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There are several uncertain capacitated vehicle routing problems whose delivery costs and demands cannot be 
estimated using deterministic/statistical methods due to a lack of available and/or reliable data. To overcome 
this lack of data, third–party information coming from experts can be used to represent those uncertain 
costs/demands as fuzzy numbers which combined to an iterative–integer programming method and a global 
satisfaction degree is able to find a global optimal solution. The proposed method uses two auxiliary variables 
𝛼, 𝜆 and the cumulative membership function of a fuzzy set to obtain real–valued costs and demands prior to 
find a deterministic solution and then iteratively find an equilibrium between fuzzy costs/demands via 𝛼 and 𝜆. 
The performed experiments allow us to verify the convergence of the proposed algorithm no matter the initial 
selection of parameters and the size of the problem/instance.

1. Introduction and state of the art

The Vehicle Routing Problem (VRP) is a popular class of combinatorial problems in logistics due to its applicability and relationship to last mile 
distribution where deterministic VRPs are among the most used in real world applications given the availability of methods to solve it (optimization, 
metaheuristics, etc.). Deterministic VRPs consider ideal parameters without uncertainty, but many applications are subject to different kinds of 
uncertainty which usually means to have a set of possible solutions which depends on the model/method to solve it. This way, uncertain VRPs 
(stochastic, interval–valued, fuzzy etc.) exhibit higher complexity, require extended models and specialized solution methods.

The Capacitated Vehicle Routing Problem (CVRP) is a subclass of VRPs (see Golden, Raghavan & Wasil [1], Braekers et al. [2] and Rocha et al. 
[3]) that includes customers, suppliers and also vehicles to shipping/transportation tasks (see Dantzig & Ramser [4], Christofides & Eilon [5] and 
Borčinová [6]) whose early versions consider deterministic costs/demands, so we refer to this problem as the crisp or just CVRP. Uncertain CVRPs 
have been addressed in different ways: Men, Jiang & Xu [7] solved a CVRP for transportation of hazardous materials with interval Type–2 fuzzy 
numbers, chance constrained programming and simulated annealing; Ewbank et al. [8] solved a fuzzy demands assignment problem using neural 
networks; Helal et al. [9] has solved a stochastic CVRP using a two–step method which combines a chance–constrained model and a stochastic 
model with recourse and Mańdziuk & Świechowski [10] solved a dynamic CVRP with random traffic jams using probabilistic upper bounds and 
decision trees to compare against ant-colony, tabu and evolutionary algorithms; Hannan et al. [11] used PSO algorithms to solid waste collection 
problems with uncertain transportation costs and environmental impact; Pekel & Kara [12] solved location routing problems with fuzzy demands 
and deterministic travel times using fuzzy chance constrained programming models; Wang et al. [13] solved a two-echelon CVRP with uncertain 
demands using genetic algorithms. M Shan–Huen [14] solved a multi-compartment capacitated location routing problem with stochastic demands 
and multiple–products using tabu search; Beraldi et al. [15] solved CVRPs with stochastic demands using a probabilistic formulation involving a 
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predefined reliability degree and Thammano & Rungwachira [16] solved complex CVRPs by efficiently generating initial solutions via a sweep 
method evolved with ant colony algorithms to then be debugged/relinked using local search methods.

Sometimes the costs/demands of a CVRP lack of statistical data to be estimated, so third–party information coming from experts (represented 
as fuzzy sets) are a possible way to obtain reliable information. While previous works are focused to either uncertain costs or demands, this paper 
addresses CVRPs with delivering costs and demands affected by non–probabilistic uncertainty where information coming from experts represented 
as fuzzy sets is the main information source. This way, we extend the fuzzy iterative optimization algorithm proposed by Figueroa–García & Tenjo–

García [17], Figueroa-García [18], and Figueroa-García & López-Bello [19, 20] who proposed an iterative Fuzzy Linear Programming (FLP) method 
to find a solution for fuzzy optimization problems with fuzzy technological parameters and continuous decision variables while the presented method 
solves a Fuzzy Capacitated Vehicle Routing Problem (FCVRP) which is a CVRP with fuzzy delivering costs, fuzzy demands and binary/integer decision 
variables i.e. a combinatorial problem.

The organization of the paper is as follows: Section 1 introduces the main topic; Section 2 presents the mathematical programming model of the 
CVRP; some basics on fuzzy numbers are presented in Section 3; Section 4 presents the fuzzy CVRP model and its solution method; Section 5 shows 
the performed experiments and Section 6 shows the final remarks of the paper.

2. Crisp/deterministic CVRP

A CVRP is a problem where a set of clients (customers) require goods (demands) which are sent from a set of sellers (suppliers) by using a 
transportation mean (vehicle) e.g. train, aircraft, ship, etc. Each vehicle is limited to a fixed/finite capacity which is usually not enough to cover all 
customers at once. In this problem, each customer is visited by a single vehicle starting from a depot (suppliers), covering a set of nodes (customers) 
to finally come back to the depot, limited to a finite amount of vehicles to cover all nodes in different routes. The aim of the CVRP is to minimize 
the total transportation cost of supplying all demands 𝑑𝑖 by covering each node by a single vehicle 𝑥 using routes departing from a depot (node 0). 
Transportation costs are composed by all operational costs inherent to deliver the required demands using a vehicle. This way, an optimal CVRP 
minimizes the total delivering cost namely 𝑧 as shown as follows.

Index sets:

𝑖, 𝑗 ∈ {0, 1, 2, ⋯ , 𝑚} is the set of origin–destination nodes (node 0 is the depot)

Parameters:

𝑐𝑖𝑗 ∈ℝ+ is the delivering cost to send a unit from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node

𝑑𝑖 ∈ℝ+ is the demand required by the 𝑖𝑡ℎ node

𝐾 ∈ℕ is the availability of homogeneous vehicles

𝑄 ∈ℕ is the capacity of a vehicle

Decision variables:

𝑥𝑖𝑗 ∈ {0, 1} is the decision of a vehicle to traverse from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node

𝑦𝑖𝑗 ∈ℤ0+ is amount of supply to be sent from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node

Min
∑
𝑖

∑
𝑗,𝑖≠𝑗

𝑐𝑖𝑗𝑥𝑖𝑗 , (1)

𝑠.𝑡.∑
𝑖,𝑖≠𝑗

𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ {1,2,⋯ ,𝑚}, (2)

∑
𝑗,𝑖≠𝑗

𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚}, (3)

∑
𝑖

𝑥𝑖0 ⩽𝐾, (4)

∑
𝑗

𝑥0𝑗 ⩽𝐾, (5)

∑
𝑖

𝑥𝑖0 −
∑
𝑗

𝑥0𝑗 = 0, (6)

∑
𝑗

𝑦𝑗𝑖 −
∑
𝑗

𝑦𝑖𝑗 = 𝑑𝑖 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚}, (7)

𝑄 ⋅ 𝑥𝑖𝑗 − 𝑦𝑖𝑗 ⩾ 0 ∀ 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}, 𝑖 ≠ 𝑗, (8)

𝑥𝑖𝑗 ∈ {0,1}; 𝑦𝑖𝑗 ⩾ 0. (9)

Fig. 1 shows and example of a CVRP of 12 nodes covered by three routes to/from a single depot.

CVRPs use deterministic time/distance units to define the cost of covering each customer (node) where each vehicle starts/ends from/to a depot

(node 0). Eqs. (2) and (3) guarantee each customer 𝑗 to be covered by a single vehicle. Eqs. (4), (5) guarantee not to send more than 𝐾 available 
vehicles with equal capacity 𝑐 ∈ ℝ each. Eq. (6) guarantees each node to be covered once; Eq. (7) guarantees to satisfy required demands 𝑑𝑖, and 
Eq. (8) guarantees to send the required demands 𝑦𝑖𝑗 by all nodes in a route. In general, the goal is to send all demands 𝑑𝑖 from 𝑖 ∈𝑚 origins to every 
𝑗 ∈𝑚 destination using 𝑦𝑖𝑗 in a single vehicle 𝑥𝑖𝑗 with a capacity 𝑐 ∈ℝ to cover the route.

3. Basics on fuzzy sets and numbers

A fuzzy set �̃� = {(𝑥, 𝜇�̃�(𝑥)) | 𝑥 ∈𝑋} is defined by a membership function 𝜇�̃�(𝑥), 𝑥 ∈𝑋 which measures the membership of a value 𝑥 regarding a 
concept/word/label 𝐴.  (𝑋) is the class of all fuzzy sets,  (ℝ) is the class of all real-valued fuzzy sets and 1(ℝ) is the class of all fuzzy numbers. A 
fuzzy number �̃� ∈ 1(ℝ) is then defined as follows.
2



J.C. Figueroa–García, J.S. Tenjo–García and C. Franco Heliyon 8 (2022) e09767
Fig. 1. CVRP for three routes.

Definition 1. Let �̃� ∶ ℝ → [0, 1] be a fuzzy subset of the reals. Then �̃� ∈ 1(ℝ) is a Fuzzy Number (FN) iff there exists a closed interval [𝑥𝑙, 𝑥𝑟] ≠ ∅
with a membership function 𝜇�̃�(𝑥) such that:

𝜇�̃�(𝑥) =
⎧⎪⎨⎪⎩
𝑐(𝑥) for 𝑥 ∈ [𝑥𝑙, 𝑥𝑟],
𝑙(𝑥) for 𝑥 ∈ [−∞, 𝑥𝑙],
𝑟(𝑥) for 𝑥 ∈ [𝑥𝑟,∞],

(10)

where 𝑐(𝑥) = 1 for 𝑥 ∈ [𝑐𝑙, 𝑐𝑟], 𝑙 ∶ (−∞, 𝑥𝑙) → [0, 1] is monotonic non-decreasing, continuous from the right, i.e. 𝑙(𝑥) = 0 for 𝑥 < 𝑥𝑙 ; 𝑙 ∶ (𝑥𝑟, ∞) → [0, 1] is 
monotonic non-increasing, continuous from the left, i.e. 𝑟(𝑥) = 0 for 𝑥 > 𝑥𝑟.

The 𝛼-cut of a fuzzy number �̃� ∈ 1(ℝ) namely 𝛼�̃� ≜ {𝑥 | 𝜇�̃�(𝑥) ⩾ 𝛼} ∀ 𝑥 ∈𝑋 is then defined as follows:

𝛼�̃� =
[
inf
𝑥

𝛼𝜇�̃�(𝑥), sup
𝑥

𝛼𝜇�̃�(𝑥)
]
=
[
�̌�𝛼 , �̂�𝛼

]
. (11)

In probability theory, the cumulative probability function transforms any probability function into a monotonic non–decreasing measure which 
is very convenient in many cases. To do so, Figueroa-García & López-Bello [19, 20] and Figueroa-García [18] defined its fuzzy version as shown as 
follows.

Definition 2 (Cumulative Membership Function). Let �̃� ∈  (𝑋) be a fuzzy set. The Cumulative Membership Function (CMF) of �̃�, 𝜓�̃�(𝑥) is:

𝜓�̃�(𝑥) ≜ 𝑃𝑠�̃�(𝑋 ⩽ 𝑥) =

𝑥

∫
−∞

𝜇�̃�(𝑡) 𝑑𝑡. (12)

Eq. (12) is the cumulative possibility of all 𝑋 ⩽ 𝑥 to occur regarding the linguistic label �̃�. Then 𝜓�̃�(𝑥) can be normalized by the cardinality (or 
total area) of �̃� namely |�̃�|, as follows:

�̄��̃�(𝑥) ≜ 1
|�̃�|

𝑥

∫
−∞

𝜇�̃�(𝑡) 𝑑𝑡 =

𝑥

∫
−∞

𝜇�̃�(𝑡) 𝑑𝑡

∞

∫
−∞

𝜇�̃�(𝑡) 𝑑𝑡

(13)

Fig. 2 presents the normalized CMF of a fuzzy number i.e. �̄��̃�.

4. A proposal for solving FCVRPs

The FCVRP addressed in this paper fits into the family of FLPs that can be solved by the Soft Constraints Method (SCM) which was proposed by 
Zimmermann [21] & Verdegay [22], so we first introduce the SCM to then present an iterative SCM to solve FCVRPs.

4.1. Soft constraints method

Some approaches to solve/model fuzzy optimization problems were proposed by Sakawa et al. [23], Chanas et al. [24], Herrera & Verdegay 
[25], Peidro et al. [26], Najafi et al. [27] and Pishvaee & Khalaf [28] solved the problem Min{�̃� = 𝑐𝑥 ∶ �̃�𝑥 ≳ �̃�, 𝑥 ∈ℝ+} using the Yager index [29] for 
�̃�; Donga & Wan [30] simplified �̃� by using the fuzzy mean-value and Rena et al. [31] used a bi–level approach. All of them defuzzify all uncertain 
parameters prior to solve an LP while the presented method deals with fuzzy costs and demands at once via a satisfaction degree.
3
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Fig. 2. Normalized CMF of a fuzzy number �̃�.

Fig. 3. Shapes for �̃� and �̃�.

The SCM solves problems in the form Min{�̃� = 𝑐′𝑥 ∶ 𝐴𝑥 ≳ �̃�, 𝑥 ∈ℝ+} whose constraints �̃� are fuzzy linear sets as shown in Fig. 3 (right side) and 
𝐴, 𝑐 are crisp parameters. Its main goal is to maximize a global satisfaction degree namely 𝜆 between the goal �̃� and the set of constraints �̃� via the 
following LP:

Max
𝑥,𝜆

𝜆,

s.t.

𝑐′𝑥+ 𝜆(�̂�− �̌�) = �̂�,

𝐴𝑥− 𝜆(�̂�− �̌�) ⩾ �̌�,

𝑥 ∈ℝ+

(14)

where 𝜆 ∈ [0, 1], �̌� =Min𝑥{𝑐′𝑥 ∶ 𝐴𝑥 ⩾ �̌�, 𝑥 ∈ ℝ+}, �̂� =Min𝑥{𝑐′𝑥 ∶ 𝐴𝑥 ⩾ �̂�, 𝑥 ∈ ℝ+} and the binary relation ≲ for fuzzy sets has been defined by Ramík 
and R̆imánek [32].

4.2. The fuzzy CVRP

The mathematical programming model for a FCVRP with fuzzy delivering/shipping costs, fuzzy demands and a limited/finite amount of vehicles 
is described as follows.

Index sets:

𝑖, 𝑗 ∈ {0, 1, 2, ⋯ , 𝑚} is the set of origin–destination nodes (node 0 is the depot)

Parameters:

𝑐𝑖𝑗 ∈ 1(ℝ+) is the fuzzy delivering cost to send a unit from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node

𝑑𝑖 ∈ 1(ℝ+) is the fuzzy demand required by the 𝑖𝑡ℎ node

𝐾 ∈ℕ is the availability of homogeneous vehicles

𝑄 ∈ℕ is the capacity of a vehicle

Decision variables:

𝑥𝑖𝑗 ∈ {0, 1} is the decision of a vehicle to traverse from the 𝑖𝑡ℎ node to the 𝑗𝑡ℎ node 𝑦𝑖𝑗 ∈ℤ0+ is amount of supply to be sent from the 𝑖𝑡ℎ node to the 
𝑗𝑡ℎ node

Min
∑
𝑖

∑
𝑗,𝑖≠𝑗

𝑐𝑖𝑗𝑥𝑖𝑗 , (15)

𝑠.𝑡.∑
𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ {1,2,⋯ ,𝑚}, (16)
𝑖,𝑖≠𝑗

4
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Fig. 4. Fuzzy CVRP for three routes.

∑
𝑗,𝑖≠𝑗

𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚}, (17)

∑
𝑖

𝑥𝑖0 ⩽𝐾, (18)

∑
𝑗

𝑥0𝑗 ⩽𝐾, (19)

∑
𝑖

𝑥𝑖0 −
∑
𝑗

𝑥0𝑗 = 0, (20)

∑
𝑗

𝑦𝑗𝑖 −
∑
𝑗

𝑦𝑖𝑗 ≳ 𝑑𝑖 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚}, (21)

𝑄 ⋅ 𝑥𝑖𝑗 − 𝑦𝑖𝑗 ⩾ 0 ∀ 𝑖, 𝑗 ∈ {1,2,⋯ ,𝑚}; 𝑖 ≠ 𝑗, (22)

𝑥𝑖𝑗 ∈ {0,1}; 𝑦𝑖𝑗 ⩾ 0. (23)

Eq. (15) is the total delivering cost given uncertain demands defined by experts as fuzzy sets (see Definition 1), all of them covered by a single 
vehicle 𝑥𝑖𝑗 in the route (see Eq. (16) and Eq. (17)). In general, the FCVRP considers uncertain delivering costs 𝑐𝑖𝑗 defined as fuzzy numbers in order 
to cover uncertainties like climate, transportation times, road conditions, etc. that affect delivering tasks, and uncertain demands 𝑑𝑖 which usually 
contain uncertainty induced by customers requirements, markets volatility, etc. Fig. 4 shows an FCVRP for three routes covering 12 nodes from the 
depot (node 0).

Fig. 4 involves uncertain demands 𝑑 and delivering costs 𝑐 which are defined as fuzzy numbers. In order to be able to use the SCM, we define 𝑑
as a linear fuzzy constraint (see Fig. 5) as shown as follows.

Definition 3. Let us define the membership function of the fuzzy constraint (21) as follows:

𝜇𝑑𝑖 (𝑓 (𝑦𝑖𝑗 ), 𝑑𝑖, 𝑑𝑖) ≜
⎧⎪⎪⎨⎪⎪⎩

1, 𝑓 (𝑦𝑖𝑗 ) ⩾ 𝑑𝑖
𝑓 (𝑦𝑖𝑗 ) − 𝑑𝑖

𝑑𝑖 − 𝑑𝑖
, 𝑑𝑖 ⩽ 𝑓 (𝑦𝑖𝑗 ) ⩽ 𝑑𝑖

0, 𝑓 (𝑦𝑖𝑗 ) ⩽ 𝑑𝑖

(24)

where 𝑓 (𝑦𝑖𝑗 ) =
∑

𝑗 𝑦𝑗𝑖 −
∑

𝑗 𝑦𝑖𝑗 , 𝑑𝑖 ∈ℝ+ and 𝑑𝑖 ∈ℝ+ are the lower/upper bounds of 𝑑𝑖.

Note that fuzzy demands as written in Eq. (21) are required to have a linear membership function (see Definition 3) since it allows us to make 
the equivalence between its left side 𝑓 (𝑦𝑖𝑗 ) and the 𝛼–cut of 𝑑𝑖 i.e.

∑
𝑗

𝑦𝑗𝑖 −
∑
𝑗

𝑦𝑖𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑓 (𝑦𝑖𝑗 )

≳ 𝑑𝑖 ⟹ 𝑓 (𝑦𝑖𝑗 ) ≡ 𝑑𝑖(𝛼)→
𝑓 (𝑦𝑖𝑗 ) − 𝑑𝑖

𝑑𝑖 − 𝑑𝑖
= 𝛼.

Definition 4. Let us define the set of all crisp constraints of the FCVRP i.e. Eqs. (16), (17), (18), (19), (20), (22) as 𝑔(𝑥𝑖𝑗 ) ⩽, = 𝑏 where 𝑏 is the vector 
of crisp right hand side parameters.

In this paper we consider an FCVRP where 𝑐 are fuzzy costs with any membership function and 𝑑 with linear membership function (see Eqs.

(10), (24) and Fig. 5). Now, to obtain a monotonic decreasing function of 𝑐 which allows to obtain smaller values of 𝑐𝑖𝑗 as 𝛼 increases, we use the 
complement of �̄�𝑐 .
𝑖𝑗

5
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Fig. 5. Shapes for 𝑐𝑖𝑗 and 𝑑𝑖.

Fig. 6. Flowchart of the proposed algorithm to solve FCVRPs.

Definition 5. Let 𝑐𝑖𝑗 be a fuzzy cost (see Eq. (10)) whose normalized CMF �̄�𝑐𝑖𝑗
(see Eq. (13)) is monotonic increasing and its complement ¬�̄�𝑐𝑖𝑗

∶=
1 − �̄�𝑐𝑖𝑗

is monotonic decreasing, then:

𝛼↑⇒ �̄�𝑐𝑖𝑗
↑, 𝑐𝑖𝑗 ↑,

𝛼↑⇒ ¬�̄�𝑐𝑖𝑗
↓, 𝑐𝑖𝑗 ↓ .

Also note that it is convenient to use the complement of the normalized CMF of 𝑐𝑖𝑗 i.e. ¬�̄�𝑐𝑖𝑗
= 1 − �̄�𝑐𝑖𝑗

since it is monotonic decreasing and 
minimization problems look for minimum costs (the lower the better) while satisfying constraints (the bigger the better) at once as shown in Fig. 5.

4.3. The proposed method

Fuzzy demands 𝑑 have linear shapes that represents soft inequalities in the form ≳ where 𝑓 (𝑦𝑖𝑗 ) is the universe of discourse of 𝑑𝑖 (see Eq. (24)

and Fig. 5). On the other hand, fuzzy costs 𝑐 can have any shape which are represented by ¬�̄�𝑐 (see Definition 5 and Fig. 5) since demands and costs 
are in conflict of interest which can be written as the following decision making statement namely 𝐷:

𝐷 ∶ The optimal routing decision is to cover maximum demands at a minimum cost

The goal is to minimize fuzzy delivering costs ∑𝑖

∑
𝑗,𝑖≠𝑗 𝑐𝑖𝑗𝑥𝑖𝑗 subject to fuzzy demands 𝑑𝑖. To do so, an iterative version of the SCM to solve the 

FCVRP is proposed and explained in Fig. 6.

Fig. 6 displays the flowchart of the proposed method which is divided into the following components: initialize by choosing a value 𝛼, defining 
fuzzy costs, demands and the admissible error 𝜖, then a second step computes values 𝑐(𝛼), ̌𝑧(𝛼), ̂𝑧(𝛼) needed to obtain the optimal value of the SCM 
namely 𝜆∗ which is required to evaluate convergence of the method by computing |𝜆∗ − 𝛼| so if it is lesser than 𝜖 then the algorithm stops, but if |𝜆∗ − 𝛼| is greater than 𝜖 then 𝛼 is updated with the obtained 𝜆∗, and the process is repeated until 𝜆∗ ≈ 𝛼 i.e. |𝜆∗ − 𝛼| < 𝜖 which is the point where 
𝑑(𝜆∗), 𝑧(𝜆∗) are in equilibrium with 𝑐(𝛼). Now, the full description of the proposed algorithm based on the SCM (see Eq. (14), Figueroa–García & 
Tenjo–García [33], Figueroa–García & Tenjo–García [17], Figueroa-García [18] and Figueroa-García & López-Bello [19, 20]) is as follows.

Algorithm 1.

1- Setup:

– Set 𝛼 ∈ [0, 1],
– Compute �̄�𝑐 and 𝑐𝑖𝑗 (𝛼) = ¬�̄�−1(𝛼) ∀ 𝑖, 𝑗 ∈ {0, 1, ⋯ , 𝑚},
𝑖𝑗 𝑐𝑖𝑗

6
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2- The soft constraints method:

– Compute �̌�(𝛼) =Min{
∑

𝑖

∑
𝑗,𝑖≠𝑗 𝑐𝑖𝑗 (𝛼)𝑥𝑖𝑗 ∶ 𝑔(𝑥𝑖𝑗 ) ⩽, = 𝑏; ∑𝑗 𝑦𝑗𝑖 −

∑
𝑗 𝑦𝑖𝑗 ⩾ 𝑑𝑖}

– Compute �̂�(𝛼) =Min{
∑

𝑖

∑
𝑗,𝑖≠𝑗 𝑐𝑖𝑗 (𝛼)𝑥𝑖𝑗 ∶ 𝑔(𝑥𝑖𝑗 ) ⩽, = 𝑏; ∑𝑗 𝑦𝑗𝑖 −

∑
𝑗 𝑦𝑖𝑗 ⩾ 𝑑𝑖}

– Define the fuzzy set �̃�(𝛼) with a membership function (see Fig. 3):

𝜇�̃�(𝑧, �̌�, �̂� |𝛼) =
⎧⎪⎪⎨⎪⎪⎩

1, 𝑧(𝛼) ⩽ �̌�(𝛼)
�̂�(𝛼) − 𝑧(𝛼)
�̂�(𝛼) − �̌�(𝛼)

, �̌�(𝛼) ⩽ 𝑧(𝛼) ⩽ �̂�(𝛼)

0, 𝑧(𝛼) ⩾ �̂�(𝛼)

(25)

where 𝑧(𝛼) =∑
𝑖

∑
𝑗,𝑖≠𝑗 𝑐𝑖𝑗 (𝛼) 𝑥𝑖𝑗 .

– Thus, solve the following LP model:

Max
𝑥,𝑦,𝜆

𝜆, (26)

𝑠.𝑡.

∑
𝑖

∑
𝑗,𝑖≠𝑗

𝑐𝑖𝑗 (𝛼)𝑥𝑖𝑗 + 𝜆(�̂�(𝛼) − �̌�(𝛼)) = �̂�(𝛼), (27)

𝑔(𝑥𝑖𝑗 ) ⩽,= 𝑏, (28)

∑
𝑗

𝑦𝑗𝑖 −
∑
𝑗

𝑦𝑖𝑗 − 𝜆(𝑑𝑖 − 𝑑𝑖) ⩾ 𝑑𝑖 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚}, (29)

𝑥𝑖𝑗 ∈ {0,1}, 𝑦𝑖𝑗 ⩾ 0, 𝜆 ∈ [0,1].

3- Convergence:

– If 𝜆∗ = 𝛼 then stop and return 𝜆∗ as the overall satisfaction degree of �̃�, ̃𝑐𝑖𝑗 , and 𝑑𝑖; if 𝜆∗ ≠ 𝛼 then go to Step 1 and update 𝛼 = 𝜆∗.

Note that the set �̃�(𝛼) is a function of 𝛼 i.e. 𝑧(𝛼) =∑
𝑖

∑
𝑗,𝑖≠𝑗 𝑐𝑖𝑗 (𝛼)𝑥𝑖𝑗 , 𝛼 ∈ [0, 1] that represents the minimum delivering cost with a highest value 

given by �̌�(𝛼) and a lowest value given by �̂�(𝛼) for a given 𝛼 ∈ [0, 1]. On the other hand, the demands 𝑑 get its highest value at 𝑑 and its lowest 
value at 𝑑. Also note that the Zimmermann’s method maximizes the overall satisfaction degree between �̃�(𝛼) (through 𝑐(𝛼) = ¬�̄�−1

𝑐
(𝛼)) and 𝑑 through 

an auxiliary variable 𝜆. It is important to remark that 𝛼 is a variable that returns crisp values of 𝑐 which are required to solve the SCM till 𝜆∗ = 𝛼

iteratively where 𝜆 is the overall satisfaction degree between �̃�(𝛼) and 𝑑 (see Fig. 5).

4.4. Other approaches

The FCVRP has been addressed in the literature mostly using ranking measures for its fuzzy parameters which is a simplified deterministic 
solution. For instance, Zulvia, Kuo & Hu [34] proposed a method for solving a CVRP with ranked fuzzy travel times, demands and credibility 
measures; a similar problem was addressed by Brito et al. [35] by using a metaheuristic based in local search procedures; Kuo, Wibowo & Zulvia 
[36] solved a dynamic CVRP with fuzzy service times using ant colony optimization and Singh, Sharma & Chakraborty [37, 38] handle fuzzy 
demands through a mixed fuzzy ranking/stochastic approach while our proposal keep fuzzy information via its cumulative membership function 
and a global satisfaction degree unlike the above approaches which solve a ranking–based instance of the FCVRP.

5. Application example

To illustrate how to solve FCVRPs using the proposed algorithm, 8 different instances were taken from https://www .coin -or .org /SYMPHONY /
branchandcut /VRP /data /index .htm and tested using crisp methods (see Borčinová [6]) and the proposed method (see Section 4.3). First, we solve 
the crisp subset P-n016-k08 of the Set P composed by 𝑖, 𝑗 ∈ {0, 1, ⋯ , 14} nodes to cover with 8 vehicles with capacity 𝑐 = 35 to then solve the 
FCVRP for a mix of triangular 𝑇 (𝑎, 𝑏, 𝑐) and Gaussian 𝐺(𝜇, 𝛿) fuzzy costs 𝑐𝑖𝑗 (triangular and Gaussian are popular shapes in practical applications) 
and demands 𝑑𝑖, 𝑑𝑖 (see Table 3 in the Appendix). Table 2 presents a summary report of the obtained results for the 8 selected instances.
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Fig. 7. Crisp CVRP for 8 routes (instance P-n016-k08).

5.1. Crisp solution

The instance P-n016-k08 (see Augerat et al. [39]) is composed by the following costs/demands:

𝒄 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
14 −
21 12 −
33 19 15 −
22 12 22 21 −
23 24 16 31 36 −
12 12 11 25 24 13 −
22 19 9 23 30 8 10 −
32 21 12 8 26 25 23 18 −
32 27 15 24 37 13 20 10 17 −
21 7 11 12 12 26 16 19 15 25 −
28 19 29 25 7 43 31 37 32 44 19 −
30 16 19 9 13 35 26 28 17 31 10 16 −
29 21 9 17 30 16 17 9 10 7 18 37 24 −
31 33 24 37 44 8 21 15 31 16 34 51 43 21 −
30 17 23 16 9 39 28 32 23 37 13 10 6 30 47 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;𝒅 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

19
30
16
23
11
31
15
28
8
8
7
14
6
19
11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In this instance, delivering costs are deterministic distances with no uncertainty and each vehicle has a fixed capacity of 𝑐 = 35 units. The crisp 

solution (see Borčinová [6]) is 𝑧∗ = 450 covered by 8 routes i.e. 8 vehicles as displayed in Fig. 7.

𝐫𝟏 ∶ 0 − 2 − 0 𝐫𝟐 ∶ 0 − 6 − 0 𝐫𝟑 ∶ 0 − 8 − 0 𝐫𝟒 ∶ 0 − 15 − 14 − 10 − 0
𝐫𝟓 ∶ 0 − 14 − 5 − 0 𝐫𝟔 ∶ 0 − 13 − 9 − 7 − 0 𝐫𝟕 ∶ 0 − 11 − 4 − 0 𝐫𝟖 ∶ 0 − 3 − 1 − 0

5.2. Fuzzy solution

Algorithm 1 can start with any 𝛼 to then compute �̄�𝑐𝑖𝑗
and 𝑐(𝛼) = ¬�̄�𝑐𝑖𝑗

(𝛼) ∀ 𝑖, 𝑗 (see Definition 5). The optimal 𝜆∗ = 0.564429 leads to 𝑧(𝜆∗) =
461.09, ̌𝑧(𝜆∗) = 416.79, ̂𝑧(𝜆∗) = 518.48 which is a bit more expensive than the crisp solution. The 8 optimal routes that cover all nodes are:

𝐫𝟏 ∶ 0 − 1 − 7 − 0 𝐫𝟐 ∶ 0 − 2 − 0 𝐫𝟑 ∶ 0 − 4 − 11 − 0 𝐫𝟒 ∶ 0 − 5 − 14 − 0
𝐫𝟓 ∶ 0 − 6 − 0 𝐫𝟔 ∶ 0 − 8 − 0 𝐫𝟕 ∶ 0 − 9 − 13 − 3 − 0 𝐫𝟖 ∶ 0 − 10 − 12 − 15 − 0

The proposed solution covers more demands 𝑑𝑖 via 𝜆∗ while finding the highest allowable costs 𝑐𝑖𝑗 via 𝛼 and ¬�̄�𝑐𝑖𝑗
which means that the following 

system of equations (see Eqs. (27), (28) and (29)):

∑
𝑖

∑
𝑗,𝑖≠𝑗

𝑐𝑖𝑗 (𝛼)𝑥𝑖𝑗 + 𝜆∗(�̂�(𝜆∗) − �̌�(𝜆∗)) = �̂�(𝜆∗),

𝑔(𝑥𝑖𝑗 ) ⩽,= 𝑏,∑
𝑗

𝑦𝑗𝑖 −
∑
𝑗

𝑦𝑖𝑗 − 𝜆∗(𝑑𝑖 − 𝑑𝑖) ⩾ 𝑑𝑖 ∀ 𝑖 ∈ {1,2,⋯ ,𝑚},

𝑥𝑖𝑗 ∈ {0,1}, 𝑦𝑖𝑗 ⩾ 0, 𝜆∗ ⩽ 𝛼 ⩽ 1
8
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Fig. 8. Optimal solution of the problem.

Fig. 9. Optimal routes of the FCVRP for 8 vehicles (instance P-n016-k08).

has a solution for any 𝛼 ⩾ 𝜆∗ ⇒ 𝑐𝑖𝑗 (𝛼) ⩽ 𝑐𝑖𝑗 (𝜆∗) but it has no solution for 𝛼 < 𝜆∗ ⇒ 𝑐𝑖𝑗 (𝛼) > 𝑐𝑖𝑗 (𝜆∗). This is equivalent to say that the maximum allowable 
costs/demands of the FCVRP are 𝑐𝑖𝑗 (𝜆∗) and 𝑑(𝜆∗) = 𝑓 (𝑦𝑖𝑗 ) (see Definitions 3 and 5), so cheaper costs and/or less demands than 𝜆∗ are feasible too. 
This helps decision making since it provides a set of possible solutions instead of a deterministic solution. Fig. 8 shows the set �̃� of optimal costs 
with a global optimal degree 𝜆∗ = 0.564429.

The auxiliary variable 𝜆 looks for the equilibrium between quantities to be sent and its costs which define the total cost of the system, so the 
bigger 𝑐𝑖𝑗 (𝛼) the lesser demands are covered at a total cost 𝑧(𝜆∗). Also note that 𝜆∗ converges for any starting point of 𝛼 ∈ [0, 1]. Fig. 9 shows the 8 
optimal routes for 𝜆∗.

The defuzzified values 𝒄(𝜆∗) and 𝒅(𝜆∗) are as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
13.60 −
20.35 11.68 −
33.18 19.48 14.68 −
21.57 11.96 21.73 20.23 −
22.31 23.26 15.73 30.30 35.01 −
12.09 12.32 10.56 24.03 23.46 13.09 −
21.64 18.45 9.32 21.73 30.48 7.87 10.25 −
30.52 20.66 12.09 8.09 25.87 24.29 22.60 18.48 −
31.90 26.52 14.56 22.57 36.16 13.09 19.56 10.64 17.80 −
20.56 7.16 10.29 11.23 11.54 25.73 15.74 18.38 15.64 24.29 −
27.17 18.90 27.85 24.49 6.62 41.50 30.05 35.50 31.27 42.72 18.17 −
28.90 15.36 18.62 8.62 12.56 34.23 24.90 27.36 16.57 30.17 9.87 19.99 −
28.44 20.47 9.32 16.59 29.34 16.32 17.71 9.09 10.56 7.09 17.31 36.22 23.28 −
31.32 32.43 23.09 35.74 42.82 8.80 20.57 14.11 29.99 15.72 33.06 53.14 41.88 19.24 −
29.34 16.61 22.80 15.64 8.93 37.89 26.47 30.99 22.43 35.50 13.41 9.87 6.16 28.91 13.00 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
17.90
27.03
16.77
23.77
11.52
29.34
17.34
27.60
10.64
8.26
9.08
15.90
9.08
18.34
13.21

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
For instance, Table 1 shows all iterations 𝑘, ̌𝑧(𝛼), ̂𝑧(𝛼) and 𝜆∗ for three 𝛼 = {0.1, 0.5, 0.9}.

Fig. 10 shows 𝜆∗
𝑘

for 9 different starting values 𝛼 = {0.1 → 0.9}, all of them converge to 𝜆∗ = 0.564429
Finally, we have tested the algorithm by solving the 8 instances presented by Borčinová [6]. The obtained results are shown in Table 2.
9
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Table 1. Behavior of Algorithm for different starting 𝛼.

𝑘 Starting with 𝛼 = 0.1 Starting with 𝛼 = 0.5 Starting with 𝛼 = 0.9

�̌�(𝛼) �̂�(𝛼) 𝑧(𝜆∗) 𝜆∗ �̌�(𝛼) �̂�(𝛼) 𝑧(𝜆∗) 𝜆∗ �̌�(𝛼) �̂�(𝛼) 𝑧(𝜆∗) 𝜆∗

1 394.73 666.66 527.65 0.5112 405.64 527.79 460.57 0.5503 392.12 409.38 400.14 0.5354

2 404.45 526.17 459.19 0.5503 411.47 520.53 457.99 0.5734 405.64 522.68 457.44 0.5574

3 411.46 520.53 457.99 0.5734 415.69 517.18 459.90 0.5644 410.63 519.51 457.10 0.5732

4 415.69 517.18 459.90 0.5644 416.79 518.49 461.09 0.5644 415.71 517.2 459.93 0.5643

5 416.8 518.49 461.10 0.5644 416.79 518.49 461.09 0.5644 416.8 518.49 461.10 0.5644

6 416.79 518.49 461.09 0.5644 416.79 518.48 461.09 0.5644 416.79 518.49 461.09 0.5644

7 416.79 518.48 461.09 0.5644 416.79 518.48 461.09 0.5644

Fig. 10. Iterative FCVRP for different 𝛼0 (instance P-n016-k08).

Table 2. Results of the CVRP and FCVRP for 8 different instances.

Instance Crisp solution Fuzzy solution

Cap. Nodes # Veh. Sol. �̌�(𝜆∗) �̂�(𝜆∗) 𝑧(𝜆∗) 𝜆∗ Time (hours)

P-n16-k8 35 15 8 450 416.79 518.48 461.08 0.564429 3.146

P-n19-k2 160 18 2 212 207.34 218.78 212.69 0.532487 3.468

P-n20-k2 160 19 2 216 199.37 228.32 210.56 0.61354 3.702

P-n21-k2 160 20 2 211 201.35 220.18 209.47 0.56872 3.949

P-n22-k2 160 21 2 216 203.18 231.48 215.32 0.57113 4.534

En13-k4 6000 12 4 247 222.35 267.58 240.93 0.58924 2.512

E-n22-k4 6000 21 4 375 371.98 401.45 384.56 0.573217 5.136

E-n23-k3 4500 22 3 569 562.83 583.71 570.69 0.62375 4.682

We recall that all instances converge to a single 𝜆∗ which is the global equilibrium degree between fuzzy costs and satisfaction of the demands. The 
crisp CVRP is convenient only for deterministic conditions, but it has no flexibility to cover uncertain demands as the presented approach does since 
𝜆∗ is the maximum degree in which demands can be covered at minimum cost and �̌�(𝜆∗), ̂𝑧(𝜆∗) are the costs associated to cover minimum/maximum 
demands 𝑑 and 𝑑. For instance, if we compute the total cost of the optimal crisp solution using 𝑐(𝜆∗) we obtain 𝑧∗ = 443.71 which is cheaper than 
the pure deterministic solution.

6. Concluding remarks

The algorithm proposed by Figueroa-García [18] and Figueroa-García & López-Bello [19, 20] have been extended to solve FCVRPs with satis-

factory results. The optimal satisfaction degree 𝜆∗ is a global defuzzifier for all fuzzy parameters �̃�, 𝑐𝑖𝑗 , 𝑑𝑖 and it gets the maximum allowable costs 
and demands to be satisfied by the system while holding feasibility. The provided examples/instances illustrate the way how the iterative method 
solves FCRVPs whose results in the 8 selected instances show convergence to a global optimal 𝜆∗ and subsequently to optimal values 𝑧, 𝑐𝑖𝑗 and 𝑑𝑖
with better results in some instances.

The proposed algorithm deals with nonlinear fuzzy delivering costs and fuzzy demands by iterating the SCM to then obtain a maximum 𝜆∗ which 
is the global optimal satisfaction degree between costs and demands, so any 𝑐(𝛼) ⩽ 𝑐(𝜆∗) and/or 𝑑(𝜆) ⩽ 𝑑(𝜆∗) is feasible for 𝜆∗. This helps practical 
implementations since 𝑐(𝜆∗) are the maximum allowable costs for delivering a maximum amount of demands 𝑑(𝜆∗) so the analyst can know the 
optimal quantities to be sent to customers at a maximum allowable cost.

The optimal solution provides the amount of vehicles to be sent, the routes to cover all demands and crisp values for 𝑐𝑖𝑗 (𝛼) ∈ 𝑐𝑖𝑗 and 𝑑𝑖(𝜆) ∈ 𝑑𝑖. 
The optimal 𝜆∗ reaches equilibrium between delivery costs and satisfied demands which helps decision making since analysts are able to handle 
uncertain information and to provide routes to cover customers demands at a maximum allowable cost.

Further topics

CVRPs with interval–valued capacities and fuzzy time windows are natural extensions to be solved with the proposed algorithm. Also Type-2 
fuzzy numbers (see Figueroa-García [40]) can help to represent other uncertainties and fuzzy decision making techniques can help to improve its 
application in real world scenarios (see Rivera–Niquepa et al. [41] and Wu et al. [42]).
10
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Table 3. Fuzzy delivering costs and demands.

(𝑖, 𝑗) Set 𝑐𝑖𝑗 (𝑖, 𝑗) Set 𝑐𝑖𝑗 (𝑖, 𝑗) Set 𝑐𝑖𝑗 Set 𝑐𝑖𝑗 Demand Value

(1,2) T(8,14,20) (3,5) T(18,22,26) (5,12) T(5,7,8) (8,15) T(9,15,19) 𝑑1 10

(1,3) G(21,3,99) (3,6) T(12,16,20) (5,13) T(10,13,15) (8,16) G(32,6,24) 𝑑2 18

(1,4) T(29,33,39) (3,7) G(11,2,70) (5,14) G(30,4,05) (9,10) T(15,17,23) 𝑑3 10

(1,5) G(22,2,64) (3,8) T(7,9,13) (5,15) G(44,7,26) (9,11) T(14,15,19) 𝑑4 17

(1,6) G(23,4,26) (3,9) T(10,12,15) (5,16) T(8,9,10) (9,12) G(32,4,48) 𝑑5 7

(1,7) T(10,12,15) (3,10) G(15,2,70) (6,7) T(11,13,16) (9,13) G(17,2,64) 𝑑6 22

(1,8) G(22,2,20) (3,11) T(8,11,12) (6,8) T(6,8,10) (9,14) T(8,10,15) 𝑑7 10

(1,9) T(25,32,35) (3,12) G(29,7,11) (6,9) G(25,4,38) (9,15) G(31,6,20) 𝑑8 18

(1,10) T(27,32,38) (3,13) G(19,2,38) (6,10) T(11,13,16) (9,16) T(18,23,27) 𝑑9 5

(1,11) G(21,2,73) (3,14) T(7,9,13) (6,11) T(22,26,30) (10,11) T(22,25,26) 𝑑10 6

(1,12) T(23,28,31) (3,15) G(24,5,64) (6,12) G(43,9,25) (10,12) G(44,7,92) 𝑑11 4

(1,13) T(25,30,32) (3,16) T(20,23,26) (6,13) T(31,35,37) (10,13) T(26,31,34) 𝑑12 8

(1,14) G(29,3,48) (4,5) T(17,21,23) (6,14) T(14,16,20) (10,14) T(5,7,10) 𝑑13 4

(1,15) T(29,31,35) (4,6) G(31,4,34) (6,15) T(6,8,14) (10,15) G(16,1,76) 𝑑14 11

(1,16) G(30,4,05) (4,7) G(25,6,00) (6,16) G(39,6,83) (10,16) G(37,9,25) 𝑑15 7

(2,3) G(12,1,98) (4,8) T(15,23,28) (7,8) T(7,10,15) (11,12) T(14,19,22) 𝑑1 24

(2,4) T(16,19,25) (4,9) T(6,8,11) (7,9) T(17,23,29) (11,13) T(8,10,12) 𝑑2 34

(2,5) T(8,12,17) (4,10) T(18,24,26) (7,10) G(20,2,70) (11,14) G(18,4,23) 𝑑3 22

(2,6) G(24,4,56) (4,11) T(8,12,14) (7,11) G(16,1,60) (11,15) G(34,5,78) 𝑑4 29

(2,7) T(10,12,16) (4,12) G(25,3,13) (7,12) G(31,5,89) (11,16) T(9,13,20) 𝑑5 15

(2,8) G(19,3,42) (4,13) T(7,9,10) (7,13) T(21,26,28) (12,13) T(14,16,35) 𝑑6 35

(2,9) G(21,2,10) (4,14) G(17,2,55) (7,14) T(14,17,24) (12,14) G(37,4,81) 𝑑7 23

(2,10) G(27,2,97) (4,15) G(37,7,77) (7,15) G(21,2,63) (12,15) T(45,51,68) 𝑑8 35

(2,11) T(6,7,9) (4,16) G(16,2,24) (7,16) T(20,28,32) (12,16) T(8,10,12) 𝑑9 15

(2,12) T(14,19,25) (5,6) G(36,6,12) (8,9) T(15,18,24) (13,14) G(24,4,44) 𝑑10 10

(2,13) G(16,3,92) (5,7) G(24,3,36) (8,10) T(9,10,14) (13,15) G(43,6,88) 𝑑11 13

(2,14) G(21,3,26) (5,8) T(27,30,36) (8,11) G(19,3,80) (13,16) T(5,6,8) 𝑑12 22

(2,15) T(28,33,37) (5,9) T(24,26,28) (8,12) G(37,9,25) (14,15) T(14,21,23) 𝑑13 13

(2,16) G(17,2,38) (5,10) G(37,5,18) (8,13) T(22,28,33) (14,16) G(30,6,75) 𝑑14 24

(3,4) G(15,1,95) (5,11) G(12,2,82) (8,14) T(7,9,12) (15,16) G(47,8,23) 𝑑15 18
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Appendix A. Fuzzy delivering costs and demands

Note that parameters 𝑏 and 𝜇 corresponds to the deterministic costs of the original instance.
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