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Purpose: To train and test a machine learning model to automatically measure mid-thigh

muscle cross-sectional area (CSA) to provide rapid estimation of appendicular lean mass

(ALM) and predict knee extensor torque of obese adults.

Methods: Obese adults [body mass index (BMI) = 30–40 kg/m2, age = 30–50

years] were enrolled for this study. Participants received full-body dual-energy X-ray

absorptiometry (DXA), mid-thigh MRI, and completed knee extensor and flexor torque

assessments via isokinetic dynamometer. Manual segmentation of mid-thigh CSA was

completed for all MRI scans. A convolutional neural network (CNN) was created based

on the manual segmentation to develop automated quantification of mid-thigh CSA.

Relationships were established between the automated CNN values to the manual CSA

segmentation, ALM via DXA, knee extensor, and flexor torque.

Results: A total of 47 obese patients were enrolled in this study. Agreement between

the CNN-automated measures and manual segmentation of mid-thigh CSA was high

(>0.90). Automated measures of mid-thigh CSA were strongly related to the leg lean

mass (r = 0.86, p < 0.001) and ALM (r = 0.87, p < 0.001). Additionally, mid-thigh CSA

was strongly related to knee extensor strength (r = 0.76, p < 0.001) and moderately

related to knee flexor strength (r = 0.48, p = 0.002).

Conclusion: CNN-measured mid-thigh CSA was accurate compared to the manual

segmented values from the mid-thigh. These values were strongly predictive of clinical

measures of ALM and knee extensor torque. Mid-thigh MRI may be utilized to accurately

estimate clinical measures of lean mass and function in obese adults.
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INTRODUCTION

Nearly half of Americans suffer from obesity, a condition tied to
comorbidities that can lead to preventable, premature death (1,
2). Excessive adipose tissue can decrease insulin sensitivity with
intramuscular adipose tissue (IMAT) demonstrating negative
relationships with glucose infusion rates (3). Skeletal muscle,
being the primary regulator of insulin, decreases in mass and
strength within individuals with high measures of A1C, or
glycated hemoglobin (4). It has been shown that obesity, or the
presence of excess adipose tissue, can act as a synergist with
muscular atrophy, leading to poor health-related outcomes (5, 6).
As such, accessible measures to monitor muscle health should be
sought for obese individuals.

Obesity is diagnosed using an individual’s body mass
index (BMI), which is a metric that fails to account for
high-muscle composition vs. high-fat composition. A more
informative anthropometric measure is lean body mass (LBM) or
appendicular lean mass (ALM), which characterizes the amount
of fat-free tissue using dual-energy X-ray absorptiometry (DXA)
imaging. Measures of LBM can be utilized as a predictor of
chemotherapy toxicity among patients with colon cancer (7),
mortality indicator among patients with hemodialysis (8), and
identifier of obese individuals at risk for cardiovascular disease
(9). The vast number of patient populations who benefit from
the objective quantification of LBM stresses the importance of
clinical access to this measure.

The growth of medical imaging has presented with
overutilization of the prescription and referral of imaging,
resulting in higher medical costs for patients, additional
exposure to radiation, and longer time to obtain clinical
outcomes of interest (10, 11). Proposed methods to reduce
this are to utilize prior imaging that patients may have already
received (10). It is common for patients to have existing imaging
for diagnostic or screening purposes within clinical care. For
example, patients often haveMRI performed for cancer screening
or orthopedic procedures of the lower extremities and low back
(12). With existing imaging available, it provides the opportunity
to obtain measures of tissue quality without supplementary
referrals for DXA imaging, which induces additional exposure
to radiation. Not only is MRI reliable and does not use ionizing
radiation, but it may also provide accurate estimates of LBM and
muscle cross-sectional area (CSA) and volume in comparison to
measures obtained through DXA imaging (13, 14).

However, the manual measurement of MRI scans can be

subjective and time-consuming, limiting the clinical applicability
to quantify muscle CSA in order to estimate ALM. The ability

to automate procedures to estimate ALM from existing medical

imaging would provide a convenient option for clinicians
to provide data-driven individualized care. Additionally,
assessing the predictive ability of CSA to muscle strength may
provide functional insights from existing imaging. Recently,
convolutional neural networks (CNNs) have been reported
as a viable machine learning-based approach to rapidly and
accurately measure MRI of skeletal muscle (15). An available
CNN to provide swift quantification of CSA to predict ALM
and knee extensor toque, a proxy measure of functional status,

of obese individuals would facilitate the desired data-driven
individualized care of this patient population. Therefore, the
purpose of the proposed research is to train and test a machine
learning model to automatically measure mid-thigh muscle
CSA to both provide rapid estimation of ALM and predict knee
extensor torque of obese adults.

METHODS

This was a retrospective cohort study in obese adults. All data
were collected in a controlled laboratory setting and clinical
imaging unit. The dependent variables for the study were
manually measured mid-thigh CSA via MRI, ALM assessed
via DXA imaging, and peak knee extensor and flexor torque.
Independent variables were CNN values of CSA. This study was
approved by the university’s institutional review board. Study
abbreviations can be found in Table 1.

Participants
All participants were recruited from a university hospital setting
and the surrounding community. Participants were included if
they met the following criteria from a larger parent study: BMI
= 30–40 kg/m2, age = 30–50 years, planned physical activity
<2 h/week, fasting triglyceride <400 ml/dl, and FSH < 20 IU/L.
Participants were excluded if they changed oral contraceptive use
during the study, were taking medications that affect glucose and
lipid metabolism, had a history of thyroid disease, were pregnant,
or were actively smoking.

Knee Extensor Torque
Isokinetic, concentric knee extension and flexion were measured
using an isokinetic dynamometer (Cybex NORM; Computer
Sports Medicine Inc, Stoughton, MA, USA) at a speed of
60◦/s from 110◦ of knee flexion to 0◦ (terminal extension).
The participants completed practice trials for practice and
familiarization. The participants provided maximal effort
through their full range of motion for four repetitions. Measures
of peak torque for the knee extension were exported from the
multimode dynamometer for the right limb to demonstrate the
maximum voluntary strength capacity of the knee extensors
and flexors.

Dual-Energy X-Ray Absorptiometry
Estimates of ALM were obtained via the whole-body DXA
imaging (GE Medical Systems Ultrasound & Primary Care
Diagnostics, LLC, Madison, WI, USA). A single trained DXA
technician administered all DXA examinations. All data were
obtained via GE Encore v15 SP2 software package. The body
composition data collected during the DXA examinations
included estimates of absolute and percentage of right leg fat mass
(%), right leg leanmass (%), ALM (kg/m2), and total body fat (%).
The ALM values were calculated as the sum of LBM in the arms
and legs and scaled to height.

Magnetic Resonance Imaging
All participants received right thigh muscle MRI scans at both
study visits using a 3.0-T scanner with body coil (Siemens Syngo,
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TABLE 1 | Abbreviations and variable descriptions from study imaging methods.

Measure Abbreviation Description

Magnetic resonance imaging (MRI)

Cross-Sectional Area CSA 2-Dimensional area measure of mid-thigh tissue excluding sub-cutaneous fat and the femur

Manual CSA_Manual Cross-sectional area measured by human tracing of mid-thigh tissue

Convolutional neural networks CSA_CNN Cross-sectional area measured by machine learning methods

Intramuscular adipose tissue IMAT_CNN Intramuscular adipose tissue measured by machine learning methods

Lean muscle LM_CNN Lean muscle measured by machine learning methods

Dual energy X-ray absorptiometry (DXA)

Appendicular lean mass ALM Sum of lean body mass in the arms and legs and scaled to height

Lean body mass LBM Lean mass present within the entire body

Right leg fat mass Right_Leg_FM Fat mass present in the right leg

Right leg lean mass Right_Leg_LM Lean mass present in the right leg

Total body fat (%) - Fat mass present within the entire body expressed as a percentage of total body mass

Munich, Germany). The protocol details were: axial 2D gradient
recalled, slice thickness= 5mm, spacing between slices= 10mm,
field of view (FOV)= 192× 126mm, echo time (TE)= 1.15ms,
repetition time (TR) = 352ms, flip angle = 9◦, 24 slices, and
bandwidth= 930 Hz/pixel.

Two individuals (rater 1: S.B. and rater 2: A.S.) manually
selected three axial slices of the proximal thigh by identifying
the MR slice just distal to the gluteus maximus tendon insertion
for the right limb, using 3D Slicer (Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA). The thigh
musculature of the selected slices was then manually segmented,
excluding subcutaneous adipose tissue and the femur.

Convolutional Neural Network
A 2D U-Net CNN was created based on the manual
segmentation, implemented with Python (Version 3.8, Python
Software Foundation, Beaverton, OR, USA) on a computer
running Ubuntu (Version16.04) and loaded with Keras (Version
2.3.1) deep learning library, with CUDA 9.1 for GPU acceleration
(16). All images were zeropadded to 192 by 192 pixels to fit
the input size of UNet model. The data were randomly split
with 70% of the data for training, 10% for validation, and 20%
for testing. Data partitions were disjoint at patient level (same
patient data only exist in one of the training, validation, or
testing datasets). Real-time data augmentation was performed
by applying the following random image transformations: image
rotation (−10◦ to 10◦), image translation (19 pixels each
direction), and image zooming (0–20%) for each epoch. Training
was performed with 100 epochs, with a learning rate of 0.001.
Binary cross-entropy was selected for the loss function (17).
Measures of CSA (CSA_CNN), mid-thigh intramuscular adipose
tissue (IMAT_CNN), and mid-thigh lean muscle (LM_CNN)
were calculated [(IMAT_CNN)+ (LM_CNN)= (CSA_CNN)].

Statistical Analysis
The assumption of normality was assessed with the Shapiro–Wilk
test. Levene’s test was used to assess homogeneity of the data.

Sørensen–Dice (DICE) coefficients and intersection over
union (Jaccard indices, IOU) were calculated to test for

TABLE 2 | Patient demographics.

Mean ± SD

Total patients, n 47

Sex (M:F) 28:19

Age (years) 39.2 ± 5.4

Height (m) 1.71 ± 0.09

Mass (kg) 104.3 ± 15.0

BMI (kg/m2) 35.5 ± 4.3

agreements between the CSA_CNN, CSA_Manual: rater 1,
and CSA_Manual: rater 2. DICE and IOU coefficients are two
commonly reported ways to assess performance of a CNN
model (18). Pearson’s r correlations were performed to assess
the relationship between the CNN_CSA to Right_Leg_FM,
Right_Leg_LM, total body fat, and ALM. Linear regression
analysis was performed with ALM as the dependent
variable, CNN_CSA as the independent variable, and age as
a covariate.

Pearson’s r correlations were performed to assess the
relationship between knee extensor and flexor peak torque (Nm)
and the CNN_CSA. Linear regression analysis was performed
with knee extensor peak torque as the dependent variable,
CNN_CSA as the independent variable, and age as a covariate.
To explore the influence of patient sex, the study cohort was
stratified and separate regressions were performed for men and
women. An a priori alpha was set ≤0.05 for all analyses. All
statistical analyses were conducted through SPSS (Version 26;
IBM Inc., Chicago, IL).

RESULTS

A total 47 participants were enrolled and included for analyses.
Patient demographics can be found in Table 2.

Agreement between the CSA_CNN, CSA_Manual: rater 1,
and CSA_Manual: rater 2 were all high (DICE and IOU values
all >0.90, Table 3). Pearson’s r correlations between CNN_CSA
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TABLE 3 | Agreement statistics for mid-thigh cross-sectional segmentation.

DICE IOU

CSA_CNN vs.

CSA_Manual: Rater 1

0.9649 ± 0.0135

(95%CI: 0.9362, 0.9796)

0.9324 ± 0.0249

(95%CI: 0.8801, 0.9601)

CSA_CNN vs.

CSA_Manual: Rater 2

0.9558 ± 0.0242

(95%CI: 0.8930, 0.9718)

0.9163 ± 0.0403

(95%CI: 0.8067, 0.9452)

CSA_Manual: Rater 1 vs.

CSA_Manual: Rater 2

0.9553 ± 0.0202

(95%CI: 0.9341, 0.9706)

0.9151 ± 0.0327

(95%CI: 0.8764, 0.9428)

DICE, Sørensen–Dice agreement coefficients; IOU, Intersection-Over-Unions.

TABLE 4 | Relationships between CNN model estimates and DXA-quantified

measures of body composition.

Right_Leg_FM Right_Leg_LM Total Body Fat ALM (kg/m2)

CSA_CNN r −0.11 0.86 –0.67 0.87

p 0.49 <0.001 <0.001 <0.001

IMAT_CNN r 0.32 −0.24 0.57 –0.300

p 0.04 0.11 <0.001 0.04

LM_CNN r −0.14 0.86 –0.71 0.87

p 0.38 <0.001 0.04 <0.001

R, right; LBM, lean body mass; CNN, convolutional neural network; CSA, cross-sectional

area; IMAT, intramuscular adipose tissue. Significant values bolded (p < 0.05).

TABLE 5 | Relationships between CNN model estimates and knee extensor and

flexor torque.

Raw (Nm) Normalized (Nm/kg)

Knee extensor Knee flexor Knee extensor Knee flexor

torque torque torque torque

CSA_CNN r 0.76 0.48 0.60 0.30

p <0.001 0.01 <0.001 0.07

IMAT_CNN r –0.41 −0.162 –0.49 −0.15

p 0.01 0.33 0.01 0.36

LM_CNN r 0.77 0.48 0.63 0.31

p <0.001 0.01 <0.001 0.06

LBM, lean body mass; CNN, convolutional neural network; CSA, cross-sectional area;

IMAT, intramuscular adipose tissue. Significant values bolded (p < 0.05).

and DXA measures of body composition can be found in
Table 4. Controlling for age, the CNN_CSA was able to predict
73% of the variance of ALM (r2 = 0.731, p < 0.001). For
every 1 cm2 increase in mid-thigh CSA, ALM increased by 2%
(B= 0.02, p < 0.001).

Pearson’s r correlations between CNN_CSA and knee
extensor torque can be found in Table 5. Controlling for age,
the CNN_CSA was able to predict 76% of the variance of
knee extensor torque (r2 = 0.764, p < 0.001). Once stratified,
this did not differ between men (r2 = 0.79, p < 0.001) and
women (r2 = 0.72, p < 0.001). For every 1 cm2 increase in
mid-thigh CSA, knee extensor peak torque increased by 4.3%
(B= 0.043, p < 0.001).

DISCUSSION

Individualized healthcare and treatment prescriptions are
largely dependent on the access and availability to objective
measurements of health. The current study was performed
to develop methodology to accurately quantify LBM from
existing MRI data and use this information to predict
knee extensor torque. LBM estimated through our CNN
model was highly accurate compared to both manual
segmentation of thigh musculature, DXA measures of
LBM, and DXA-measured thigh lean mass. Additionally,
the CNN-quantified LBM was strongly related to knee
extensor torque, a proxy measure for physical function.
These results demonstrate the clinical utility of utilizing existing
medical images to obtain objective measures to inform clinical
decision-making.

Strong agreement was found between manually segmented
measures and CNN results of mid-thigh CSA. Prior literature
has shown MRI to accurately estimate LBM (14). However,
methods to extract muscular CSA to estimate LBM are both
time-consuming and may lack reliability between clinicians.
Though homogeneity is still needed within deep learning
methods (19), advances in deep learning from healthcare
data present opportunity to improve the quantification of
imaging outcomes. The U-net CNN model used in this
study is one of the most common architectures used for
segmentation tasks and has been employed in several other
areas of musculoskeletal research, including the shoulder,
lumbar spine, knee, and pelvis (20–23). The application of
CNNs to image segmentation tasks has been a major step
forward in the musculoskeletal image analysis, allowing for
the automatic extraction of multiple quantitative measures
of the musculoskeletal system (24, 25). The translation of
these methods to the clinic has not yet been realized; several
barriers to their clinical implementation remain to be overcome.
Most research studies have trained and tested the models on
datasets from a single site with identical imaging parameters
in a homogenous participant sample. More diverse datasets
are needed for both training and testing to develop analysis
pipelines that generalize across patients (i.e., age, sex, and body
habitus), conditions, and images (i.e., resolution, orientation,
and contrast). Next, normative databases will also need to
be established to interpret the clinical importance of these
measures and provide clinicians with clinical cut-offs to guide
musculoskeletal care. Finally, regulatory agencies will likely need
to approve safety and effectiveness of these pipelines prior to their
clinical implementation.

Additionally, CNN measures of LBM were found to

strongly relate to DXA measures of total body fat percentage,
lower limb lean mass, and ALM (Table 4). Stronger CNN

relationships were present with measures of lean mass
derived from DXA imaging (Right_Leg_LM and ALM,

Table 4). This data may suggest more accurate estimation

of lean muscle tissue compared to fat mass with machine
learning methods. Prior literature (13, 14) has discovered
more accurate estimates of LM and IMAT from MRI, with
DXA imaging underestimating abdominal fat mass and

Frontiers in Rehabilitation Sciences | www.frontiersin.org 4 March 2022 | Volume 3 | Article 808538

https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/rehabilitation-sciences#articles


Bodkin et al. Mid-Thigh Imaging to Predict LBM

overestimating extremity muscle mass, with this bias increasing
in patients with a greater BMI (26). Underestimation of
fat mass from DXA imaging may contribute to the weak
relationship (r = 0.34, p = 0.04) observed in the current
study. However, both total body fat and LBM are associated
with an increased risk of mortality (27). The ability to predict
these measures from the existing mid-thigh medical images
may advance quantification practices to reduce the need for
further imaging referrals. These measures may additionally be
utilized to provide useful health risk information to manage
patient care.

Increase in adiposity has been shown to be harmful for
muscular function in addition to a greater risk of muscle
degeneration throughout aging. The current study found
CNN measures of LBM were highly predictive of knee
extensor torque. Quadriceps strength has been shown to be
greater in obese and morbidly obese individuals compared
to lean individuals (28). However, when quadriceps strength
is normalized by body mass, we see this comparison inverse
(29). Measures of BMI, VO2 Max, and knee extensor torque
explain 73% of the variance in the 6-min walk test within
obese individuals, demonstrating the functional importance
of this measure (28). Furthermore, obese individuals are at
a greater risk for osteoarthritis and age-related declines in
muscle function (i.e., sarcopenic obesity) (30, 31). The knee
extensor torque has been found to independently increase
the risk of lower extremity limitation (difficulty walking)
and activities of daily living in women with osteoarthritis
(32). Additionally, quadriceps strength is the best measure
of age-related muscle decline and is associated with physical
disability in activities of daily living (33). With the projected
rise of both the obese and aging populations (34, 35), the
accessibility to informative measures is vital to improve health-
related outcomes.

LIMITATIONS

Estimated values of CSA and LBM were from CNN models
utilizing mid-thigh MRI of 47 obese participants. The MRI
dataset was from the same scanner using the same imaging
parameters; therefore, the CNN performance may not generalize
to other datasets with varying imaging parameters and non-
obese participants. Second, we used CSA at the mid-thigh to
measure muscle size with MRI. While CSA was associated with
the DXA body composition measures (total body fat percentage,
lower limb lean mass, and ALM) and knee extension and
flexor strength, CSA provides only an estimate of muscle size,
and muscle volume measures may provide a more accurate
representation of the muscle. Additionally, the flexor, extensor,
and adductor compartments were segmented together and
included in the CSA measure. Segmentation of the flexor,
extensor, and adductor muscle groups separately could provide
a more granular assessment of muscle size and composition
and a stronger association with knee flexor and extension
torques and is an area for future research. However, the

primary goal of this project was to develop methodology
access LBM measures from clinical MRI of the thigh. Knee
extension and flexor strength were the only measures of
functional function in the current study. Though related to
outcomes of walking speed in obese patients (28), future studies
should investigate more robust measures of physical function.
In utilizing existing patient imaging, it is important for the
clinician to consider the time since that image was taken, as
the patient’s health history or composition may have changed.
Prior to clinical implementation of other populations, the current
study’s methodology should be assessed on a larger sample with
varying imaging parameters, age, and body habitus to determine
generalizability of the CNN model to the diversity seen in the
clinical population.

CONCLUSION

The CNN-measured CSA values were accurate compared to
the manual segmented values from the mid-thigh. These values
were strongly predictive of clinical measures of LBM, total body
adiposity, and knee extensor torque. The mid-thigh imaging can
be utilized to accurately estimate clinical measures of ALM and
knee extensor torque in obese adults.
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