phase, vc,0 is the initial volume of skin layer,
ds is skin depth and m0 is mass of drug in the baseplate. The results showed that drug concentration in
the skin increased with increase in drug loading and height of MN. As the pitch width was increased
the level of sumatriptan permeation in the skin also reduced.

Ronnander et al. [132] reported a model which was developed to evaluate the efficacy of
sumatriptan administration. The model simulated the dissolution of pyramidal shaped MNs and
the diffusion of sumatriptan. The authors used the model for simulating three different cases of
sumatriptan DMN formulations and concluded that by reducing the MN pitch width significantly
one could increase the sumatriptan diffusion in the skin, in line with the findings of Kim et al. [131].
Such modelling studies assist in optimal design of MNs in terms of drug loading and MN array
geometry. Recently, Zoudani et al. [133] performed a set of simulations for dissolution of conical
shaped polymeric MN in porous medium. They used the approach proposed by Kim et al. [131] to
model the dissolution kinetics and study the effects of drug loading and pitch width (Equation (25)).
Zoudani et al. [133] introduced the concept of hindrance factor to invesgate the effect of drug molecular
radius on the drug effective diffusion coefficient in the skin, which was not considered by Ronnander
et al. [132] (Equation (11)). Their results showed that faster dissolution is achievable by increasing the
initial drug loading and no significant changes were seen on varying the pitch size [133].

Both Kim et al. [131] and Ronnander et al. [132] have considered the dissolution of MN as a linear
process (e.g., constant height to base radius ratio throughout the dissolution process), which may
not describe well the actual changes in the shape of MN [134]. The height of the MN decreases at a
faster rate as compared to the base radius making the value of tanθ (Equation (27)) a variable which
should be accounted for in Equations (25) and (26). Also, the mathematical modelling involved lot
of input parameters which makes it difficult for non-experts such as medical and pharmaceutical
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simulation with other MN dissolution experiments. Chavoshi et al. [135] had earlier reported a
mathematical model which was developed on the basis of autocatalytic effects within the MN polymer.
The autocatalytic dissolution effect was incorporated in the model to predict the drug release profiles
in skin. The authors used conical shaped MNs and the drug release rate was modelled as a function of
polymer matrix degradation rate of poly (lactic-co-glycolic acid) (PLGA). The main point of the MN is
the hydrolysis reaction occurring between steric bonds of the polymer which results in a reduction
of the molecular weight and consequent degradation of the MN array. The molecular weight of the
polymer changes with the water and polymer concentration was defined as in Equation (28).

Mn

M0
n
= exp

(
−k

[
CH2O

]
[CPLGA]t

)
(28)

In Equation (29), M0
n is the initial number averaged molecular weight while k is the degradation

rate constant. The mass conservation equations of the model were solved for all system components
using a finite difference scheme, and the model solutions were validated against experimental data
from the literature [136]. This modelling approach uses concentration term for the water content within
the MN which is difficult to determine because both the mass and volume of the MN change with time.
Therefore, it would be reasonable to explore an alternative approach where the total mass of water
would be the measurable quantity. Secondly, while the authors assumed an effective shape of the MN
in their paper, they ignored the concept of effective diffusivity of the drug in the skin, such as that
discussed by Davidson et al. [107].

Watanabe et al. [104] have explored the implications of MN array geometries on drug permeability
in skin. On the other hand, Chen et al. [102] have performed a scaling analysis of insulin loaded
polymeric MNs to study the effect MN geometric parameters on MN penetration efficiency. Based on
Equation (20), the following correlations were developed between the dimensionless insulin concentration
against different dimensionless parameters considering that all other variables remained unchanged.
Equations (29) and (30) show the relation between dimensionless insulin concentration and different
length of MNs. This analysis was based on the research results of Uppuluri et al. [101], which were
discussed earlier.

Mn

M0
n
= exp

(
−k

[
CH2O

]
[CPLGA]t

)
for 0.29 ≤

h
L
≤ 0.80 (29)

Ct

Cs
= 1.2293

[
Sa

L2

]−0.113

for 32.65 ≤
Sa

L2 ≤ 256 (30)

The correlations indicated that the effect of the change in MN length on the effective insulin
delivery can be easily explained by optimal scaling analysis. This enabled Chen et al. [102] to
demonstrate that MN length is a significant factor in improving TDD of insulin, interpreted due
to an enhancement of the drug diffusivity coupled with a reduction in the drug penetration time.
Amodwala et al. [137] performed a statistical optimisation on polymeric MNs composition to achieve
maximum needle strength. The axial needle fracture force analysis was performed for MN patch with
different composition ratio of polyvinyl alcohol and polyvinylpyrrolidone. They statistically analysed
the factor-response relationship and provided an optimised MN formulation.

Besides these, new concepts are emerging based on the previous parameters to increase the
accuracy of modelling and simulation, i.e., effective thickness is introduced which is calculated from
the effective permeability of VE using Fick’s law. It is considering the skin deformation after the
MNs insertion in order to give a more realistic value to skin thickness because the MNs reduce the
distance between the drug loads to the bloodstream. The effective thickness Heff can be calculated
using Equation (31) [107].

Heff =
DVSCm

Jss
(31)

where DVS is the diffusion coefficient in the VE and Cm is the concentration coated on the MNs.
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To apply all these parameters for simulation, the MNs design needs to be digitalised for computer
program to process. Finite element method (FEM) is chosen as the algorism by most of the studies
because it can provide detailed diffusion or force distribution profiles [91,138] and the time range
allow to apply transient model or steady state [139]. The MNs based simulation is a way to test the
efficiency and feasibility of the MNs design apart from the experimental method. The advantages of
the simulations are that they can predict the diffusion results before the experiment. The accuracy of
the diffusion results relies on the parameters defined at the modelling stage so the theoretical data of
those parameters are crucial and if they are well measured, the prediction will be more convincing
when compared with the experimental results.

Furthermore, the simulation of drug delivery using dissolving MNs can be advanced by modelling the
drug-polymer interactions within the MN structure. This allows the inclusion of the mechanism by which
the drug travels through the MN structure and the distribution of the drugs within the MN. This advances
from the previous assumption of the skin-MN interface acting as a bulk constant concentration.

Feng et al. [140] used molecular dynamic simulation based on the quantum chemical calculations
to model the binding energy and electronegativity differences in the materials used for MN fabrications
and the loaded drug. For this study, polyvinyl alcohol (PVA) and hyaluronic acid (HA) blends were
used for the MN fabrication while the model drug was Sulforhodamine (SRB). The system was allowed
to perform simulations of 50,000 steps to achieve thermal equilibrium. The last 50,000 frames were also
analysed for calculating diffusion coefficient and deviation in mean square displacement (MSD) of SRB
beads. Figure 18 indicates that the deviation of MDS for SRB beads in PVA solution is smaller than that
of HA solution when the mass ratio is between 10% ∼ 35%. The simulations indicated that the drug
preference to diffuse in the HA as compared to the PVA enabled the concentration of the loaded drug
at the tips of the MNs. The simulation result was validated with experimental results. This allows for
more efficient drug delivery and minimal wastage of loaded drugs within the MNs. This is particularly
important for highly potent drugs that are required in small quantity and are also costly.
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5. Conclusions

MN modelling is still at its early stage but its importance in the development and optimisation
of MN systems are growing as evidenced from an increasing number of publications as well as a
complex range of issues being modelled by these publications. Given the interests in these models,
it is concluded from this review that development of mathematical models of MN systems will enable
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efficient design and optimisation of these systems, as the system themselves are developed for more
complex range of TDD problems. As the theoretical basis of MN-based TDD continues to be developed
further, the MNs modelling will be a key in developing the MNs for researches and manufactures.

Modelling and optimisations have already been performed on different types of MNs. Different
algorithms have been developed for solving the series of equations, thus, providing frameworks
which can be adapted to predict performance of future MN arrays. Furthermore, the role of skin has
also been incorporated in the modelling to understand the MN-based TDD process in an efficient
way. The optimised MNs have been shown to enhance the permeation of drug potentially in many
laboratory studies. However, there are yet to be sufficiently accurate and robust MN models for
practical, medical or manufacturing applications. Most of the modelling studies have been performed
considering the single MN which makes it hard to incorporate the combined effect of the whole MN
array. Also, full attention needs to be placed on the material properties of the MNs for maintaining the
pharmacokinetics and pharmacodynamics of drug molecule. Some models ignore the skin deformation
and changing boundary conditions as there is a continuous change in contact between the microneedle
and skin with time. Neglecting these factors while modelling can result in under or overpredictions of
the MN performance and, consequently, the result can be unreliable.

With more information acquired from MN experiments in vivo and in vitro, the interactions
between the MNs and the skin as well as the drug diffusion profiles in the skin can be resolved.
This will solve various challenges faced during preclinical and clinical evaluation of novel formulations
and modes of delivery. MN modelling are therefore expected to play a greater part in improving the
fabrication and application of MN systems in the future.
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