
ORIGINAL RESEARCH
Circulating miR-30b-5p levels in plasma as a novel potential biomarker for
early detection of breast cancer
A. Adam-Artigues1, I. Garrido-Cano1, S. Simón1,2, B. Ortega1,2, S. Moragón1,2, A. Lameirinhas1, V. Constâncio3, S. Salta3,
O. Burgués1,2,4, B. Bermejo1,2,4, R. Henrique3,5,6, A. Lluch2,4,7, C. Jerónimo3,5,6, P. Eroles1,4,8* & J. M. Cejalvo1,2,4*
1Biomedical Research Institute INCLIVA, Valencia, Spain; 2Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; 3Cancer Biology and
Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; 4Centro de Investigación Biomédica en Red de Cáncer
(CIBERONC), Madrid, Spain; 5Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; 6Department of Pathology and Molecular Immunology,
Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal; 7Department of Medicine, Universitat de València, Valencia, Spain;
8Department of Physiology, Universitat de València, València, Spain
*Corresp
Avda. Men
E-mail: j
*P. Erol

Pelayo 4, 4
E-mail: p

2059-70
European S
CC BY-NC-

Volume 6
Available online XXX
Background: Recently, microRNAs have been demonstrated to be potential non-invasive biomarkers for diagnosis,
prognosis assessment or prediction of response to treatment in cancer. In this study, we evaluate the potential of
miR-30b-5p as a biomarker for early diagnosis of breast cancer (BC) in tissue and plasma.
Methods: Expression of miR-30b-5p was determined in a series of 112 BC and 40 normal breast tissues. Circulating miR-
30b-5p levels in plasma samples were determined in a discovery cohort of 38 BC patients and 40 healthy donors and in
a validation cohort of 83 BC patients and 83 healthy volunteers. miR-30b-5p expression was measured by quantitative
real-time PCR and receiver operating characteristics curve analysis was carried out.
Results: The miR-30b-5p expression was significantly lower in BC tissue than in healthy breast samples. In contrast,
circulating miR-30b-5p levels were significantly higher in BC patients compared with healthy donors. Furthermore,
circulating miR-30b-5p levels were significantly higher in patients with positive axillary lymph node and de novo
metastatic patients. Receiver operating characteristics curve analysis demonstrated a good diagnostic potential of
miR-30b-5p to detect BC even at an early stage of the disease.
Conclusion: Thus, we highlight the potential of miR-30b-5p as a non-invasive, fast, reproducible and cost-effective
diagnostic biomarker of BC.
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INTRODUCTION

Breast cancer (BC) is the most frequently diagnosed cancer
around the world and accounts for 30% of all new cases of
cancer diagnosis in women. It is the second cause of cancer-
related death in the general population and the first among
women.1,2 Nonetheless, BC has one of the highest 5-year
survival rates (90%) due to the improvement of detection
practices and treatments.2 Pathological diagnosis including
histological subclassification based on estrogen receptor,
progesterone receptor, human epidermal growth factor
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receptor 2 (HER2) status and Ki67 level allows classification
of tumors in four main subtypes [luminal A, luminal B,
HER2-positive (HER2þ) and triple-negative (TN)], which
help clinicians in treatment decisions, prognosis and
prediction.3

Despite the improvement in diagnosis and treatment,
approximately 20% of BC patients will develop metastasis.
This setting is considered an incurable disease that often
occurs due to either resistance to therapy or diagnosis at
advanced stages.4 In this scenario, although 44% of the
patients are diagnosed at stage I (AJCC cancer staging) with
5-year survival rates of 100%, 5% of patients are diagnosed
at stage IV with 5-year survival rates of approximately 26%.5

The small percentage of women diagnosed at advanced
stage of the disease gives evidence that mammography
represents the best available screening option for BC.5,6

However, more accurate and meaningful early-diagnosis
methods together with image techniques would improve
BC survival rates.
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In the past few years, microRNAs (miRNAs) were estab-
lished as relevant molecular components of cells in normal
or malignant processes.7 Particularly, miRNAs have been
demonstrated to have an important role in cancer biology
through post-transcriptional editing of target messenger
RNAs (mRNAs) expression involved in tumor growth, inva-
sion, metastasis or immune escape.8 In addition, several
tumor-associated miRNA profiles have been proposed and
investigated as biomarkers for diagnosis, survival, response
to treatment or tumor subclassification.9-15 The develop-
ment of early diagnostic tools is of most interest to the
clinics since early diagnosis is associated with better prog-
nosis. In this context, miRNAs have been demonstrated to
be good early diagnostic biomarkers in several types of
cancer including BC, among others.16-19

miRNAs have been shown to be present in several types
of body fluids, including blood, where those can be found as
cell-free miRNAs, or in exosomes.20,21 One of the main
advantages of circulating miRNAs is their high stability in
body fluids,22 which is the main reason for them to be used
in cancer diagnosis or prognosis. Moreover, the assessment
of circulating miRNAs can be carried out with simple, low-
cost and quick assays. These characteristics highlight the
value of miRNAs as non-invasive biomarkers. Indeed,
several miRNAs have been found to be differentially
expressed in blood, plasma or serum from healthy donors
compared with BC patients, supporting their use as non-
invasive, early-stage diagnosis biomarkers.23-28

Particularly, miR-30b-5p has been studied in tissue and fluid
samples as a biomarker for several types of cancer, including
lung,29 pancreas,30 colorectal31 and melanoma.32 Although
the value ofmiR-30b-5p as a BCbiomarker has been evaluated
in several studies, the available data are rather controversial.
Some authors foundmiR-30b-5p overexpression to be related
to poor prognosis33,34 and oncogenic functions.35 By contrast,
other studies associated high miR-30b expression with better
response to endocrine therapy,36 decreased metastasis37 and
tumor-suppressor functions.38

In this study, we evaluated miR-30b-5p expression in
tissue and plasma samples from healthy donors and BC
patients to determine its potential as a novel non-invasive
biomarker for BC diagnosis.
MATERIALS AND METHODS

Cell lines

BT474, AU565, SKBR3, MCF-7, MDA-MB-231 and MDA-MB-
436 BC cell lines and MCF-12A non-tumorigenic epithelial
breast cell line were obtained from American Type Culture
Collection (ATCC). All cell lines were cultured at 37�C and
5% CO2 in a humidified atmosphere in the recommended
culture media.
Study cohort and sample collection

We collected 112 nonconsecutive samples from patients
with primary BC (cohort #1) from 1988 to 2018 at Hospital
Clinico Universitario of Valencia/Biomedical Research
2 https://doi.org/10.1016/j.esmoop.2020.100039
Institute INCLIVA (HCUV/INCLIVA, Valencia, Spain). Forty
healthy breast tissue samples from reduction mammo-
plasties from HCUV/INCLIVA and Portuguese Oncology
Institute of Porto (IPO-Porto, Porto, Portugal) were also
selected. To be included, samples were required to have a
formalin-fixed paraffin-embedded (FFPE) or optimal cutting
temperature (OCT) compound embedded biopsies.

All samples had been analyzed by an expert pathologist.
Hormonal receptors status was evaluated by immunohis-
tochemistry (IHC) (estrogen- and progesterone receptor-
positive were defined as �1% positively stained nuclei),
and HER2 was assessed by an IHC score of 3þ (whereby
0 or 1þ indicated HER2-negative, 3þ indicated HER2þ, and
2þ was considered borderline; borderline cases were also
tested by FISH).

Additionally, plasma samples were collected from two
independent institutions. A discovery cohort (cohort #2)
included 40 healthy donors and 38 BC patients with plasma
samples available at Biobank from the Department of Pa-
thology of IPO-Porto from 2015 to 2018. For the validation
cohort (cohort #3), 83 BC patients from HCUV/INCLIVA from
2011 to 2019 and 83 healthy donors from the same insti-
tution and Valencian Biobanking Network were selected. All
plasma samples were collected before any treatment. Pe-
ripheral blood was collected into EDTA tubes and centri-
fuged at 1600 g for 10 min at 4�C to obtain plasma. Plasma
was stored at �80�C until further use. All relevant clinical
data were obtained from medical records.

All patients provided signed informed consent for
experimental analysis of samples. The study is compliant
with all relevant ethical regulations regarding research
involving human participants and received ethical approval
from the Hospital Clínico/INCLIVA Research Ethics Com-
mittee (2019/196) and Institutional Ethical Committees of
IPO-Porto (CES-IPOFG-120/015). Sample collection was
carried out in accordance with the Declaration of Helsinki.

Total RNA extraction

RNA from cell lines was extracted using TRIzol® Reagent
(Invitrogen, Carlsbad, CA) according to the manufacturer's
recommendations.

Total RNA from tissue was isolated from eight 10 mm
FFPE or OCT slides using the RecoverAll Total Nucleic Acid
Isolation Kit for FFPE (Thermo Fisher Scientific, Waltham,
MA) or mirVana Isolation Kit (Thermo Fisher Scientific),
respectively, following the manufacturer's protocol. RNA
was quantified using a NanoDrop spectrophotometer
(Thermo Fisher Scientific). miRNA extraction from 200 ml of
plasma samples was carried out using the miRNeasy Serum/
Plasma Kit (Qiagen, Hilden, Germany), according to the
manufacturer's instructions.

Retrotranscription to cDNA

A total of 1000 ng of RNA from cells and tissue samples and
9.16 ml of RNA from plasma samples were retrotranscribed
to cDNA using a High-Capacity cDNA Reverse Transcription
kit (Thermo Fisher Scientific), following the manufacturer's
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protocol. Retrotranscription reaction was carried out at
16�C for 30 min, at 42�C for 30 min and at 85�C for 5 min.
cDNA was stored at �20�C.
miRNA expression analysis

miRNA expression levels were evaluated by quantitative
real-time PCR. Quantitative real-time PCR was carried out
using specific Taqman miRNA assays for miR-30b-5p (Assay
ID 000602, Thermo Fisher Scientific) and Taqman Universal
MasterMix II no UnG (Thermo Fisher Scientific) for tissue
miRNA expression or Xpert Fast Probe 2x MasterMix (GRiSP,
Porto, Portugal) for plasma, following the manufacturer's
protocol. A final volume of 10 ml was used for quantitative
real-time PCR reaction and incubated at 98�C for 3 min,
followed by 45 cycles of 95�C for 10 s, 60�C for 30 s and
37�C for 30 s. Expression levels were detected using a
QuantStudio 5 Real-Time PCR System (Thermo Fisher Sci-
entific). Results were normalized according to the expres-
sion of housekeeping miR-16 and RNU-38B miRNAs (assay
ID 000391 and ID 001004, Thermo Fisher Scientific). The
threshold cycle value (CT) was determined for each mea-
surement and miRNA expression was calculated relative to
the control using the comparative critical threshold
(2�DCT) method where: DCT ¼ CTmiRNA � CThouse-
keeping control. Triplicates were carried out for each
sample.
The Cancer Genome Atlas data analysis

The expression of miR-30b-5p in tissue from BC patients and
healthy donors from available data from The Cancer Genome
Atlas (TCGA) was analyzed. miRNA expression data were
downloaded from the OncoMir Cancer Database (OMCD)
(https://www.oncomir.umn.edu/omcd/basic_search.php).
Pathway analysis

To investigate the pathways targeted by miR-30b-5p, we
carried out an in silico analysis using a web-based tool
DIANA miRPath-v3.0 (http://www.microrna.gr/miRPathv3).39

We analyzed the experimentally validated miRNA-gene
interactions (DIANA Tarbase v7.0). A threshold score of 0.8
was used.
Statistical analysis

The non-parametric ManneWhitney U test was used to
ascertain statistical significance of differences in miRNA
expression levels between two groups. Receiver operating
characteristics (ROC) curves were constructed and area
under curve (AUC), specificity, sensitivity and accuracy were
calculated as biomarker performance parameters. The best
cut-off value was established based on the highest value
obtained in ROC curve analysis according to Youden's J in-
dex.40,41 Statistical analysis was carried out using GraphPad
Prism software (version 6.01; GraphPad Software, Inc., La
Jolla, CA). Results were expressed as median with inter-
quartile range. A P value <0.05 was considered significant
Volume 6 - Issue 1 - 2021
(*P value < 0.05, **P value < 0.01, ***P value < 0.001,
****P value < 0.0001).
RESULTS

miR-30b-5p differential expression in BC cell lines and non-
tumorigenic breast cell line

miR-30b-5p expression levels were determined in a set of
BC cell lines including three subtypes: MCF-7 as Luminal;
BT474, AU565 and SKBR3 as HER2þ; MDA-MB-231 and
MDA-MB-436 as TN BC and a healthy epithelial breast cell
line MCF-12A. Herein, the MCF-12A cell line displayed
significantly higher miR-30b-5p expression than all the
tested BC cell lines (Figure 1A), thus implicating miR-30b-5p
deregulation in BC development.
miR-30b-5p differential expression in BC and normal tissue
(cohort #1)

Next, we investigated the expression of miR-30b-5p in a
set of primary tumor tissue samples from 112 BC patients
and 40 normal breast tissue samples (cohort #1)
(Supplementary Figure S1, available at https://doi.org/10.
1016/j.esmoop.2020.100039). Clinico-pathological data of
BC patients from cohort #1 are detailed in Supplementary
Table S1, available at https://doi.org/10.1016/j.esmoop.
2020.100039. No statistically significant differences were
found between the median age of patients and healthy
donors (50 and 51 years old, respectively).

miR-30b-5p expression levels were significantly lower in
BC tissues than in healthy breast tissues (P < 0.0001)
(Figure 1B) (Supplementary Table S2, available at https://
doi.org/10.1016/j.esmoop.2020.100039). ROC curve anal-
ysis showed that miR-30b-5p expression in tissue could
discriminate between healthy and BC tissues with AUC ¼
0.89 [95% confidence interval (CI) 0.83-0.94], P < 0.0001
(Figure 1C). When the best cut-off value was selected, miR-
30b-5p expression identified BC with 83% sensitivity, 80%
specificity and 82.23% accuracy.

Interestingly, all BC subtypes presented significantly
different miR-30b-5p expression levels than normal breast
tissue. Thereby, miR-30b-5p expression was significantly
lower in HER2þ, Luminal and TN compared with healthy
controls (P < 0.0001) (Figure 1D). ROC curve analysis also
revealed that miR-30b-5p expression levels may discrimi-
nate between normal tissue and each BC subtype
(Figure 1E) with AUC ¼ 0.98 (95% CI 0.96-1.00; P < 0.0001)
in HER2þ, AUC ¼ 0.77 (95% CI 0.67-0.87; P < 0.0001) in TN
and AUC ¼ 0.88 (95% CI 0.79-0.97; P < 0.0001) in
Luminal BC. The best cut-off value was selected for each
subtype cohort and biomarker performance parameters
were calculated (HER2þ: 98% sensitivity, 92.50% speci-
ficity, 93.40% accuracy; TN: 63.40% sensitivity, 80%
specificity, 74% accuracy; Luminal BC: 90% sensitivity, 75%
specificity, 80% accuracy).

To explore the potential of miR-30b-5p as a BC biomarker,
we next evaluated if miRNA expression might discriminate
healthy tissue from BC even at the earliest stages of the
https://doi.org/10.1016/j.esmoop.2020.100039 3
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Figure 1. (A) miR-30b-5p relative expression of BC cell lines compared with non-tumorigenic cell line MCF-12A. (B) miR-30b-5p relative expression in 112 BC tissues
and 40 healthy breast tissues from cohort 1. (C) Receiver operating characteristics (ROC) curve analysis for miR-30b-5p expression in BC and healthy breast tissue
from cohort 1. (D) miR-30b-5p relative expression in 51 HER2D, 41 TN and 20 Luminal BC tissues and 40 healthy breast tissues from cohort 1. (E) ROC curve
analysis for miR-30b-5p expression in BC tissue with specific subtype and healthy breast tissue from cohort 1. (F) miR-30b-5p relative expression in 83 early stage
(stage I and II) BC patients' tissues and 40 healthy breast tissues from cohort 1. (G) ROC curve analysis for miR-30b-5p expression in early-stage BC tissue and
healthy breast tissue from cohort 1. (H) miR-30b-5p relative expression in 769 BC tissues and 74 healthy breast tissues from The Cancer Genome Atlas. Expression
represented as reads per million microRNAs (miRNAs) mapped. Burgundy lines represent median with interquartile range. ***P < 0.001; ****P < 0.0001.
AUC, area under curve; BC, breast cancer; HER2, human epidermal growth factor receptor 2; TN, triple-negative.
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disease. Notably, miR-30b-5p expression was significantly
lower in early stages (stage I and II) BC than in healthy
breast tissue; P < 0.0001 (Figure 1F). ROC analysis pre-
sented AUC ¼ 0.89 (95% CI 0.84-0.95; P < 0.0001) with
85.54% sensitivity, 80% specificity and 83.73% accuracy
when the best cut-off value was applied (Figure 1G).

Moreover, despite the small number of BC samples avail-
able at stage I, miR-30b-5p levels were also significantly lower
in this stage than in healthy tissue; P < 0.0001
(Supplementary Figure S2A, available at https://doi.org/10.
1016/j.esmoop.2020.100039). ROC curve analysis showed
an AUC ¼ 0.87 (95% CI 0.78-0.97; P < 0.0001) and demon-
strated thatmiR-30b-5p levels were able to discriminate stage
I from healthy tissue with 73.70% sensitivity, 92.50% speci-
ficity and 84.44% accuracy when the best cut-off value was
selected (Supplementary Figure S2B, available at https://doi.
org/10.
1016/j.esmoop.2020.100039).

To validate our results, an in silico analysis of miR-30b-5p
expression in TCGA was carried out. Data from 769 BC pa-
tients and 74 healthy donors were available. miR-30b-5p
expression was significantly lower in BC than in healthy tis-
sue (P < 0.0001) (Figure 1H) (Supplementary Table S2,
available at https://doi.org/10.1016/j.esmoop.2020.100039).
miR-30b-5p differential expression in plasma samples from
BC patients and healthy donors (cohort #2)

Given the value of miR-30b-5p as a diagnostic biomarker in
breast tissue samples, we next investigated its potential as a
4 https://doi.org/10.1016/j.esmoop.2020.100039
non-invasive biomarker in liquid biopsy. We first evaluated
circulating miR-30b-5p levels in a discovery cohort (cohort
#2) of 38 plasma samples from BC patients and 40 plasma
samples from healthy volunteers (Supplementary Figure S1,
available at https://doi.org/10.1016/j.esmoop.2020.100039).
Clinico-pathological characteristics of patients from
cohort #2 are described in Supplementary Table S1, avail-
able at https://doi.org/10.1016/j.esmoop.2020.100039. No
significant differences were observed in median age be-
tween BC and healthy donors (52 and 50 years old,
respectively).

Circulating miR-30b-5p levels were significantly increased
in plasma from BC patients compared with healthy donors;
P < 0.0001 (Figure 2A) (Supplementary Table S2, available
at https://doi.org/10.1016/j.esmoop.2020.100039). This
upregulation was observed across all BC subtypes (HER2þ,
P < 0.0001; TN, P ¼ 0.0304; Luminal, P ¼ 0.0004)
compared with healthy donors (Figure 2B). ROC curve
analysis showed an AUC ¼ 0.78 (95% CI 0.68-0.89; P <
0.0001). When the best cut-off value was selected, circu-
lating miR-30b-5p levels identified BC with 60.53% sensi-
tivity, 90% specificity and 75.64% accuracy (Figure 2C).

A similar analysis was carried out within the different BC
stages. Circulating miRNA levels were significantly higher in
earliest stages (stage I and II) compared with healthy donors
(P ¼ 0.004) (Figure 2D). In addition, if considering only
stage I BC as the very initial stage of BC, miR-30b-5p was
still significantly higher in patients than in controls (P <
0.0001) (Supplementary Figure S3, available at https://doi.
org/10.1016/j.esmoop.2020.100039). These results suggest
Volume 6 - Issue 1 - 2021
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Figure 2. Circulating miR-30b-5p levels in plasma from all 38 BC patients (A) or five HER2D, seven TN and 26 Luminal BC patients (B) and 40 healthy volunteers
from cohort 2. (C) Receiver operating characteristics (ROC) curve analysis for miR-30b-5p expression in plasma from BC patients and healthy donors from cohort 2.
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circulating miR-30b-5p as a potential diagnostic BC
biomarker.
Validation of miR-30b-5p as a BC diagnostic biomarker in
plasma samples (cohort #3)

The previous results were further validated in an indepen-
dent and larger set of 83 plasma samples from BC patients
and 83 plasma samples from age-matched healthy donors
(cohort #3) (Supplementary Figure S1, available at https://
doi.org/10.1016/j.esmoop.2020.100039). Clinico-pathological
data of BC patients of cohort #3 are described in
Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2020.100039.

In line with the results observed in cohort #2, circulating
miR-30b-5p levels were significantly higher in plasma sam-
ples from BC patients compared with plasma from healthy
donors (P < 0.0001) (Figure 3A) (Supplementary Table S2,
available at https://doi.org/10.1016/j.esmoop.2020.100039).
The ROC curve analysis showed that mir-30b-5p was able to
discriminate BC patients from healthy individuals with an
AUC ¼ 0.80 (95% CI 0.74-0.87) P < 0.0001 (Figure 3B).
Biomarker performance parameters were evaluated applying
best cut-off, and sensitivity, specificity and accuracy were
78.31%, 72.30% and 75.30%, respectively.

Similarly, miR-30b-5p expression levels were significantly
lower in healthy controls than in all BC subtypes (HER2þ, P
< 0.0001; TN, P ¼ 0.0079; Luminal, P < 0.0001) (Figure 3C).
Specific ROC curve analysis for each subtype was consistent
with previous findings demonstrating the potential of
Volume 6 - Issue 1 - 2021
circulating miR-30b-5p as a diagnostic biomarker for HER2þ
(AUC ¼ 0.78, 95% CI 0.67-0.90, P ¼ 0.0001; 77.78% sensi-
tivity, 73.50% specificity, 74.25% accuracy), TN (AUC ¼ 0.72,
95% CI 0.58-0.86, P ¼ 0.0088; 69.23% sensitivity, 72.30%
specificity, 71.80% accuracy) and Luminal BC (AUC ¼ 0.84,
95% CI 0.77-0.91, P < 0.0001; 82% sensitivity, 72.30%
specificity, 75.90% accuracy) (Figure 3D).

Importantly, circulating miR-30b-5p levels also effectively
identified early BC stages in this cohort. miR-30b-5p
expression levels were significantly higher in earliest stages
of BC than in healthy controls (P < 0.0001) (Figure 3E). As
expected, circulating miR-30b-5p was able to distinguish
stage I and II BC from healthy samples with an AUC ¼ 0.78
(95% 0.70-0.85), P < 0.0001 (Figure 3F). Biomarker perfor-
mance parameters were also evaluated showing 76.50%
sensitivity, 72.30% specificity and 75.52% accuracy. Similar
results were obtained when stage I was evaluated separately.
Circulating miR-30b-5p of stage I BC was significantly higher
than in healthy controls (P < 0.0001). ROC analysis showed
AUC ¼ 0.79 (95% CI 0.70-0.89), P < 0.0001 and presented
80.90% sensitivity, 73.50% specificity and 69.20% accuracy
(Supplementary Figure S4A and B, available at https://doi.
org/10.1016/j.esmoop.2020.100039).
Association of circulating miR-30b-5p to locally advanced
and metastatic BC

In cohort #2, patients with positive lymph nodes displayed
significantly higher circulating miR-30b-5p levels than pa-
tients with negative lymph nodes (P ¼ 0.0216) (Figure 4A).
https://doi.org/10.1016/j.esmoop.2020.100039 5
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Figure 3. (A) Circulating miR-30b-5p levels in plasma from 83 BC patients and 83 healthy volunteers from cohort 3. (B) Receiver operating characteristics (ROC)
curve analysis for circulating miR-30b-5p in plasma from BC and healthy individuals from cohort 3. (C) Circulating miR-30b-5p levels in plasma from 18 HER2D, 13
TN and 50 Luminal BC patients and 83 healthy volunteers from cohort 3. (D) ROC curve analysis for circulating miR-30b-5p in plasma from BC patients with specific
subtype and healthy donors from cohort 3. (E) Circulating miR-30b-5p levels in plasma from 51 early-stage (stage I and II) BC patients and 83 healthy volunteers
from cohort 3. (F) ROC curve analysis for circulating miR-30b-5p in plasma from early stage BC patients and healthy donors from cohort 3. Burgundy lines represent
median with interquartile range.
**P < 0.01; ****P < 0.0001.
AUC, area under curve; BC, breast cancer; HER2, human epidermal growth factor receptor 2; TN, triple-negative.

ESMO Open A. Adam-Artigues et al.
Moreover, circulating miRNA levels were significantly higher
in de novo metastatic BC patients than in non-metastatic
patients (P ¼ 0.0056) (Figure 4B).

In agreement, in cohort #3, patients with positive axillary
lymph nodes and metastatic disease also presented higher
circulating miR-30b-5p levels (P ¼ 0.0378 and P ¼ 0.0275,
respectively) (Figure 4C and D). Therefore, circulating
miRNA levels might associate with patients' tumor burden.

DISCUSSION

Screening mammography is the most commonly used
technique worldwide for the detection of early BC in
asymptomatic women and significantly reduces mortality.1,2

However, 10%-20% of patients are diagnosed with
advanced stage of BC which is still characterized by poor
prognosis. Thereby, more accurate and effective early-
diagnosis methods are needed, as well as research on
risk-based screening strategies.4-6

miRNAs were first reported to be related to cancer biology
in 2002,42 and since then, a wide variety of studies support
6 https://doi.org/10.1016/j.esmoop.2020.100039
their impact in the pathogenesis of cancer.7,8 The potential of
miRNAs as detection biomarkers in different types of cancer
has also been demonstrated by several authors.16-19 More-
over, miRNAs stability in body fluids makes them one of the
best options for non-invasive detection techniques. Mitchell
et al.22 demonstrated in 2008 that detection of circulating
miRNAs in plasma can serve as diagnostic biomarkers for
common human cancer types. Several studies have proposed
plasma circulating miRNAs as early cancer detection bio-
markers. Namely, miR-182-5p and miR-375-3p were
identified in prostate cancer,43 miR-448, miR-506, miR-4316,
miR-4478 and miR-31 in lung cancer,44,45 miR-24, miR-320a
and miR-423-5p in colorectal cancer46 and miR-214, miR-96-
5p,miR-21-5p,miR-505,miR-195 andmiR-99a in BC.23,26,47,48

In this scenario, we assessed miR-30b-5p expression in BC
tissue and plasma and tested its diagnostic performance. In
cohort #1 miR-30b-5p expression levels were significantly
lower in BC tissue than in normal breast tissue. When ROC
curve analysis was carried out, miR-30b-5p expression in
tissue showed 83% sensitivity, 80% specificity and 82.23%
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Figure 4. Circulating miR-30b-5p levels in plasma from: 12 breast cancer (BC) patients with negative axillary lymph nodes and 21 BC patients with positive axillary
lymph nodes from cohort 2 (A), 24 non-metastatic and 12 de novo metastatic BC patients from cohort 2 (B), 31 BC patients with negative axillary lymph nodes and
35 BC patients with positive axillary lymph nodes from cohort 3 (C) and 64 non-metastatic and eight de novo metastatic BC patients from cohort 3 (D). Burgundy
lines represent median with interquartile range.
**P < 0.01; *P < 0.05.
M-, non-metastatic; Mþ, de novo metastatic; N-, negative axillary lymph node; Nþ, positive axillary lymph node.
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accuracy, thus supporting its potential as a diagnostic
biomarker for BC. Moreover, miR-30b-5p expression iden-
tified all BC subtypes and early stage of the disease. These
results are concordant with those of Hafez et al.49 in a
cohort of Egyptian BC patients.

The impact of the miR-30 family in tumorigenesis,
metastasis and drug resistance in cancer has been widely
investigated. Moreover, Kyoto Encyclopedia for Genes and
Genomes (KEGG) pathway analysis for miR-30b-5p showed
significant enrichment in cancer pathways including the
Wnt signaling pathway, the p53 signaling pathway and the
apoptosis pathway (Figure 5A).

miR-30b was suggested to function as a tumor suppres-
sor in several types of cancer such as colorectal,50-52

esophageal,53 gastric,54,55 hepatocellular,56,57 thyroid,58,59

lymphoma,60 renal,61 lung62,63 and pancreatic cancer.64 In
fact, in BC the low miR-30b expression in tumor tissue has
been associated with poor relapse-free survival, being
proposed to prevent tumor progression and metastasis
development through targeting of CDH11, ITGA5 and
ITGB3.37 Furthermore, low expression of the miR-30 family
has been reported to maintain self-renewal of breast tumor
initiating cells by targeting ITGB3 and Ubc9.38 Moreover,
high miR-30b expression has been also associated with
improved response to endocrine therapy in luminal BC,36 as
well as with trastuzumab response.65

Nonetheless, the role of the miR-30 family in cancer
biology remains controversial. Some studies present this
miRNA family as tumor promoters in cancer-related
Volume 6 - Issue 1 - 2021
processes. Specifically, a pro-metastatic role of miR-30b/30d
has been proposed in melanoma.32 A plausible explanation
of these different roles in cancer may be due to miR-30's
ability to target different mRNAs in line with what has been
described for other well-studied miRNAs.

Given the advantages of miRNAs as non-invasive bio-
markers detectable in body fluids, we further tested circu-
lating miR-30b-5p biomarker performance in two
independent cohorts of patients: a discovery cohort (cohort
#2) and cohort #3 in which results were validated in a
blindly fashion. We demonstrated that circulating miR-30b-
5p was significantly higher in BC plasma samples than
healthy donors in both cohorts. Moreover, we proved the
potential of circulating miR-30b-5p as a diagnostic
biomarker with AUC values of 0.78 and 0.80 in the discovery
and validation cohorts, respectively. In addition, we showed
that the diagnostic performance was applicable to all sub-
types of BC and early stage of the disease. Similar results on
circulating miR-30b-5p levels were previously obtained by
other research teams in whole blood and sera from a rather
limited cohort of BC patients and healthy controls.34,66

Another interesting observation was the significant corre-
lation between circulating miR-30b-5p levels and patients'
tumor burden. Our results showed that circulating miR-30b-
5p levels were positively correlated with positive axillary
lymph nodes and distant metastasis, in accordance with
previous studies.33 In fact, the overexpression of circulating
miR-30b in different liquids as sera, extracellular vesicles,
plasma or cyst fluid has been associated with cancer and poor
https://doi.org/10.1016/j.esmoop.2020.100039 7
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prognosis in several tumors such as lung,29,67 colorectal,68

colangiocarcinoma69 and pancreatic cancer.30 The opposite
trend of miR-30b-5p expression found in tissue and plasma
samples was certainly unexpected. Nonetheless, several
studies also found opposite levels for other circulatingmiRNAs
versus breast tissue expression26,28,66,70,71 as well as other
tumor types.72-75 Different explanations have been antici-
pated for this apparent paradox. First, releasedmiRNAs do not
necessarily reflect the expression in the tissue of origin.
Indeed, processes by which miRNAs are released into circu-
lation and respective function remain a challenge. This
mechanismmight well be via inter-organ cell communication.
It has been proposed that cells might have a mechanism to
selectively release specific miRNAs and that extracellular
miRNAs should be considered independent of cellular miRNA
levels, when considering diagnostic markers.66,76 To check the
feasibility of this hypothesis, we compared miR-30b-5p
expression levels in available material for matched tissue
and plasma from seven patients. Herein, miRNA expression
levels in tissues were opposite to those in plasma (Figure 5B),
thus supporting that mir-30b-5p is being selectively released
and then its abundance is decreased in tumor cells.

A second hypothesis is that extracellular miRNAs might
be the product of dead cells and tissue injury that persist in
circulation due to their high stability.77

Additionally, it has been argued that other possible sour-
ces of circulating miRNAs might be tumor microenvironment
cells. Given the importance of tumor microenvironment in
cancer initiation and progression, its contribution to the
circulating miRNA profile should not be neglectable.28

The last hypothesis proposes that these miRNAs may
originate from blood cells,78 however this is a widely dis-
cussed, controversial issue.79
8 https://doi.org/10.1016/j.esmoop.2020.100039
To our knowledge, this is the first study evaluating miR-
30b-5p expression levels both in tissue and plasma sets
simultaneously. Moreover, these are the largest cohorts of
patients in which miR-30b-5p levels have been evaluated in
tissue and plasma samples. Importantly, applicability of
circulatingmiR-30b-5p in plasma as a diagnostic biomarker of
BC would be cost-effective given that plasma acquisition
would be easily accessible and tests could be carried out with
several samples simultaneously.Moreover, we demonstrated
the reproducibility of circulating miR-30b-5p levels in plasma
as a BC diagnostic biomarker by blindly validating its potential
in an independent cohort from a different institution. In
addition, circulating miR-30b-5p fold change in BC compared
with donors was not statistically different between the dis-
covery and validation cohorts (cohort #2 and #3).
CONCLUSION

Taken together, the data presented in this study demon-
strate the value of miR-30b-5p expression levels as an early
diagnostic BC biomarker. Both low miRNA expression in
tumor tissue and high circulating miR-30b-5p levels in
plasma were associated with BC. miR-30b-5p levels were
able to identify BC in three different patients' cohorts,
independently of the subtype and stage of the disease. We
also showed that circulating miR-30b-5p levels relate with
patients' tumor burden. We highlight the potential of
circulating miR-30b-5p as a non-invasive, fast, reproducible
and cost-effective diagnostic BC biomarker.
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