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Abstract
The effects of Late Quaternary climate change have been examined for many temperate

NewWorld taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well

understood, specifically with respect to changes in population demography. Here, we exam-

ine historical demographic trends for six species of milksnake with representatives in both

the temperate and tropical Americas to determine if species share responses to climate

change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilo-

cus dataset, we test for the demographic signature of population expansion and decline

using non-genealogical summary statistics, as well as coalescent-based methods. In addi-

tion, we determine whether range sizes are correlated with effective population sizes for

milksnakes. Results indicate that there are no identifiable trends with respect to demograph-

ic response based on location, and that species responded to changing climates indepen-

dently, with tropical taxa showing greater instability. There is also no correlation between

range size and effective population size, with the largest population size belonging to the

species with the smallest geographic distribution. Our study highlights the importance of not

generalizing the demographic histories of taxa by region and further illustrates that the New

World tropics may not have been a stable refuge during the Pleistocene.

Introduction
Populations of all extant species that originated prior to the Holocene have experienced cyclical
climatic change. For those found in temperate regions of North America and Europe, popula-
tions likely responded directly to climate changes induced by the glacial and interglacial cycles
of the Quaternary [1]. Populations of different species occurring in areas of changing
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environments may each respond uniquely and experience either size decreases or increases, or
simply remain stable. Some taxa, such as mammoths and other large mammals, declined in
abundance, and ultimately became extinct [2]. Others persisted by adapting to the new envi-
ronments [3] or, for instance during the Last Glacial Maximum (LGM), by migrating to more
suitable areas [3,4]. Although some species persisted through periods of climatic change, popu-
lation sizes may have been drastically reduced (e.g., [5]). In contrast, when conditions become
favorable, population sizes for some species increased rapidly (e.g., [6–9]; reviewed in Hewitt
[4,10–12]).

The signature of these demographic changes can be detected from genetic data analyzed
with coalescent-based models (reviewed in Ho and Shapiro [13]). Trends with respect to
changes in effective population size (Ne) through time can be associated with climatic or geo-
logical phenomena which may have altered population sizes or structure [14–21]. Demograph-
ic studies have until recently relied heavily on a single locus. Unfortunately, single loci may not
represent the demographic history of the species or population under examination, especially if
there has been selection on that particular gene region [22]. For example, balancing selection
results in an excess of intermediate-frequency alleles for a locus, giving a genetic signature that
is indistinguishable from population contraction [23,24]. Conversely, it may not be possible to
separate the effects of purifying selection from population expansion, as both yield an excess of
rare alleles [23,24]. These confounding effects of selection are therefore avoided by using multi-
ple, unlinked markers (e.g., [25]).

For Nearctic species, Pleistocene glacial cycles may have directly altered distributions and
populations sizes, where cycles of decline and growth are expected to occur with the contrac-
tion and expansion of favorable habitat, respectively [20,26–29]. The most recent glacial event
in North America, the Wisconsin, began ~120–80 kya and reached its maximum at ~20 kya
[30], with retreat at ~10 kya marking the end of the Pleistocene and beginning of the Holocene.
During the LGM, much of eastern North America (NA) was covered by ice sheets as far south
as the 38° latitude in some areas (Illinois, Indiana, and Ohio [31]). Cooler temperatures and bo-
real forests dominated much of the eastern U.S., pushing hardwood forests much farther south
[32]. Open pine-forest habitat was predominant across western NA and the deserts of the
southwest were cooler and wetter compared to current climates [33]. Several studies have
found that after the LGM, temperate North American species expanded as more suitable habi-
tat became available (e.g., pitvipers [9], woodpeckers [34], and rodents [35]). These climate
changes may have also contributed to the diversification of species by isolating once contiguous
populations into separate southern refugia [4,11,12,36,37].

The same glacial cycles may also be important for speciation and population size changes in
the Neotropics [38–40], yet studies examining historical demography in the species-rich tropi-
cal biota of the NewWorld (NW) are lacking (reviewed in [37]). In contrast to the impacts that
glacial cycles had on Nearctic species, the effects on Neotropical taxa may not have been as se-
vere [7] given the lack of extensive ice sheet formation in the tropics. Earlier studies suggested
that the Neotropics were a region of climatic stability during the Pleistocene [41–43], but some
studies now demonstrate that significantly lower temperatures by ~4–9°C were common across
the NW tropics during the LGM [44–52]. Additionally, glaciers existed in high altitude regions
of Mexico, Guatemala, Costa Rica, and in the Andes Mountains of South America during this
time [53–56], with evidence of Pleistocene cooling in both Central and South America and in-
creased aridity persisting until the start of the Holocene [11,12,51,57]. Climate alterations sub-
sequently affected plant distributions [51], causing high altitude vegetation to shift to lower
elevations and reducing tropical rain forest while increasing grasslands in Central and South
America (reviewed in [11,12,51]). These habitat changes may have altered population dynam-
ics of species inhabiting tropical rainforests, but the demographic impacts of these changes
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have not been extensively explored. Time-calibrated phylogenetic studies that include tropical
species indicate that diversification took place during the Pleistocene for some taxa [58–63],
but geological events throughout the Miocene and Pliocene also contributed to speciation in
both Meso and South America [61,63–67]. Additionally, Quaternary climatic events may have
affected population demographics of taxa, as they did with temperate species.

Although there are numerous examples of vertebrate clades that have representatives in both
the NW temperate and tropical regions, no studies have directly compared the historical demog-
raphy between such taxa. The snake genus Lampropeltis, commonly known as the kingsnakes
and milksnakes, is composed of several closely related species in both temperate North America
and tropical Central and South America. A recent study demonstrated that diversity within Lam-
propeltis, specifically within milksnakes, was underestimated, indicating that the former single
species of milksnake, L. triangulum, is composed of seven taxa distributed in North, Central, and
South America [62]. Therefore, we propose to examine the effects of Quaternary climate change
on six closely related taxa that are found in both Nearctic (N = 3 species) and Neotropical (N = 3
species) regions. The three temperate species (L. triangulum, L. gentilis, and L. elapsoides) are
found primarily within the United States, with one extending into southeastern Canada, and are
found across a variety of habitats, which include deciduous forest, pine forest, plains, and desert
conditions [68,69]. The three tropical species (L. abnorma, L.micropholis, and L. polyzona) are
distributed throughout Central America and northern South America, with their very southern
limit in Ecuador. These three species are found in thornscrub and in wet and dry tropical forest,
as well as in both lowland and highland habitats [69–71]. Using a multilocus dataset, we test
whether temperate North American species of milksnake had similar demographic responses
compared to tropical Central/South American species. Specifically, we examine changes in popu-
lation size through time for each taxon to determine if temperate and tropical species show simi-
lar demographic trends throughout the Pleistocene. We hypothesize that temperate species will
show evidence of declines leading up to/and or during the LGM due to habitat contraction into
southern refugia. This model suggests that temperate species, two of which have a current range
that extends beyond the former southern extent of the glacier (L. triangulum, L. gentilis), would
have then experienced range expansion after the retreat of the Laurentide Ice Sheet and increase
in available habitat, as has been reported for other North American taxa [7].. Conversely, the
tropical species may have maintained stable population sizes throughout the recent Pleistocene
as has been shown for Amazonian mammals [7]. However we also expect to see increases in
tropical milksnake population sizes around the beginning of the Holocene, which would be asso-
ciated with the favorable environmental conditions present today.

By examining milksnakes across their extensive range in a historical demographic context,
we address how population structure has been altered by Pleistocene climate change in closely
related Nearctic and Neotropical taxa. We ask if there are general unified responses to climate
change for closely related species. If so, these responses suggest that closely related taxa experi-
ence similar population increases or decreases regardless of location given changing climates.
In contrast, it is possible that specific historical demographic trends are reflective of climate
change associated with a specific region. In this case, we would expect that the population his-
tories of species would be similar based on geographic ranges, with temperate species sharing
similar demographic responses and tropical species sharing similar demographic responses).

Methods

Sampling and Genes
We selected six milksnake species for our analyses of demographic change; L. triangulum, L.
gentilis, L. elapsoides, L. polyzona, L. abnorma, and L.micropholis, following the revised
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taxonomy of Ruane et al. [62] and using GenBank sequences from accession series KF214996–
KF216452. These six taxa, with an abundance of populations previously sampled, have exten-
sive distributions throughout the Nearctic and portions of Neotropics (Figs 1 and 2). The three
temperate species included L. triangulum (n = 34), L. gentilis (n = 30), and L. elapsoides
(n = 32), occurring in the USA and Canada. The tropical species included L. polyzona (n = 31),
L. abnorma (n = 11), and L.micropholis (n = 16), rangeing fromWestern/Central Mexico to
Ecuador (see S1 Table in supporting information for details of samples). All six species origi-
nated between 1.1 and 3.6 Ma [62] and so would have experienced Late Pleistocene climate
change. For L. triangulum, L. elapsoides, and L. gentilis, three genes were used, the mitochon-
drial gene cytochrome b (Cytb) and two anonymous nuclear loci, 2CL8 and CL4. For L. poly-
zona, L. abnorma, and L.micropholis, the same three genes were used; additional nuclear loci
were available for the tropical taxa as well and so we also included the protein coding genes
NT3 and PRLR, the introns SPTBN intron 1, Vimenton intron 5, NAV intron 5, and Z-chro-
mosome GAD intron 15, and the anonymous loci 2CL3, 2CL4, and LATCL (S2 Table). Nuclear
loci heterozygosities were previously resolved with PHASE v2.1.1 [72] in Ruane et al. [62], and
so we used the most probable pair of resulting alleles for analyses.

Fig 1. Map showing sampling, and estimated full ranges of three temperate milksnakes, Lampropeltis triangulum (blue), L. gentilis (green), and L.
elapsoides (purple). The extent of the Laurentide Ice Sheet during the last glacial maximum is shown by the grey dotted line (adapted from Pielou [85]).
Ranges of all species are based on Ruane et al. [62]

doi:10.1371/journal.pone.0128543.g001

Historical Demography of Milksnakes

PLOS ONE | DOI:10.1371/journal.pone.0128543 June 17, 2015 4 / 17



Historical Demographic Analyses
To determine if temperate and tropical milksnakes show similar or distinctly different trends
with respect to demographic histories, we examined population size changes through time
using Extended Bayesian Skyline Plots (EBSP; [73]) implemented in BEAST v.1.7.2 [74]. Using
a multi-gene coalescent approach, this method estimates population size through time and
does not require a pre-specified demographic model. We ran the EBSPs using all available loci,
as well as using only the nuclear loci to determine if mtDNA had a large influence on the re-
sults. For the dataset including all loci, we used the mean substitution rate of Cytb estimated
for Lampropeltis of 1x10-8 to scale the time axis, following Pyron and Burbrink [75]. For the
nuclear only EBSPs, we used the mean rate estimated for the locus 2CL8, based on the full loci
analyses (3.7x10-10). The EBSP for each species was run between 2x10 8 to 5x108 generations to
achieve high effective sample size (ESS) values. Stationarity was assessed using Tracer v.1.5
[76]. We examined the demographic populationSizeChange parameter in Tracer, which indi-
cates the most probable number of population size changes for each species. To determine if
higher Ne (based on using the full loci datasets) was correlated with range size, we calculated
the approximate range size in square kilometers in Google Earth Pro using the polygon func-
tion (www.googleearth.com) for each species, with the ranges based on Ruane et al. [62] (com-
plete species range) as well as using the minimum polygon spanning only the samples used
here (sample species range). We then used a Spearman rank correlation test to determine the

Fig 2. Map showing sampling, and estimated full ranges of three tropical milksnakes, Lampropeltis polyzona (red), L. abnorma (yellow), and L.
micropholis (pink).Ranges of all species are based on Ruane et al. [62].

doi:10.1371/journal.pone.0128543.g002
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relationship between range size and mean Ne. We also used this test to determine if the net
population size change (the difference between the Ne at start of the EBSP and the Ne at time
zero) and range were correlated. Spearman rank correlations were performed in the statistical
program R [77].

We also tested for population size changes using non-genealogical coalescent methods (i.e.,
these methods do not reconstruct the genealogy of sequences) to compare estimates for each
locus independently. These tests help address the confounding effects of changes on Ne versus
selection upon a particular locus. We used the program DNAsp 5.0 [78] to examine population
size changes using several summary statistics. The R2 statistic [79] was used to test for popula-
tion expansion and is based on the difference in the number of singleton mutations and the av-
erage number of pairwise differences between samples. Coalescent simulations implemented in
DNAsp were then used to assess significance and confidence intervals. We also generated mis-
match distributions; resulting distributions indicate changes in population size or selection
[80]. Harpending’s raggedness index (rg, [81]) was then used to assess the statistical signifi-
cance of these distributions. Additionally, Tajima’s D [82] and Fu and Li’s D� and F� statistics
[83] were used to test for population growth or decline versus constant population size. For
these three statistics, an overabundance of rare polymorphisms (resulting in negative values)
indicates there has been population expansion or positive selection, while positive values, re-
sulting from an overabundance of intermediate-frequency polymorphism, indicate population
decline or balancing selection.

Results

Sampling and Genes
For the EBSP analyses including all loci, all sequences were included, with 3–11 polymorphic
loci for each species and 11–34 individuals per locus (S2 Table). For the nuclear only EBSP
analyses, the same loci, excluding Cytb were included with 2–10 polymorphic loci for each spe-
cies and 11–34 individuals per locus (S2 Table). For DNAsp analyses, sequences missing a sig-
nificant amount of data for a gene were removed from analyses, as DNAsp excludes all sites
with missing data (S2 Table).

Demographic Analyses
We recovered high ESS values (>200) for all parameters in BEAST and for every taxon, with
the exception of L.micropholis. Despite increasing the chain length for L.micropholis, the ESS
values for some parameters (e.g., the prior) did not greatly improve and so multiple runs were
used to ensure consistency among results. The EBSPs using all loci generally showed stable
populations through time for L. triangulum and L. gentilis, but for L. elapsoides, there was an
increase in population size at ~50 kya (Fig 3). In contrast, the two most southerly distributed
species, L. abnorma and L.micropholis, showed a slight population increase at ~70 kya and
then a decline starting ~45 kya continuing to the present (Fig 3). The third tropical species,
L. polyzona, showed a long period of population decline starting at least 1 Ma, followed by a
slight increase and population stability beginning ~80 kya (Fig 3). Mean Ne ranged from
~1,100,000 (L.micropholis) to ~10,000,000 (L. polyzona; Table 1). The temperate species had
fewer detectable population size changes (mean/median number of changes = 0.5−1.6/0.0−2.0;
95% HPD = 0.0−3.0 changes across species) compared to the tropical species (mean/median
number of changes = 2.0−2.6/2.0; 95% HPD = 2.0−4.0 changes across species; Table 1). Overall,
the temperate species also had larger population sizes and larger ranges than did the tropical
species, with the exception of L. polyzona, which had the largest population size and the small-
est complete species range (Table 1). However, the Spearman rank correlations for both
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complete range size versus mean Ne (rs = -0.029) and complete range size vs. net Ne (rs = 0.086)
were not significant (d. f. = 4; P> 0.05), nor were the sample range sizes versus mean Ne (rs =
0.37) and sample range size vs. net Ne (rs = 0.20); (d. f. = 4; P> 0.05). When the EBSP analyses
were run using only the nuclear loci, results were similar to the full loci EBSPs for some species
for the populationsizechange parameter (L. polyzona, L.micropholis), but only L.micropholis
resulted in a non-zero HPD (mean/median = 2.0/2.0; 95% HPD = 2.0−2.0 changes). Being that

Fig 3. Extended Bayesian Skyline Plots for each species of milksnake for the last onemillion years before present (YBP), with a zoomed inset of
the last 100,000 YBP, showing the median (black) and 95% highest posterior density changes in effective population size (Ne) over time on a log-
transformed scale.

doi:10.1371/journal.pone.0128543.g003
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the EBSP estimates for the nuclear only datasets had larger posterior distributions for both
population sizes and the population size change parameter and that these results were likely
less accurate than those including all available data (S3 Table), we do not discuss them further
here and instead rely upon the EBSPs that include all the loci. The results from tests performed
in DNAsp (the R2 statistic, mismatch distributions, Tajima’s D, and Fu and Li’s D� and F� sta-
tistics) did not reject the scenarios of neutrality/population stability for L. triangulum, which
indicate no detectable selective or demographic forces operating on this species. For the other
five species, no clear trend was detected across any of the loci for any species using these sum-
mary statistics (S3 Table). Although several loci resulted in positively and negatively significant
test results, these results were not consistent across loci for a given species and in several cases,
different loci for the same species indicated different patterns (S4 Table).

Discussion
Whether glacial cycles have had similar effects on population sizes in both temperate and tropi-
cal regions is of interest for two reasons. First, it provides insight into the factors that have
shaped the current demographic patterns and distributions of organisms in disparate environ-
ments and helps determine whether closely related taxa respond similarly regardless of loca-
tion. Second, from a conservation perspective, understanding how past climate change affected
populations or taxa may be applicable to determining what threats species face when con-
fronted with anthropogenic climatic alteration. Here, we find that for milksnakes in the genus
Lampropeltis, there is no shared demographic pattern with respect to temperate versus tropical
species, although tropical species show less population stability when compared to the temper-
ate species. Based on the EBSPs, populations of temperate species have either remained gener-
ally stable or increased in size during the recent Pleistocene/Holocene (Fig 3). This stability is
surprising, considering that the LGM would have had a direct impact on snakes living in tem-
perate North America, with the Laurentide Ice Sheet covering a proportion of the ranges of
both L. triangulum and L. gentilis (Fig 1; [31,84,85]). The three tropical taxa showed population
expansion as well as declines (Fig 3), which in part supportsthe hypothesis that tropical envi-
ronments did were not stable throughout the last glacial period.

Previous work has demonstrated that tropical species tend to have smaller geographic
ranges compared to temperate species and that with smaller ranges come smaller population
sizes (reviewed in [86–88]). Some studies have also shown that for snake lineages, those with
larger ranges generally have a higher Ne (e.g., [8]), although this trend is not consistent among
taxa (e.g., [89]). Despite a general lack of correlation between range size and population size in

Table 1. Approximate complete range size, sample range size, mean andmedian effective population size and number of size changes for six spe-
cies of Lampropeltis.

Species Complete Range
Size

Sample Range
Size

Population Size (Millions) Mean, Median
(95% HPD)

Number of Population Size Changes Mean,
Median (95% HPD)

L. triangulum 1,800,400 km2 600,100 km2 5.122, 1.558 (6.385 x 104–1.564 x 107) 0.5, 0.0 (0–2)

L. gentilis 1,700,000 km2 900,300 km2 9.547, 2.389 (1.104 x 105–2.559 x 107) 0.6, 0.0 (0–2)

L. elapsoides 900,000 km2 460,100 km2 7.950, 3.463 (1.168 x 105–2.260 x 107) 1.6, 2.0 (0–3)

L. polyzona 400,400 km2 240,000 km2 9.777, 7.057 (1.509 x 106–2.428 x 107) 2.6, 2.0 (2–4)*

L. abnorma 750,400 km2 290,000 km2 1.929, 1.379 (2.060 x 105–5.034 x 106) 2.0, 2.0 (2–2) *

L. micropholis 560,200 km2 61,000 km2 1.108, 7.638 (1.044 x 105–3.128 x 106) 2.0, 2.0 (2–2) *

The 95% highest posterior density (HPD) is shown for each in parentheses; for number of size changes, species that had non-zero HPDs are indicated (*)

doi:10.1371/journal.pone.0128543.t001
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milksnakes, we do find the temperate species did have greater ranges and larger mean effective
population sizes. The exception to this pattern was the tropical L. polyzona, which had the larg-
est mean population size despite having the smallest complete species range (Table 1; Figs 1
and 2). There is the possibility that individuals with the greatest amounts of genetic variation
were inadvertently sampled, which would result in signal that indicates large population sizes
[90]. This potential bias could be corrected by increasing sample sizes, which would better re-
flect the actual allelic variation within L. polyzona and result in a more accurate estimate of
population size. However, if L. polyzona represents a single, panmictic species, as is indicated
by the results of a prior study [62], the large Ne is likely an accurate estimate, as the sample size
for this species (n = 31) should be sufficient for detecting population size changes [73]. Al-
though most studies on historical demography only consider the effects of climate change on
Ne, it is important to note that there are other plausible biotic reasons for changes in historical
population size that should not be dismissed, such as competition between species or predation
(reviewed in [91]). Unfortunately, there is no clear way to separate the effects of biotic interac-
tions from climate change on Ne through time in these snakes and so we limit our discussion to
climatic or geological events within the time frame considered here.

EBSP Results and Summary Statistics
We find a lack of concordance between the EBSPs and the non-genealogical summary statistic
results. The summary statistics for many loci did not indicate the same demographic signal as
the EBSP trends did, resulting in conflicting signals or a lack of significance (S4 Table). The ex-
ception to this is L. triangulum, which showed no significant Ne changes for any non-genealog-
ical test across loci and demonstrated stable population sizes via EBSP (Fig 3, Table 1). For the
remaining species, the degree to which the summary statistics disagreed with the EBSP trends
was variable. For example, one locus for L. abnorma was significantly negative and indicated
expansion (PRLR, R2; S4 Table), another was significantly positive for population decline
(SPTBN1, Fu and Li’s D�; S4 Table) and the remaining nine loci were neutral for all tests (S4
Table). In contrast, the EBSP showed a population decline beginning ~45 ka. These results may
indicate there is either balancing or purifying selection acting on some of the loci as the signal
cannot be detected across all or most of the loci and would explain the conflicting results. How-
ever, for the majority of loci that are not significantly different from neutral, it is possible the
summary statistics cannot adequately detect subtle population size changes. Summary statistics
may not provide as realistic an estimate of historical population size changes compared to
methods that are based on a coalescent genealogy [90]. Previous studies have recognized that
Ne estimates that rely on the calculation of pairwise differences and segregating sites are ineffi-
cient at estimating population demographics when compared to methods that account for pop-
ulation trees [92]. EBSPs in contrast generate both demographic signal and coalescent history
across all loci simultaneously and provide an estimate of the phylogenetic error associated with
the data [13]. Ideally, all loci should retain demographic signature, but events such as extreme
bottlenecks can erase signal at a given locus; when using multiple loci given varying substitu-
tion rates, there is a chance that some loci are preserving signal lost by other genes [13]. With
respect to loci and lost signal, we note our demographic reconstructions are likely influenced
most by the highly variable mtDNA locus included, as the results for each species when using
only the nuclear loci have larger 95% HPDs for both Ne and the population size change param-
eter, and generally predict much smaller population sizes for all species (Appendix 3). Howev-
er, discounting the additional information provided through the inclusion of multiple
independent loci in these analyses would be imprudent as any given locus, even those with
slower substitution rates, may provide demographic signature that may not be recovered by
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other loci. Furthermore, in cases where population growth rates are slow and/or size changes
are small, genealogical methods should outperform pairwise methods [93,94]; this is likely im-
portant here since the EBSPs for several milksnakes reveal only moderate changes in popula-
tion size (Table 1; Fig 3). Although simulation-based studies have found that changes in
population sizes using Bayesian skyline plots, particularly with respect to declines, may be oc-
casionally incorrect, we note that the sampling strategy used here is most similar to that which
was shown to perform best with respect to detecting actual demographic changes (“pooled
sampling” [95]). Considering the overall robustness associated with genealogical methods
using coalescent models and specifically those using multiple loci [90,94], we base our discus-
sion on the EBSP results rather than the summary statistics.

Temperate Milksnakes
For two of the temperate species we found no discernible changes in the population size change
parameter (both species mean/median size changes< 1.0/0.0; 0.0−2.0 = 95% HPD; Table 1) al-
though the EBSP does show some increase in population size for L. triangulum ~18 kya (Fig 3).
Lampropeltis triangulum inhabits deciduous forests of eastern North America, as far north as
southern Ontario, and the transition from eastern deciduous hardwood forest to the western
prairies coincides with the limit of its distribution (Fig 1; [68]). The equally wide-ranging L.
gentilis is frequently found in grassland or prairie habitat [68,69] west of the Mississippi River,
from Arizona to Montana (Fig 1). These two species may have moved into suitable habitat that
was pushed further south by the Laurentide Ice Sheet and population sizes therefore remained
overall constant, with some possibility of expansion for L. triangulum after the LGM. In addi-
tion, while L. gentilis is often associated with prairies and grasslands, it can be found in desert
lowlands, pine and hardwood forests, and stream valleys [68,69]; the ability of L. gentilis to in-
habit multiple habitat types may indicate it was able to readily adapt to climatic changes of the
Pleistocene and thus population sizes remained stable [96]. Other studies of temperate North
American snakes have found similar patterns of stability throughout the Pleistocene (e.g.,
[8,9,97]).

Unlike the two most northern temperate milksnakes, the southeastern U.S. milksnake L.
elapsoides underwent at least one population expansion (mean/median size changes = 1.6/2.0;
0.0–3.0 = 95% HPD) that can be visualized on the resulting EBSP ~50 kya (Fig 3). Lampropeltis
elapsoides is found in the pine forests of the southeastern coastal plain, throughout the Florida
peninsula, and west to eastern Louisiana (Fig 1). The onset of the population increase occurred
during the middle of the Wisconsin glacial interval (Fig 3; [98]), and continued to the present.
A “thermal enclave” from warm ocean winds throughout the southeastern U.S. during the
Pleistocene may have facilitated this population growth [99]. It is also possible that L. elapsoides
shifted its distribution and populations subsequently expanded, as species inhabiting the east-
ern U.S. may have moved south into both peninsular Florida and Mexico during periods of gla-
cial cooling and returned north once climates became more favorable, as has been proposed for
multiple species [100].

Tropical Milksnakes
Our results indicate that one of the tropical milksnake species increased its population size dur-
ing the last 100 kya, while the two remaining taxa experienced population declines, suggesting
that environmental conditions may not have been stable throughout the Neotropics. At ~80
ka, the EBSP for the Mexican milksnake L. polyzona shows increasing population sizes(Fig 3).
While the mean number of size changes for this species indicates that it has likely undergone
several population size changes (mean/median number of size changes = 2.6/2.0; 2.0
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−4.0 = 95% HPD), we focus on this most recent size change here pertinent to understanding
how recent climatic change impacts population demography. This species has a range that
abuts several major geological features of Mexico, including the Sierra Madre Occidental, the
Sierra Madre del Sur, the eastern versant of the Sierra Madre Oriental, and throughout the
Trans-Mexican Volcanic Belt region (Fig 2), and the presence of glaciers in these montane re-
gions during the Wisconsin glacial may have influenced population demography [54]. Howev-
er, the L. polyzona populations showed no decline during the late Quaternary as might be
expected. It has been proposed that despite glacial presence in northern and central Mexico,
climate did not change significantly [101] and has been consistent during the last 30 kya [102],
although arguments against stability have been made [54]. The range of L. polyzona also ap-
pears tightly correlated with that of Mexican tropical dry forest, which appeared prior to the
origin of this species of milksnake [62,103]. If this habitat remained stable during the Pleisto-
cene, the L. polyzona population may have persisted and expanded. Interestingly, although
there are few studies that examine historical demography for organisms specifically in this re-
gion, one of the few species studied that has a similar range in Mexico, the jaguar, shows genet-
ic signal indicating recent population expansion [104], as does a recent study on Boa
constrictor in that region [105]. Additional demographic studies that focus on this region
would help determine whether Mexican dry tropical forest was a stable habitat during the late
Quaternary.

In contrast to L. polyzona, both L. abnorma and L.micropholis have experienced population
declines beginning ~45 kya (Fig 3), although similar to L. polyzona, these species likely under-
went more than a single population size change (both species mean/median number of size
changes = 2.0/2.0; 2.0−2.0 = 95% HPD). The areas occupied by both species are thought to
have experienced significant cooling and increased aridity during the Pleistocene. Lampropeltis
abnorma inhabits much of Mesoamerica, from south of the Sierra Madre del Sur in Mexico,
and throughout Central America as far south as Costa Rica, while L.micropholis occurs in east-
ern Costa Rica, Panama, and Colombia, Ecuador, and Venezuela north/west of the Andes
(Fig 2). Glaciation of the Talamanca cordillera of Costa Rica and the highlands of Guatemala
and Mexico during the Wisconsin contributed to the cooling of Central America [53,56],
which may have started as early as 45 kya [106,107] potentially resulting in the decline of
L. abnorma populations. While it is suggested that deglaciation occurred ~11 ka, aridity
throughout Central America was at its maximum at this point in time [107]. Snakes are sensi-
tive not only to changes in temperature but also precipitation, with drier conditions potentially
limiting the distribution of a species [108]. Like L. abnorma, L.micropholis populations may
have been influenced by the glaciers in Costa Rica as well as the changing climate of lower Cen-
tral America, which was cooler and drier throughout much of the last 100 kya [109]. The extent
of its range also means L.micropholismay have been impacted by Andean glaciations during
the Pleistocene. As glaciers expanded across the Andes [55] vegetation moved with respect to
elevation [106,110], and similar to Central America, South American climates became drier
and tropical forests decreased [45]. This may have restricted the size of the habitat available for
L.micropholis and caused the population to decline during the last 45 kya. Although the NW
tropics were initially thought to be a stable region during recent glacials [7,41–43], the response
patterns for the three tropical milksnakes examined here are more similar to studies that show
disparate demographic histories for closely related Neotropical taxa (e.g., birds [111], frogs
[112]) and the numerous population size changes detected for all three species (Table 1) further
underscore that the tropics are not necessarily demographically stable enclaves during climatic
oscillations..
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Conclusions
Our study illustrates that glacial cycles have impacted both Nearctic and Neotropical milks-
nakes but that species did not share similar demographic responses by area. Most surprising,
we found little evidence for expansions in the two most northerly distributed species, which
were closest to the southern extent of the glacier during the LGM. In addition, results showed
population declines for two of the tropical taxa. While it is likely that climatic events have con-
tributed to the historical demographic patterns of these snakes, we cannot discount the possi-
bility that unknown abiotic or biotic factors have altered populations. However, our
examination of milksnake demography demonstrates that we cannot assume all temperate
NW taxa have had similar responses to the last Ice Age. Furthermore, our study adds to the evi-
dence that the tropics were not necessarily an area of stability during the Pleistocene and that
populations underwent both expansions and declines. Based on these results we recommend
using caution in generalizing demographic responses of taxa by region. Future studies that in-
clude greater numbers of loci, such as next-generation datasets comprised of hundreds of
markers, combined with a comparative phylogeographic framework examining multiple taxo-
nomic groups would be especially useful in achieving greater demographic resolution and de-
termining whether species respond individually or if there are discernible patterns with respect
to both phylogeny and biotic community.
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