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Abstract

Background: The traditional Serfling-type approach for influenza-like illness surveillance requires long historical time-series.
We retrospectively evaluated the use of recent, short, historical time-series for recognizing the onset of community
outbreaks of respiratory tract infections (RTIs).

Methods: The data used referred to the proportion of diagnoses for upper or lower RTIs to total diagnoses for house-call
visits, performed by a private network of medical specialists (SOS Doctors) in the metropolitan area of Athens, Greece,
between January 01, 2000 and October 12, 2008. The reference standard classification of the observations was obtained by
generating epidemic thresholds after analyzing the full 9-year period. We evaluated two different alert generating methods
[simple regression and cumulative sum (CUSUM), respectively], under a range of input parameters, using data for the
previous running 4–6 week period. These methods were applied if the previous weeks contained non-aberrant
observations.

Results: We found that the CUSUM model with a specific set of parameters performed marginally better than simple
regression for both groups. The best results (sensitivity, specificity) for simple regression and CUSUM models for upper RTIs
were (1.00, 0.82) and (0.94, 0.93) respectively. Corresponding results for lower RTIs were (1.00, 0.80) and (0.93, 0.91)
respectively.

Conclusions: Short-term data for house-call visits can be used rather reliably to identify respiratory tract outbreaks in the
community using simple regression and CUSUM methods. Such surveillance models could be particularly useful when a
large historical database is either unavailable or inaccurate and, thus, traditional methods are not optimal.
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Introduction

Various genera of respiratory viruses, including rhinovirus,

parainfluenza virus, adenovirus, respiratory syncytial virus, human

metapneumovirus, coronavirus, and, particularly, influenza virus

circulate each year in the community [1,2]. They are associated

with upper and lower respiratory tract infections (RTIs), from the

common cold to viral pneumonia, in children and adults.

Community outbreaks of RTIs can be associated with consider-

able morbidity and mortality either due to the infection per se or

due to the exacerbation of other diseases, such as those that affect

the cardiovascular and respiratory system [3].

The development of new methods for early recognition or

prediction of community outbreaks or the improvement of the

currently used methods is of increasing scientific and public health

interest [4]. This process is primarily based on monitoring relevant

surveillance data for potential clustering of cases of RTIs that

exceed an expected threshold. Surveillance for influenza-like

illness is primarily conducted through networks of sentinel

providers. Cases are defined as individuals who present clinical

manifestations matching specifically defined clinical criteria of the

syndrome.

The analysis of surveillance data on RTIs for the purpose of

identifying the occurrence of epidemics requires advanced

statistical methods. A common family of such methods derives

from the innovatory application of a periodic regression model on

pneumonia and influenza mortality data, presented by R.E.

Serfling in 1963 [5]. The general principle of this type of method is

the use of long-term historical data for estimating expected values

for future time-dependent upper thresholds of the relevant

distribution, to which the actual observations made are subse-

quently compared [5,6]. Alternative sets of statistical methods that
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use the same general principle, but require input of relatively few

recent historical data have also been proposed, yielding favorable

results [7,8]. Such statistical methods belong to the broader classes

of time-series, regression and industrial quality control methods.

Cumulative sum (CUSUM) statistics of the latter class, are

nowadays widely used in biomedical research [7,8,9] and

constitute one of the components of the Early Aberration and

Reporting System (EARS) that is used for syndromic surveillance

by the United States Centers for Disease Control and Prevention

[9].

We sought to establish optimal models for recognition of the

onset of respiratory tract infection outbreaks in the metropolitan

area of Athens, Greece, on the basis of short-term data from

house-call visits, by applying either simple regression or CUSUM

methods [7]. These methods, apart from their ability to function

on the basis of short-term data, also share the benefit of relatively

simple implementation.

Methods

Data sources
We used historical data from the computerized database of the

SOS Doctors private network of medical specialists. This network

performs emergency, fee-per-service, house-call visits for both

adults and children on a 24-hour basis at the metropolitan area of

Athens, Attica, Greece, that is populated by approximately 5

million people. The data we used referred to the 9-year period

between January 01, 2000 and December 10, 2008 and were

recorded by a total of 38 SOS Doctors specialists. Briefly, on each

house visit they filled a specially designed form with data for the

chief complaint of the patient, present illness, past medical and

surgical history, physical examination, overall clinical assessment,

likely diagnosis and management plan. They also filed the primary

diagnosis into prespecified diagnostic categories (including upper

or lower RTIs). As a general rule, lower RTIs were considered

those affecting the respiratory tract below the level of the vocal

cords. The operational characteristics of SOS Doctors including

the methodology used for the collection and archiving of clinical

data as well as the main characteristics of the patient population

they serve have been described previously in detail [10]. Subsets of

the database we used have also been analyzed in previous studies

assessing the effects of meteorological variables on respiratory and

lower urinary tract infections [11,12].

The primary diagnosis for each house-call visit was registered by

the physician who visited and examined the patient in a

specifically designed report form, along with other relevant

information, and was promptly entered in the computerized

database of SOS Doctors by secretarial staff. We analyzed visits for

upper and lower RTIs separately.

The type of observations chosen for our analysis is the weekly-

averaged proportion of house-call visits for upper (or lower) RTIs

to total house-call visits. Thus, observation yt is the weekly-

averaged proportion of upper (or lower) RTIs to the total house

visits during week t.

Reference standard for classification of observations
To obtain an a priori classification of the observations as normal

(non-epidemic) or aberrant (epidemic), i.e., a reference standard

with which the results of the application of our models could be

compared, we used the application developed by Pelat et al. [13].

This freeware online application can apply periodic regression

models on user-uploaded data (related to infection incidence) so

that baseline levels and ‘‘epidemic thresholds’’ can be estimated, either

retrospectively or prospectively. When conducting retrospective

analysis, the application proceeds to classify each observation as

normal (within the epidemic threshold) or aberrant (exceeding the

epidemic threshold).

The above described application provides the option for various

user-defined settings. To estimate the reference baseline levels and

epidemic thresholds for our data sets (upper and lower RTIs), a

periodic regression model with cubic trend and annual periodicity

was used. Trend was chosen as cubic, as we sought to obtain the

best possible fit, and annual periodicity was chosen with respect to

the expected seasonality for most common RTIs [14], as

previously observed for our data set [12]. To estimate baseline

levels for our data set we removed the highest 20% percentile of

the observations, which we considered to represent aberrant

values. Finally, we used an upper 97.5% one-sided confidence

interval around the calculated baseline levels to define the

epidemic thresholds.

Models for recognition of outbreaks using short-term
data

We applied two types of statistical methods for the recognition

of the onset of community outbreaks of respiratory tract infections

(simple regression and CUSUM, respectively) requiring historical

data for the previous 4–6 weeks. These alert-generating methods

decide whether to create or not an ‘‘alert’’ for each week t. The

decision rule for creating an alert depends on the comparison of

the value of a model-specific variable and a corresponding

threshold. This comparison has two possible outcomes: if the

threshold is exceeded, the observation is flagged as an alert;

otherwise it is not flagged and is labeled as ‘‘expected’’.

Simple regression. Using the simple regression model [7],

the threshold for each week t is defined as the upper limit of the

Student 100(12a)% confidence interval for the unknown mean

(degrees of freedom = m21):

UCL
(m)
t ~~yy(m)

t zt(m{1, 1{a=2)~ss
(m)
t

ffiffiffiffi
1

m

r

In the above formula ~yy(m)
t and ~ss(m)

t symbolize the m-week running

means and running standard deviations, respectively, calculated

from weeks t2m,…,t21, while t(m{1, 1{a=2) is the appropriate t-

statistic for m21 degrees of freedom and significance level a. The

assumption of the method is that each running set of m

observations belongs to a normal distribution. For the parameter

m, that represents the number of weeks analyzed prior to the week

t, we assigned values between 4–6. We set the significance level a
for the confidence interval to 0.10.

CUSUMs. CUSUMs are methods that are used to detect

small aberrations from an in-control process [15,16,17]. The m-week

standardized upper CUSUM is calculated as:

Cz
t ~max 0,

yt{yt
(m)

~ss(m)
t
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In this formula k stands for the standardized reference value K of the

CUSUM; it is measured in standard deviations, and represents the

maximum allowed range of fluctuation around the process mean

for the in-control process. K is usually defined as the intermediate

value between the in-control process mean and the out-of-control

process target mean. In the context of this analysis, the in-control

process is represented by the normal observations (non-epidemic),

while the out-of-control process is represented by the epidemic

observations. An alarm is raised by the method if the value of the
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CUSUM exceeds a pre-specified value h. The parameter h,

measured in standard deviations, is referred to as the standardized

decision value for the CUSUM and represents the threshold of the

method.

The selection of appropriate values for the above-mentioned

parameters (k, h) for a CUSUM procedure takes into account the

in-control (average run length) ARL of the in-control process

[18,19,20]. The ARL is a measure of the time interval between

false alarms, therefore it is analogous to a Type I error. In order to

understand the comparability of (k, h) parameters it should be

mentioned that for a fixed k value, increasing the h value would

generally result in lower sensitivity and higher specificity results

(and vice-versa). The same applies for k, for a fixed h value [15].

For the purposes of this study we tested two sets of values: a) (k,

h) = (0.5, 5), which is a commonly used set for a CUSUM

procedure [18,19,20,21], and b) (k, h) = (0.75, 1.53). The first set

corresponds to an ARL of 930 weeks. For the second set of values, k

was selected for the CUSUM to detect shifts of D = 2k = 1.5s, and

h was calculated with respect to a specific ARL approximately

representing the desired Type I error rate a = 0.10 (as in the simple

regression method). Hence, this ARL was selected to be 45, roughly

one tenth of the total 467 observations. The h value, given k and

ARL, was computed as 1.53. As in the simple regression model

described above, we assigned values for m between 4–6 (weeks).

Details for the application of the methods
The objective in this study is to assess the performance of the

methods in identifying the onset of RTI outbreaks. We considered

that the onset of an outbreak corresponds to the first aberrant

value according to the reference standard classification. In this

regard, we applied the simple regression and CUSUM models for

detection of an outbreak at week t, only if the observations for the

prior m-week interval were all classified as non-aberrant by the

reference standard classification. This rule we applied satisfies the

simple regression and CUSUM assumptions for normally distrib-

uted observations and in-control processes, respectively. By taking

this action, an unavoidable consequence is the reduction of the

total amount of runs for the methods.

Evaluation of performance of models
The alert generating methods of simple regression and

CUSUMs were applied on our retrospective time-series data set.

Applying each of the models for every week t assessed, we obtained

an output as either alert or non-alert. We compared this output to

the classification of the same observation as normal or aberration

according to the reference standard method. We then constructed

for each of the models a 262 table listing the true/false positive

and true/false negative observations. From these tables, we

calculated point estimates and confidence intervals (calculated

with the Wilson score method for sensitivity, specificity for each

model and specific set of model parameters selected [22]. Analyses

took place in MATLAB (2010a, The Mathworks Inc., Natick MA,

2010) and R [23].

Results

The analysis was performed on 467 observations of weekly-

adjusted average proportions of upper or lower RTI diagnoses for

house call visits, between January 01, 2000 and October 12, 2008;

the average (minimum-maximum) respective values were 0.13

(0.03–0.46), and 0.05 (0.01, 0.20). For upper and lower RTIs, 83/

467 (17.8%) and 74/467 (15.8%) of the respective observations

were classified as aberrations by the reference standard procedure.

Despite selecting periodic regression model fittings that included a

trend component of up to cubic order, the best fit model for upper

and lower RTIs solely included a constant trend component. In

Figures 1a and 1b, we provide sequence plots for both groups of

observations (upper and lower RTIs, respectively), superimposing

the reference standard classification, accompanied by the results of

the statistical model fitting.

In Tables 1 and 2, we present the summary findings for

sensitivity, specificity of simple regression and CUSUM models for

the detection of upper and lower RTI outbreaks, respectively, with

regard to each set of input parameters used, along with the

respective 95% confidence intervals. The total amount of

comparisons executed by the models for the calculation of these

indices is also shown.

The performance of the simple regression and CUSUM models

under the different set of parameters we selected, generally yielded

high values for sensitivity and specificity for both types of RTIs.

The main exception was observed when the CUSUM model was

run with the ‘‘typical’’ set of parameters for (k, h) of (0.5, 5), which

yielded high values for specificity but low values for sensitivity.

Simple regression displayed excellent sensitivity results for both

groups of RTIs. As the m-weeks parameter increased, simple

regression displayed slightly lower specificity for both groups of

RTIs. The best results were obtained with the parameter selection

for m = 4 weeks. Simple regression seemed to perform somewhat

better for the upper RTIs compared to the lower RTIs.

Concerning the use of CUSUM models, the typical (k, h) = (0.5,

5) set of parameters yielded high values for specificity but low

values for sensitivity for both upper and lower RTIs. However, the

(k, h) = (0.75, 1.53) set achieved values for sensitivity exceeding 0.85

(upper RTIs) and 0.86 (lower RTIs) and values of specificity above

0.91 (upper RTIs) and 0.90 (lower RTIs). Marginally best results

were obtained for the parameter selection of m = 5 weeks. As with

simple regression, CUSUM methods altogether seemed to

perform somewhat better for the upper RTIs compared to the

lower RTIs. By comparing the simple regression and the CUSUM

models on the basis of performance, the CUSUM model with

m = 5 and (k, h) = (0.75, 1.53) was superior for both upper and

lower RTIs. The methods computed thresholds and executed

comparisons only for the subset of observations, for which the

previous m-week intervals contained zero aberrant observations

(as classified by the reference standard procedure). Including this

rule omitted a total number of 158, 178, 195 (34.1%, 38.5%,

42.3%) possible method ‘‘runs’’ for upper RTIs and 147,164, 179

(31.7%, 35.5%, 38.8%) for lower RTIs.

Discussion

The application of two different models (simple regression and

CUSUM models, respectively) for early detection of community

outbreaks of upper or lower RTIs using short-term historical data

of house-call visits provided favorable results in terms of sensitivity

and specificity, compared with a reference standard procedure

based on long-term relevant historical data. In particular, a

CUSUM model using a specific set of parameters optimized for

our dataset seemed to be the best-fit one.

Such methods as those we evaluated could be implemented

where extensive databases tracking the incidence of infectious

syndromes are unavailable or unreliable. This is frequently the

case in developing countries. As exemplified by the recent H1N1

pandemic, epidemics can emerge in areas with a relatively low

level of public health surveillance [24]. The simple regression and

CUSUM models we evaluated in this study appear to perform

reasonably well in detecting the onset of an outbreak at week t,

with the only prerequisite being the availability of prior relevant

Detection of Respiratory Tract Infection Outbreaks
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Figure 1. Sequence plots of time-series of observations of weekly-averaged proportions of A) upper and B) lower respiratory tract
infections to total house visits in the area of Athens, Greece as recorded by SOS Doctors from January 01, 2000 to October 12,
2008. Superimposed are the results of the reference standard classification procedure. The green continuous line represents estimated baseline
level. Green broken line over baseline represents threshold. The observations identified as unexpected have been plotted in red color.
doi:10.1371/journal.pone.0040310.g001

Table 1. Method performance for upper respiratory tract infections.

Methods
Parameter
combinations Sensitivity

95% CI for
sensitivity Specificity

95% CI for
specificity

Observations used to
total observations (%)*

Simple Regression
(a= 0.10)

m = 4 1.00 (0.99–1.00) 0.82 (0.77–0.86) 305/463 (65.9%)

m = 5 1.00 (0.99–1.00) 0.79 (0.74–0.83) 284/462 (61.5%)

m = 6 1.00 (0.99–1.00) 0.77 (0.72–0.82) 266/461 (57.7%)

CUSUM (k,h) = (0.5, 5)

m = 4 0.50 (0.44–0.56) 0.98 (0.95–0.99) 305/463 (65.9%)

m = 5 0.59 (0.53–0.64) 0.98 (0.96–0.99) 284/462 (61.5%)

m = 6 0.53 (0.47–0.59) 0.99 (0.97–1.00) 266/461 (57.7%)

(k,h) = (0.75, 1.53)

m = 4 0.85 (0.61– 0.96) 0.91 (0.87–0.94) 305/463 (65.9%)

m = 5 0.94 (0.69–1.00) 0.93 (0.88–0.95) 284/462 (61.5%)

m = 6 0.87 (0.58–0.98) 0.94 (0.90–0.96) 266/461 (57.7%)

*Only prior observations referring to a non-epidemic period were used (see text).
doi:10.1371/journal.pone.0040310.t001
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data for a non-epidemic period of only 4–6 weeks duration to be

used as the comparator. The selection of the 4–6 week running

period was rather arbitrary. We believe that the comparison of the

index week t with a shortest period would lead to non-significant

findings; a longer period might also include data from prior

outbreaks which would also be inappropriate for the comparison.

Data for house-call visits performed by a network of medical

specialists affiliated to a private company, such as SOS Doctors in

Athens, Greece, can have several advantages for use for syndromic

surveillance purposes [10,25]. The data we evaluated are

ordinarily collected in a real-time manner by the private company

for own purposes. Therefore, no additional costs are entailed for

the collection of this type of data. House-call visits refer directly to

the community, where outbreaks of viral infections first occur.

Visits are done on an emergency basis, when the patient feels

mostly in need for a physician, and, supposedly, clinical

manifestations are more obvious. In contrast, disease surveillance

data collected by visits to sentinel providers may selectively refer to

patients that can go by themselves or be transferred to the

ambulatory office of the providers at a time that this is feasible

[25].

The most important bias in the synthesis of the patient

population served by SOS Doctors and other relevant private

networks is the financial ability of the patients to pay for the visit.

This could be particularly important during financial crises, as it

may limit the representativeness of the sample with regard to the

total population. Another issue is the accessibility of the patients to

other types of emergency healthcare services, which can be limited

for patients with physical or mental disabilities. Depending on the

operational activity of the private network of physicians, the data

for house call visits can refer to a large number of patients. Minor

deviations from the epidemic threshold can then be marked by

statistical significance, leading to prompt detection of outbreaks

and timely effectuation of the appropriate public health measures

[26,27]. Although different segments of the population can be

affected at a different extent or severity during specific community

viral outbreaks, none of the segments is, most commonly, spared

[28,29].

Our analysis is subject to many potential limitations. At the data

level, clinical differentiation between upper and lower RTIs is not

always evident. Individual physicians in the network of SOS

Doctors may have used a different relevant diagnostic approach.

The use of a standardized case-definition for syndromic surveil-

lance could have helped in this regard [30]. We analyzed both

upper and lower RTIs, so that our findings would not be affected

from bias by potential misclassifications. Still, the upper RTIs

might more clearly be associated with community outbreak of viral

illnesses than lower RTIs. Accordingly, the models we used for

short-term recognition of community outbreaks of respiratory tract

infection performed better for upper RTIs. Instead of daily values,

we selected to analyze weekly-averaged values for RTIs to

minimize the likelihood for high auto-correlation or variability

between successive observations. We also chose to analyze the

proportion of the visits for upper or lower RTIs to the total house

call visits, instead of the absolute counts of RTIs, to minimize the

effect of various factors, such as seasonal variation in morbidity,

meteorological conditions, vacation periods, or strikes in the public

healthcare sector, which could influence the demand for private

house-call visits [3,10].

At the statistical modeling level, potential limitations involve the

unavoidably arbitrary, to some extent, selection of model

parameters. Results for the types of statistical analysis we

performed have absolute dependence on parameter input.

Parameters need to be robustly calibrated in order to achieve a

desired balance in the trade-off between sensitivity and specificity,

keeping in mind the consequences of false alarms and the benefits

of true alarms [20]. Unfortunately, optimal calibrations prove to

be database-dependent. This concept applies to both the reference

standard, and to the alert-generating methods application

procedures. For example, decrease in specificity for the alert-

generating methods we evaluated might have resulted from earlier

identification of an outbreak than the reference standard method.

Particularly for the CUSUM methods, global standard values

for (k, h) cannot be determined, as they are dependent to the

process’ in control average run length, which is in turn dependent

on observation distribution. This could also constitute a short-

coming of the CUSUM methodology compared to the substan-

tially simpler in principle simple regression methodology when

executing prospective analysis. Determination of the best-fit

CUSUM model for a specific data set would require the

evaluation of long-term historical data which might not be

available.

Table 2. Method performance for lower respiratory tract infections.

Methods
Parameter
combinations Sensitivity

95% CI for
sensitivity Specificity

95% CI for
specificity

Observations used to total
observations (%)*

Simple Regression
(a = 0.10)

m = 4 1.00 (0.99–1.00) 0.80 (0.76–0.84) 316/463 (68.3%)

m = 5 1.00 (0.99–1.00) 0.76 (0.70–0.80) 298/462 (64.5%)

m = 6 1.00 (0.99–1.00) 0.73 (0.68–0.78) 282/461 (61.2%)

CUSUM (k,h) = (0.5, 5)

m = 4 0.35 (0.30–0.40) 0.97 (0.94–0.98) 316/463 (68.3%)

m = 5 0.47 (0.41–0.52) 0.98 (0.96–0.99) 298/462 (64.5%)

m = 6 0.43 (0.37–0.49) 0.97 (0.95–0.99) 282/461 (61.2%)

(k,h) = (0.75, 1.53)

m = 4 0.94 (0.69–1.00) 0.90 (0.86–0.93) 316/463 (68.3%)

m = 5 0.93 (0.66–1.00) 0.91 (0.87–0.94) 298/462 (64.5%)

m = 6 0.86 (0.56–0.97) 0.90 (0.86–0.93) 282/461 (61.2%)

*Only prior observations referring to a non-epidemic period were used (see text).
doi:10.1371/journal.pone.0040310.t002
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Finally, we did not evaluate the simple regression and CUSUM

models prospectively. We analyzed a large data-set of historical

data as the reference standard for characterization of the

outbreaks. Future studies aiming to prospectively evaluate data

from house call visits for the detection of outbreaks of respiratory

infections could use data from official sentinel surveillance

networks, if available, as the reference standard [25]. We can

only assume the performance of the models used for the detection

of outbreaks after the outbreak has begun. The models might

continue generating an alert for the phase of the outbreak that the

number of cases steadily increases, whereas alert generation might

cease once the outbreak peaks and in the phase that the number of

cases decline.

Sophisticated time-series (hierarchical models), Bayesian infer-

ence (hidden Markov models) and other types of methods

[31,32,33,34,35,36] are increasingly gaining popularity in the

field of statistical outbreak detection, providing a framework for

future research in the field. A broad review of the contextual

application of these methods has been conducted by Unkel et al.

[37].

In conclusion, electronic health records for house call visits

might serve as an alternative surveillance network for the

prediction of respiratory tract outbreaks in the community using

short-term data (for the previous 4–6 weeks). Both methods we

evaluated (simple regression and CUSUM, respectively) per-

formed reasonably well, in this regard, showing excellent

sensitivity and very good specificity, when compared to a reference

standard classification that used long-term historical data. A

CUSUM model with a specific set of parameters appeared to be

the best-fit one. The determination of the optimal set of

parameters may, however, be database-specific, and it could

require the evaluation of long historical time-series. Simple

regression models could be elected if long-term historical data

are lacking. Additional studies are needed in order to validate the

performance of the above models in the prospective detection of

the onset of RTI outbreaks on the basis of data for house call visits.
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