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Bovine respiratory disease (BRD) is the most common infectious disease in dairy and
beef cattle. It is associated with significant morbidity and mortality and causes a huge
economic loss each year. In western Canada, a one-time injection of tulathromycin is
commonly used as a metaphylactic procedure to reduce BRD incidence and eliminate
potential BRD outbreak. With increased global concern on antimicrobial usage in dairy
and beef products and bacterial resistance to antimicrobials, it is important to develop
a novel strategy to eliminate the usage or decrease the dosage of antimicrobials. In this
study, we showed that gallic acid was active against both Mannheimia haemolytica
and Pasteurella multocida, two key BRD associated-pathogens, with the minimum
inhibitory concentration (MIC) measured at 250 and 500 µg/mL, respectively. Co-
administration of tulathromycin and gallic acid exhibited a strong additive or weak
synergistic effect toward both M. haemolytic and P. multocida. Tulathromycin, gallic acid
and their combination were also effective against the mixed culture of M. haemolytic and
P. multocida. Furthermore, we showed that pre-exposure to tulathromycin generated
bacterial resistance to the antimicrobial in M. haemolytica but not in P. multocida.
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INTRODUCTION

Bovine respiratory disease (BRD) is the most prevalent infectious disease in diary and beef cattle
(Griffin, 1997). BRD imposes deleterious effects on cattle health and performance, resulting in
substantial economic loss (Wittum et al., 1996; Smith, 1998; Larson, 2005; Rajala-Schultz et al.,
2009; Johnson and Pendell, 2017). For example, the annual loss caused by BRD is about $US
600–750 million to the North American beef industry. BRD is commonly regarded as a multi-
factorial disease, with bacterial infection, viral infection, and stress as the three major co-dependent
factors (Holman et al., 2017; Headley et al., 2018). The key pathogenic bacteria identified in Canada
are Mannheimia haemolytica, Pasteurella multocida and Haemophilus somni (Ellis, 2001; Apley,
2006). Vaccines have been developed against these three pathogens; however, the vaccination result
is not consistent (Larson and Step, 2012). In western Canada, new feedlot placements usually
get a metaphylactic injection of tulathromycin (Draxxin) to reduce the risk and severity of BRD
upon arrival (Lindsay, 2003; Checkley et al., 2010). Tulathromycin is a semi-synthetic triamilide
antimicrobial, which inhibits the synthesis of essential bacterial proteins (Schunicht et al., 2007).
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The practice of metaphylactic injection of antimicrobials may
lead to the development of antimicrobial resistance (AMR),
which, in turn, will reduce the efficacy of the antimicrobials
commonly employed to control infectious disease, such as
BRD, in cattle (Checkley et al., 2010). Here, it is important to
mention that subinhibitory concentrations of antimicrobials have
been suggested to be associated with generation of genotypic
and phenotypic variability and has been used for selection of
bacteria resistant to antimicrobials (Andersson and Hughes,
2014). Antimicrobials at subinhibitory concentrations have been
reported to function as signaling molecules causing alterations
in bacterial physiology e.g., alterations in breakpoint, virulence,
biofilm formation, gene transfer, etc (Bhattacharya et al., 2017).
Furthermore, with increased concern from the consumers about
antimicrobial usage in dairy and beef products, Health Canada
has decided to introduce a new regulation that a veterinary
prescription is required to purchase any livestock antimicrobial
from December (West-Central Forage Association, 2018). Thus,
there is an urgent need to identify alternatives of antimicrobials,
such as natural products, and develop novel and effective
treatment protocols with significantly reduced usage, and dosage
of antimicrobials in order to minimize the development of AMR.
For example, controlling pulmonary inflammation with a non-
steroidal anti-inflammatory drug (NSAID) is critical to avoid
irreversible lung damage in the cattle other than the antimicrobial
treatment of BRD (Lindsay, 2003).

Plants synthesize a diverse array of secondary metabolites
(phytochemicals), which are not only involved in self-defense but
also possess a wide range of health-promoting effects such as
antimicrobial activities. The use of antimicrobials in combination
with phytochemicals has been extensively studied (Monden et al.,
2002; Petersen et al., 2006; Černohorská and Votava, 2008). The
antimicrobial-phytochemical cocktail strategy has exhibited the
potential in eradicating complex pathogens (Neu, 1991; Batista
et al., 1994; Cowan, 1999; Lewis and Ausubel, 2006; Wise, 2006;
Amyes et al., 2007; Cai et al., 2007; Gould, 2008). Furthermore,
majority of phytochemicals are relatively safe for use as compared
to purely synthetic drugs due to their natural origins and can be
metabolized easily without leaving harmful residues in dairy and
beef products. Co-administration of phytochemicals has been
shown to enhance antimicrobial activities of antimicrobials and
delay the development of AMR. In this study, we evaluated
whether gallic acid, a phenolic acid identified in various plants
such as gallnuts, possesses antimicrobial activity, potentiates the
antimicrobial function of tulathromycin, and reduces or delays
AMR to tulathromycin against two key causing-pathogens of
BRD, M. haemolytica and P. multocida.

MATERIALS AND METHODS

Materials
Bacterial strains M. haemolytica ATCC 29702 and P. multocida
ATCC 43137, as well their culture medium (Brain-Heart
Infusion broth, BHIB), were purchased from Cedarlane Canada
(Burlington, ON, Canada). Gallic acid was purchased from
ThermoFisher Scientific (Ottawa, ON, Canada). Tulathromycin

A was purchased from Cayman Chemical Company (Ann Arbor,
MI, United States). All other chemicals used in this study
were purchased from Sigma-Aldrich Canada (Oakville, ON,
Canada).

Determination of Minimum Inhibitory
Concentration (MIC)
All experiments in this study were carried out in triplicate. The
MICs of tulathromycin and gallic acid against M. haemolytica
and P. multocida were determined using standard broth micro-
dilution assay as outlined by the Clinical & Laboratory Standards
Institute (CLSI). Both strains were sub-cultured in BHIB at
37◦C overnight and then OD565 of the bacterial suspensions
was adjusted to 0.5 McFarland turbidity with the culture media
(approximate cell density: 1.5 × 108 CFU/mL) using normal
saline as a control. For each bacterial strain, 100 µL BHIB
broth was added to each well of a 96-well plate with subsequent
addition of 5 µL/well of the adjusted bacterial suspension. Then,
the bacterial samples were treated with either tulathromycin
with concentration ranging from 0.04 to 5 µg/mL or gallic acid
with concentration ranging from 3.9 to 500 µg/mL. Untreated
bacterial samples were used as a negative control. The culture
plate was incubated at 37◦C for 18–24 h before OD655 was
taken for each well using a Bio-Rad iMark Microplate Reader
(Bio-Rad Laboratories, Inc., Mississauga, ON, Canada). The
readings were also double-checked using a Sensititre Vizion
Digital MIC Viewing System (ThermoFisher Scientific, Ottawa,
ON, Canada).

Antimicrobial Effect of the Combination
of Tulathromycin and Gallic Acid
For each bacterial strain, the antimicrobial activity of the
combination of tulathromycin and gallic acid was measured
a protocol modified from the one described above. Briefly,
the bacterial sample preparation in the 96-well plate was the
same. Then, tulathromycin and gallic acid were added to the
bacterial sample following a checkerboard serial dilution design.
The tulathromycin concentration was 0.08 and 0.16 µg/mL,
respectively; and the gallic acid concentration was from
3.91 to 250 µg/mL. The fractional inhibitory concentration
(FIC) index of the combination of tulathromycin and gallic
acid was calculated according to the equation 1. In this
equation, FICA and FICB are the FIC indices of compounds
A and B in the combination, A and B are the MICs
of compounds A and B in combination, and MICA and
MICB are the individual MICs of compounds A and B,
respectively. The FIC index determined by checkerboard
method is interpreted as following: FIC ≤ 0.5 – synergy;
0.5 < FIC ≤ 4.0 – additivity; and FIC > 4.0 – antagonism.

FIC index = FICA+FICB = A/MICA+B/MICB (1)

Evaluation of Bacterial Resistance
Generated From Pre-exposure
In order to evaluate whether bacterial resistance can be
generated from pre-exposure to tulathromycin, M. haemolytica,
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and P. multocida were cultured in BHIB in the presence of
tulathromycin at a dose of 1/2MIC (i.e., 0.16 µg/mL) until
OD565 reached 1 OD unit of turbidity. Then, the bacterial cells
were given a stress relaxation by culturing in BHIB without
tulathromycin until OD565 reached 1 OD unit of turbidity. The
bacterial cells were collected and designated as the 1st generation
of pre-exposed cells (1G). The 1G bacterial cells were subjected
to the same type of treatment to generate the 2nd generation
of pre-exposed cells (2G); and subsequently the 2G bacterial
cells were subjected to the same protocol to generate the 3rd
generation of pre-exposed cells (3G). In total, we generated three
generations (1G, 2G, and 3G) of M. haemolytica and P. multocida
cells pre-exposed to tulathromycin. The MICs of tulathromycin
and gallic acid against the 1G, 2G, and 3G M. haemolytica and

P. multocida cells were also measured using the protocol describe
above.

Determination of MIC Against Mixed
Culture of M. haemolytica and
P. multocida
The MICs of tulathromycin and gallic acid against the mixed
culture of M. haemolytica and P. multocida were determined
using the same protocol described above except that both strains
were mixed cultured in BHIB at 37◦C overnight and OD565
of the mixed cultured bacterial suspension was adjusted to 0.5
McFarland turbidity with the culture media. The antimicrobial
effect of the combination of tulathromycin and gallic acid against

FIGURE 1 | Determination of the MICs of tulathromycin against M. haemolytica (A) and P. multocida (B) and the MICs of gallic acid against M. haemolytica (C) and
P. multocida (D). The concentration of tulathromycin was ranging from 0.04 to 5 µg/mL and the concentration of gallic acid was ranging from 3.9 to 500 µg/mL.
Bacterial cell culture medium, Brain-Heart Infusion broth (BHIB), was used as a negative control. One way ANOVA t-test was used for statistical significance.
∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001 are shown. Correlation coefficient (r) was calculated using Pearson’s correlation method.
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the mixed culture of M. haemolytica and P. multocida was also
measured using the checkerboard serial dilution method. The
tulathromycin concentration was 0.16, 0.31, and 0.62 µg/mL,
respectively; and the gallic acid concentration was from 3.91 to
500 µg/mL.

Statistical Analysis
All the experiments were performed in triplicate. Data of
experimental results was recorded as mean± standard deviation.
One way ANOVA t-test was used for statistical significance and
a P-value < 0.05 (denoted as ∗) was regarded as significant.
Correlation coefficient (r) value calculated by using Pearson’s

Correlation method. Statistical analyses were performed using
Graph Pad Prism 5.0 statistical software.

RESULTS

MICs of Tulathromycin and Gallic Acid
The MIC of tulathromycin was determined to be 0.31 µg/mL
against both M. haemolytica and P. multocida (Figures 1A,B).
The MIC of gallic acid was determined to be 250 µg/mL against
M. haemolytica (Figure 1C) and 500 µg/mL against P. multocida
(Figure 1D).

FIGURE 2 | Antimicrobial activity of the combination of tulathromycin and gallic acid against M. haemolytica (A) and P. multocida (B). The concentration of
tulathromycin was 0.08 and 0.16 µg/mL, respectively, and the concentration of gallic acid was from 3.91 to 250 µg/mL. Bacterial cell culture medium, BHIB, was
used as a negative control. One way ANOVA t-test was used for statistical significance. ∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001 are shown.
Correlation coefficient (r) was calculated using Pearson’s correlation method.
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FIGURE 3 | Determination of the MICs of tulathromycin against the 1G, 2G and 3G cells of M. haemolytica (A) and the 1G, 2G, and 3G cells of P. multocida (B),
which had been pre-exposed to tulathromycin at 1/2MIC concentration for one, two and three times, respectively. The concentration of tulathromycin was ranging
from 0.04 to 5 µg/mL. One way ANOVA t-test was used for statistical significance. ∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001 are shown.
Correlation coefficient (r) was calculated using Pearson’s correlation method.

Strong Additive or Weak Synergistic
Effect Between Tulathromycin and Gallic
Acid
The checkerboard broth micro-dilution assay was carried
out to investigate whether co-administration of tulathromycin

and gallic acid could exhibit synergistic/additive effect. The
antimicrobial activity against M. haemolytica and P. multocida
was evaluated for tulathromycin at two sub-MIC doses (0.16 and
0.08 µg/mL), gallic acid at seven sub-MIC doses (250, 125, 62.5,
31.25, 15.6, 7.8, and 3.9 µg/mL), and their combination. For
M. haemolytica, tulathromycin gave a 37% inhibition of growth
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at concentration of 0.16 µg/mL and gallic acid showed an 8%
inhibition of growth at concentration of 3.91 g/mL (Figure 2A).
However, co-administration of 0.16 µg/mL tulathromycin and
3.91 µg/mL gallic acid dramatically increased the inhibition of
growth to 81% (Figure 2A). The FIC index of the combination
of tulathromycin and gallic acid was 0.5, implicating a strong
additive or weak synergistic effect between tulathromycin and
gallic acid agsint M. haemolytica. For P. multocida, tulathromycin
exhibited a 77% inhibition of growth at concentration of
0.16 µg/mL and gallic acid gave a 5% inhibition of growth at
concentration of 3.91 µg/mL (Figure 2B). Co-administration of
0.16 µg/mL tulathromycin and 3.91 µg/mL gallic acid enhanced
the inhibition of growth to 91% (Figure 2B). The FIC index of
the combination of tulathromycin and gallic acid was calculated
to be 0.5, implicating that there is also a strong additive or
weak synergistic effect between tulathromycin and gallic acid
agsint P. multocida. The mixed culture of M. haemolytica and
P. multocida, tulathromycin gave a 70.6% inhibition of growth
at concentration of 0.16 µg/mL (Figure 5A). However, gallic
acid showed 38.5% inhibition of growth at a concentration of
31.25 µg/mL (Figure 5B). Co-administration of 0.16 µg/mL
tulathromycin and 31.25 µg/mL gallic acid reasonably increased
the inhibition of growth to 74.2% (Figure 5C). The FIC index

of the combination of tulathromycin and gallic acid was 0.56
suggesting a strong additive or weak synergistic effect between
tulathromycin and gallic acid against the mixed culture of
M. haemolytica and P. multocida. Other combinations showed
indifferent effect.

Bacterial Resistance Generated From
Pre-exposure
In this study, we generated three generations (1G, 2G, and
3G) of M. haemolytica and P. multocida samples that had
been exposed to either tulathromycin or gallic acid for one,
two and three times, respectively. As shown in Figure 3,
the MIC of tulathromycin was measured to be 0.31 µg/mL
for 1G, 0.62 µg/mL for 2G, and 1.25 µg/mL for 3G,
respectively, for M. haemolytica and 0.31 g/mL for all three
generations of pre-exposed P. multocida. This implicated that
pre-exposure to tulathromycin at 1/2MIC (0.16 µg/mL) induced
bacterial resistance in M. haemolytica but not in P. multocida.
Furthermore, the bacterial resistance was positively correlated
with the pre-exposure times of tulathromycin for M. haemolytica.
For gallic acid, the MIC was measured to be 250 µg/mL
for all three generations of pre-exposed M. haemolytica and

FIGURE 4 | Determination of the MICs of gallic acid against the 1G, 2G, and 3G cell of M. haemolytica (A) and the 1G, 2G and 3G cells of P. multocida (B), which
had been pre-exposed to tulathromycin at 1/2MIC concentration for one, two, and three times, respectively. The concentration of gallic acid was ranging from 3.9 to
500 µg/mL. One way ANOVA t-test was used for statistical significance. ∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001 are shown. Correlation
coefficient (r) was calculated using Pearson’s correlation method.
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FIGURE 5 | Antimicrobial activity of tylathromycin [(A) concentration: 0.04 – 0.31 µg/mL], gallic acid [(B) concentration: 3.91 – 500 µg/mL] and combination of
tulathromycin and gallic acid [(C) concentration: tulathromycin 0.16, 0.31, and 0.62 µg/mL and gallic acid 3.91 – 500 µg/mL] against the mixed culture of
M. haemolytica and P. multocida. One way ANOVA t-test was used for statistical significance. ∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001 are
shown. Correlation coefficient (r) was calculated using Pearson’s correlation method.

250 µg/mL for 1G, 250 µg/mL for 2G, and 500 µg/mL
for 3G, respectively, for P. multocida (Figure 4). Therefore,
pre-exposure to tulathromycin did not alter the sensitivity
of M. haemolytica but sensitized P. multocida toward gallic
acid. Further studies are warranted to confirm whether this
sensitization toward gallic acid is true and how it has happened
in P. multocida.

Absorbance data is available upon request.

DISCUSSION

Bovine respiratory disease (BRD), which is associated with
morbidity and mortality, is the most common infectious disease
in cattle and a significant threat to dairy and beef industry. Mass
antimicrobial treatment upon animal arrival is widely used to
reduce incidence of BRD and eliminate/minimize a potential
outbreak (Taylor et al., 2010). However, the increased global
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concern on antimicrobial abuse in the dairy and beef industry
has led many countries to ban or limit antimicrobials as growth
promoters (McVey, 2009; Urban-Chmiel and Grooms, 2012;
Johnston et al., 2017). In western Canada, tulathromycin is
normally used as the metaphylactic agent to reduce the risk and
severity of BRD. Resistance to tulathromycin, conferred by rRNA
mutations, has been found in field isolates of M. haemolytica and
P. multocida (Wadood et al., 2017; Uddin et al., 2018). Therefore,
it is important to develop a novel strategy to decrease the dosage
of tulathromycin, which, in turn, would reduce or eliminate the
generation of resistance by the bacterial pathogens. One effective
way to reduce antimicrobial dosage and delay AMR is to use a
cocktail of two antimicrobials or a cocktail of an antimicrobial
and a phytochemical.

Phytochemicals, which are antimetabolites produced in plants,
have provided a valuable resource for relatively cheap and safe
antimicrobial agents. The toxicity of phytochemicals is normally
low and very few adverse effects have been reported (Nascimento
et al., 2000). It has been shown that gallic acid, a phenolic acid,
not only possesses antimicrobial activity against various bacteria
such as Pseudomonas strains but also potentiates the efficacy
of antimicrobials (Al-Abd et al., 2015; Fu et al., 2016; Samad
et al., 2016). Previous studies have also demonstrated that gallic
acid inhibited efflux pumps, which are a major mechanism in
generating AMR, in Staphylococcus aureus resistant strains and
multidrug resistant Escherichia coli strains (Simoes et al., 2009;
Abreu et al., 2012). In addition, epigallocatechin gallate, which
is an ester of epigallocatechin and gallic acid, has been shown to
exhibit antifolate activity against Stenotrophomonas maltophilia
(Navarro-Martínez et al., 2005). Therefore, the strong additive
or weak synergistic effect between tulathromycin and gallic acid
against M. haemolytica and P. multocida is likely through the
inhibitory effect of gallic acid on efflux pumps and antifolate
activity. Further studies are warranted to confirm whether gallic
acid can indeed inhibit efflux pumps and folate synthesis in
M. haemolytica and P. multocida. It is also noteworthy that gallic
acid is an arginase inhibitor and arginase has been shown to
be regulated in allergic lung disease (Pudlo et al., 2017). Since
controlling pulmonary inflammation with an NSAID is critical
to avoid irreversible lung damage in the cattle infected with
BRD (Pal et al., 2010), the anti-inflammatory activity of gallic
acid via inhibiting arginase would provide an extra benefit in
treating BRD.

Because BRD is a multi-factorial syndrome and more than
one bacteria may be involved in the disease simultaneously,

we decided to evaluate whether tulathromycin, gallic acid,
and/or their combination were effective against the mixed
culture of M. haemolytica and P. multocida. The MIC of
tulathromycin was found to be 0.31 µg/mL against the mixed
culture (Figure 5A), which is the same as that against each
individual bacterium. The MIC of gallic acid was found to be
500 µg/mL against the mixed culture (Figure 5B), which is the
same as that against P. multocida but higher than that against
M. haemolytica. Co-administration of 0.16 µg/mL tulathromycin
and 500 µg/mL gallic acid produced the maximum inhibition
of the mixed culture (Figure 5C). Therefore, we concluded that
tulathromycin, gallic acid and their combination are also effective
against the mixed culture of M. haemolytica and P. multocida.
Further validation of the current data with clinical isolates of
M. haemolytica and P. multocida and investigation with an
in vivo animal model may help in determining whether the
co-administration approach with gallic acid is indeed clinically
practical in reducing dosage of tulathromycin and delay/prevent
the emergence of AMR in feedlots.

CONCLUSION

Bovine respiratory disease (BRD) is the most common infectious
disease in dairy and beef cattle. In this study, we showed
that both tulathromycin and gallic acid were effective against
M. haemolytica, P. multocida, and their mixed culture. A strong
additive or weak synergistic effect was observed between
tulathromycin and gallic acid against both bacteria. In addition,
pre-exposure to tulathromycin generated bacterial resistance to
the antimicrobial in M. haemolytica but not in P. multocida.
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