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Abstract: The cornea is avascular, which makes it an excellent model to study matrix protein
expression and tissue stiffness. The corneal epithelium adheres to the basement zone and the
underlying stroma is composed of keratocytes and an extensive matrix of collagen and proteoglycans.
Our goal was to examine changes in corneas of 8- and 15-week mice and compare them to 15-week
pre-Type 2 diabetic obese mouse. Nanoindentation was performed on corneal epithelium in situ
and then the epithelium was abraded, and the procedure repeated on the basement membrane and
stroma. Confocal imaging was performed to examine the localization of proteins. Stiffness was found
to be age and obesity dependent. Young’s modulus was greater in the epithelium from 15-week mice
compared to 8-week mice. At 15 weeks, the epithelium of the control was significantly greater than
that of the obese mice. There was a difference in the localization of Crb3 and PKCζ in the apical
epithelium and a lack of lamellipodial extensions in the obese mouse. In the pre-Type 2 diabetic obese
mouse there was a difference in the stiffness slope and after injury localization of fibronectin was
negligible. These indicate that age and environmental changes incurred by diet alter the integrity of
the tissue with age rendering it stiffer. The corneas from the pre-Type 2 diabetic obese mice were
significantly softer and this may be a result of changes both in proteins on the apical surface indicating
a lack of integrity and a decrease in fibronectin.
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1. Introduction

One area of great interest is understanding if the changes that occur to tissues and cells with
disease or age reflect physical changes. The result of mechanical forces can be seen in endothelial
vasculature [1], bone remodeling [2], and cell-cell communication between vascular endothelial cells
on substrata [3]. In addition, when epithelial cells migrate they generally move as a sheet of cells to
heal a wound rather than discrete cells and we hypothesize that the sheet generates unique forces on
the underlying basement membrane depending on the stiffness of the substrate [4]. The motility of the
sheet is enabled by protrusion of lamellipodia at the leading edge of the wound and requires a continual
assembly and disassembly of focal adhesions that occur during extension, retraction, maturation of
nascent adhesions [5].

The cornea provides a superb tissue to study changes in stiffness in epithelium, basement
membrane proteins and stromal matrix proteins as it is accessible, and its properties can be readily
examined. This tissue is constantly subjected to a wide range of mechanical stimuli. Response to
the basement membrane is critical as changes in the composition of the basement membrane have
been shown to mediate cell signaling associated with cell adhesion and migration [6,7]. Others have
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demonstrated that the degree of force generated by cells depends on substrate stiffness [8]. However,
most of these studies were performed on single cells [9–11] or on monolayer cultures [12,13]. More
recently Onochie et al., demonstrated that the leading-edge dynamics of migrating corneal epithelium
were significantly different on a substrate of 8kPa compared to a stiffer substrate. In addition, there
was a significantly greater phosphorylation of focal adhesion kinase proteins when cells were cultured
and wounded on stiffer substrata [4].

The unwounded corneal epithelium consists of 5–7 layers of cells and the basal cells adhere to the
basement membrane through structures called hemidesmosomes that are comprised of several large
proteins that contact collagen anchoring fibrils in the anterior stroma. The stroma is comprised of an
array of collagens and proteoglycans that permit the light to pass unaltered to the retina. Upon injury
fibronectin is released and present transiently [14,15]. In addition, investigators have demonstrated
that the matrix proteins change in the basement membrane zone of diabetic corneas with a decrease in
laminin and an increase in heparan sulfate proteoglycans [16].

Here we investigate if the change in stiffness of corneal epithelium, basement membrane zone
and stroma are altered either with age or in an obese mouse that is a model for a Type 2 pre-diabetes
(DiO; diet induced obesity). Previously, investigators demonstrated that the DiO mice had impaired
skin and corneal wound healing and a change in the regulation of an ionotropic receptor, P2X7 [17,18].

In our current study we found a significant increase in epithelial stiffness with age and an age
matched decrease in the DiO epithelium. In contrast, there is a greater percent change in stiffness in the
corneal stroma (anterior to posterior) in the 8-week mice compared to the 15-week mice. Furthermore,
there is little if any change in stiffness in the stroma in the 15-week DiO mice. To understand these
changes, we examined the polarity protein, Crumbs3, that is associated with tight junctions in the
epithelium. Together our results demonstrate that age and environment impact the integrity of
the cornea.

2. Materials and Methods

2.1. Chemicals

Anti-fibronectin monoclonal mouse antibodies (clone FN-3E2, Lot# 104M4800V) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Rhodamine phalloidin (Lot# 1842723) was purchased
from Invitrogen by Thermo Fisher Scientific (Waltham, MA, USA). Alexa Fluor 488 goat anti-mouse
was obtained from Invitrogen by Thermo Fisher Scientific (Waltham, MA, USA). VectaSHIELD with
4′,6-diamidino-2-phenylindole (DAPI) was purchased from Vector Labs (Burlingame, CA, USA).

2.2. Tissue Preparation

The research protocol conformed to the standards of the Association for Research in Vision and
Ophthalmology for the Use of Animals in Ophthalmic Care and Vision Research and the Boston
University Institutional Animal Care and Use Committee (IACUC). Control and DiO mice were
obtained from Jackson Laboratory (The Jackson Laboratory; Bar Harbor, ME, USA). Control mice
were maintained on the diet, D1425OB (10 kcal% fat, 3.8 kcal/g), while the DiO mice were fed a high
fat diet, D12492 for 15 weeks (60 kcal% fat, 5.2 kcal/g). The mice exhibited obesity (40.8 g versus
32.4 g at 16 weeks), an elevated HbA1c, mild hyperglycemia, significantly elevated triglycerides,
impaired glucose tolerance, and blood glucose for DiO that remained elevated at 120 min. In addition,
no difference in bone mineral density in DiO mice was detected. Prior to delivery, body weight, blood
glucose and other measurements were performed as described [1–9].

All eyes were examined under a microscope prior to experiments to make sure there were no
ocular injuries prior to debridement. Experiments were performed ex vivo and all animals were
sacrificed prior to measurements or injury. To examine localization of proteins, a debridement wound
was made with a dull laser blade following demarcation with a 1.5 mm-diameter trephine in the
central cornea [19]. After wounding, the eyes were incubated in Dulbecco’s Modified Eagles medium
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(DMEM) at 37 ◦C and 5% CO2 for different time points. After incubation, the eyes were fixed with 4%
paraformaldehyde for 30 min at room temperature. The tissue was then dissected, leaving an intact
scleral rim, and cut into radial wedges.

2.3. Nanoindentation

Corneal epithelium and stromal stiffnesses were measured with a Piumananoindenter system
(Optics11, Amsterdam, the Netherlands). To perform the measurements the head was immobilized.
The eye was immersed in phosphate buffered saline (PBS) and the probe was lowered onto the center
of the cornea. The probe had a tip radius of 26 µm and stiffness of 4.4 N/m. Epithelium measurements
were taken through 10 µm indentations.

To examine the basement membrane and stroma, the epithelium was abraded. Measurements
were taken using various indentation depths, ranging from 1 µm to 17 µm. The Young’s modulus of
the sample was calculated using the built-in PIUMA software based on the Hertzian contact mechanics
model, assuming cornea tissue is perfectly incompressible with a Poisson ratio of 0.5. The loading
curves were fit to the following equation by the software:

F =
4
3

Ee f f
√

Ri ·h
3
2

where F represents the applied force, Ee f f represents the effective Young’s modulus, Ri represents
the spherical tip radius, and h represents indentation depth. The bulk Young’s modulus we used for
analysis was generated using the following equation:

E = Ee f f (1− ν
2)

where ν represents Poisson’s ratio of the measured material.

2.4. Immunohistochemistry

Tissues were permeabilized with 0.1% v/v Triton X-100 in PBS and blocked with 4% bovine serum
albumin (BSA) solution in PBS for 1 h for indirect immunofluorescence. Samples were incubated
in anti-fibronectin solution (1:200, Sigma-Aldrich, St. Louis, MO, USA), or anti-laminin-5 (γ2 chain)
(1:200, MilliporeSigma, Burlington, MA, USA) at 4 ◦C overnight, washed with PBS, and incubated in
Alexa-Fluor-conjugated secondary antibodies (1:200; Invitrogen by Thermo Fisher Scientific, Waltham,
MA, USA) for 1 hr. Samples were washed with PBS, then incubated in rhodamine phalloidin (1:50,
Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA) for 20 min.

2.5. Confocal Microscopy

Tissues were mounted using VectaSHIELD antifade mounting medium with DAPI during image
acquisition. Tissues were placed apical side down on a glass coverslip bottom petri dish and flattened
by placing another glass coverslip on top of the tissue. Tissues were imaged using a 40× oil immersion
objective. The gain and laser intensity were set according to a secondary control sample and remained
constant throughout the experiment. The pinhole was maintained at 1 airy unit for all sample images.
The slice interval for all z-stack images was 1 µm.

2.6. Statistical Analysis

Values were presented as the mean ± standard error of the mean (SEM). Statistical significance
was determined by the Wilcoxon rank-sum test (also known as the Mann-Whitney U Test) using the
MATLAB function.
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3. Results

The corneal epithelium is typically a very stable structure due to tight junctions that are located in
the apical epithelium that prevent growth factors and other molecules from penetrating, binding to
their receptors, and activating signaling cascades [14].

3.1. Stiffness Is Age and Obesity Dependent

In the following experiments we compared mice of 8 and 15 weeks with a naturally occurring
murine obesity model (pre-Type 2 diabetic mice) to examine changes in stiffness in epithelium and the
stroma. Both eyes from five 8-week control mice, five 15-week control mice, and 2 DiO 15-week-old
mice were used. Previously, we demonstrated that corneal epithelial wound repair is impaired in
corneas from the obese mice [19]. These results stimulated us to examine changes in the cornea that
might be underlying causes of the changes in the cell migration and wound repair. In Figure 1 we
examined the stiffness of epithelium, basement membrane, and stroma in intact eyes. Young’s modulus
was calculated and the intact corneal epithelium from a 15-week C57Bl6 mouse was significantly
(Wilcoxon rank-sum test, *** p < 0.01) greater than the epithelium from an 8-week mouse. At the
equivalent age, the epithelium was significantly (Wilcoxon rank-sum test, *** p < 0. 01) greater than an
age matched DiO mouse cornea. Here the background of the mice are similar and the DiO mouse is
fed a high fat diet for 15 weeks.
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Figure 1. Corneal epithelium stiffness (mean ± standard deviation) for 8-week control, assuming cornea
tissue is perfectly incompressible with a Poisson ratio of 0.5.

3.2. Localization of Polarity Proteins

Since there was a major difference in stiffness in the control and DiO epithelium, we examined
localization of a polarity protein, Crumbs3 (Crb3), which is associated with epithelial tight junctions
and recruits tight junction proteins, such as ZO-1, to tight junction structures. Crumbs3 has been
shown to maintain apical-basal polarity, apical stability, cell adhesion, and epithelial integrity [20] and
is required for airway differentiation. We hypothesized that we would find changes in Crb3. Images
are presented in 2 ways (Figure 2).
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counter stained with rhodamine phalloidin and DAPI. Apical cells at z-plane 5 out of 25 slices, 
imaged at 1μm interval, are shown (i–p). Both the control (j,k) and DiO (n,o) tissue show no staining 
for either Crb3 or PKCζ (Control apical-(a). DAPI and actin, (b). Crb3, (c). PKCζ, (d) merged; DiO 
apical-(e). DAPI and actin, (f). Crb3, (g). PKCζ, (h) merged; Control basal-(i). DAPI and actin, (j). 
Crb3, (k). PKCζ, (l). merged; DiO basal-(m). DAPI and actin, (n). Crb3, (o). PKCζ, (p) merged). 
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2f) and PKCζ (Figure 2g). In addition, there is no staining of either in the basal layer. To examine 
changes in localization after injury we first examined F-actin at the edge of the wound (Figure 3) and 
demonstrated that the morphology of the cells is different. We then examined the localization of 
Crb3 and performed maximal projection images and made orthogonal sections to examine apical 
polarity in cross section (Figure 4). 

Figure 2. Localization of Crb3 and PKCζ in unwounded control and DiO corneal epithelium. An apical
and a basal image are displayed for each condition. Tissue was stained for Crb3 and PKCζ and counter
stained with rhodamine phalloidin and DAPI. Apical cells at z-plane 5 out of 25 slices, imaged at 1µm
interval, are shown (i–p). Both the control (j,k) and DiO (n,o) tissue show no staining for either Crb3
or PKCζ (Control apical-(a). DAPI and actin, (b). Crb3, (c). PKCζ, (d) merged; DiO apical-(e). DAPI
and actin, (f). Crb3, (g). PKCζ, (h) merged; Control basal-(i). DAPI and actin, (j). Crb3, (k). PKCζ, (l).
merged; DiO basal-(m). DAPI and actin, (n). Crb3, (o). PKCζ, (p) merged).

Tissue was stained for Crb3 and PKCζ and counter stained with rhodamine phalloidin and DAPI
and an image is shown of the most apical image and of a basal image. Both Crb3 and PKCζ are
present in apical images but localization is different. The control tissue shows punctate staining of Crb3
(Figure 2b) and PKCζ (Figure 2c). The DiO tissue shows diffuse staining for both Crb3 (Figure 2f) and
PKCζ (Figure 2g). In addition, there is no staining of either in the basal layer. To examine changes in
localization after injury we first examined F-actin at the edge of the wound (Figure 3) and demonstrated
that the morphology of the cells is different. We then examined the localization of Crb3 and performed
maximal projection images and made orthogonal sections to examine apical polarity in cross section
(Figure 4).
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Figure 3. Wound healing is reduced in DiO tissue stained for Crb3 and PKCζ. A tiled image was taken
comprised of 20 slices taken at 0.5 µm intervals; shown is z-plane 4 stained only for actin. The z-stack
used as a representative image at the wound edge and distal to the wound edge is indicated by the
white box. Tissue shown was also stained for Crb3 and PKCζ. The wound edge is indicated by the
white dotted line. (a) In control tissue apical cells can be identified distal to the wound by their larger
polygonal shape while the cells along the wound edge are smaller and more uniform, indicating that
they are basal cells which have collectively migrated over the wound area. (b) In DiO tissue, apical cells
are also apparent distal to the wound, but along the wound edge there is reduced basal cell migration.
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Figure 4. Change in Crb3 after epithelial injury. Maximal projection images were taken, and orthogonal
images made. The side bars show cross-sections with an apical-basal view of Crb3 (green), DAPI (blue)
and actin (red). Asterisk denotes wound.
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When the control tissue was treated with PNGase we found the major form of Crb3 at 38kDa.
Likewise, when the DiO tissue was treated with PNGase the major form of Crb3 shifted to 27kDa,
indicating that Crb3 is more highly glycosylated. The major 38kDa form is also present (Figure 5).

Bioengineering 2020, 7, x FOR PEER REVIEW 7 of 11 

When the control tissue was treated with PNGase we found the major form of Crb3 at 38kDa. 
Likewise, when the DiO tissue was treated with PNGase the major form of Crb3 shifted to 27kDa, 
indicating that Crb3 is more highly glycosylated. The major 38kDa form is also present (Figure 5). 

 

Figure 5. Glycosylation of Crb3 in control and DiO corneal epithelium. Protein extracts treated with 
PNGase and then were run on a 12% SDS-PAGE gel. The protein was transferred overnight to a 
nitrocellulose membrane for Western blotting. The blot was then probed for Crb3. The associated line 
graphs are indicative of the relative densities within the lane. (a) Control; (b) DiO. 

3.3. Stiffness of Corneal Basement Membrane and Stroma 

We abraded the corneas, removed the epithelium, and indented at different depths to examine 
the differences in corneal basement membrane and stromal stiffness. We have shown previously 
using electron microscopy that the basement membrane is intact [21]. Data was collected from five 
control 8-week mice, five control 15-week mice, and two DiO mice. Results have shown that 
basement membrane and stromal stiffness shows an increasing trend as indentation depth increases 
in control mice and is similar among different individuals (Figure 6). However, this trend is not as 
obvious in DiO mice and has greater variance between individuals. 

 
Figure 6. Corneal stromal stiffness. Young’s modulus (Pa) was determined throughout the depth of 
the stroma in control 8- and 15-week corneas and compared to 15-week DiO corneas. (a) 8-week 
control (R2 = 0.5527) (b) 15-week control (R2 = 0.4534) (c) 15-week DiO (R2 = 0.311 for DiO mouse 1; R2 
= 0.3744 for DiO mouse 2). Both eyes were measured for each mouse. 

3.4. Changes in Fibronectin 

We examined for changes in fibronectin as it is known to be transiently localized in the stroma 
and wound edge of control corneas. In the control cornea we found that fibronectin was present at 
the wound edge (arrows). In addition, we detected fibronectin along the stromal nerves in the 
control corneas (arrowheads) where it is presumably secreted by the nerves (Figure 7a). The stromal 
branch is detected in the orthogonal image. In contrast, in the DiO cornea fibronectin is diffuse 

Figure 5. Glycosylation of Crb3 in control and DiO corneal epithelium. Protein extracts treated with
PNGase and then were run on a 12% SDS-PAGE gel. The protein was transferred overnight to a
nitrocellulose membrane for Western blotting. The blot was then probed for Crb3. The associated line
graphs are indicative of the relative densities within the lane. (a) Control; (b) DiO.

3.3. Stiffness of Corneal Basement Membrane and Stroma

We abraded the corneas, removed the epithelium, and indented at different depths to examine
the differences in corneal basement membrane and stromal stiffness. We have shown previously
using electron microscopy that the basement membrane is intact [21]. Data was collected from five
control 8-week mice, five control 15-week mice, and two DiO mice. Results have shown that basement
membrane and stromal stiffness shows an increasing trend as indentation depth increases in control
mice and is similar among different individuals (Figure 6). However, this trend is not as obvious in
DiO mice and has greater variance between individuals.
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Figure 6. Corneal stromal stiffness. Young’s modulus (Pa) was determined throughout the depth of the
stroma in control 8- and 15-week corneas and compared to 15-week DiO corneas. (a) 8-week control
(R2 = 0.5527) (b) 15-week control (R2 = 0.4534) (c) 15-week DiO (R2 = 0.311 for DiO mouse 1; R2 =

0.3744 for DiO mouse 2). Both eyes were measured for each mouse.

3.4. Changes in Fibronectin

We examined for changes in fibronectin as it is known to be transiently localized in the stroma
and wound edge of control corneas. In the control cornea we found that fibronectin was present at the
wound edge (arrows). In addition, we detected fibronectin along the stromal nerves in the control
corneas (arrowheads) where it is presumably secreted by the nerves (Figure 7a). The stromal branch is
detected in the orthogonal image. In contrast, in the DiO cornea fibronectin is diffuse (arrow) and does
not appear in an organized manner along the wound edge (Figure 7b). In addition, the staining along
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the stromal nerve is negligible (arrowheads). As the stromal nerves are present in the 15-week DiO
mouse cornea [19], we hypothesized that the secretion is defective. Fibronectin was not detected in the
control unwounded cornea (Figure 7c) as has been described previously [15,22].
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Figure 7. Corneas stained for fibronectin and counter stained with rhodamine phalloidin. 40 µm of 2 ×
2 tile z-sections were taken and presented as maximum intensity with orthogonal sections. (a) 15-week
unwounded control (b) 15-week unwounded DiO (c) 15-week control 20 h after wounding (d) 15-week
DiO 20 h after wounding.

4. Discussion

The cornea is unique because it serves an essential function as the strongest refracting surface of
the eye while also maintaining an impermeable barrier between the eye and the external environment.
We have shown that changes in stiffness occur with age as well as on obese mice (DiO) that are a
model of pre-Type II diabetes. Previously, we demonstrated that corneas of DiO mice heal significantly
slower than corneas from control C57BL6 mice [19]. Our data in this manuscript support a report that
pre-diabetics have an increased incidence of corneal surface disorders compared to controls (20.67% vs.
3.33%, respectively; p < 0.05) [23].

We demonstrated that the stiffness of epithelium was age dependent and diet dependent for age
matched animals. As the epithelium of the DiO animals was not as stiff we reflected on the changes
in integrity of the epithelium and stained for polarity proteins that are typically seen in the apical
epithelium. We examined unwounded and wounded corneas as planar polarity can be initiated
by several different cues, including changes in growth factors and/or the extracellular matrix [16].
The cues are thought to be converted into directional migration, which requires the reorganization of
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the cellular components by signaling pathways. These proteins generally become localized to the front
of the migrating cells resulting in cytoskeletal changes with membrane protrusions at the leading edge
and directional movement [24]. These changes were observed in the control and were modified in
the DiO corneas. Previously, in other tissue Crb3 was found to localize to the apical surface in both
differentiated secretory and differentiated ciliated cells [20].

Differences in stiffness were also detected in the basement membrane and stroma with a change
in the percent change of stiffness through the stroma. All the measurements were made in the central
cornea. The reason for the change in stiffness is not well understood [25]. showed that with age
connective tissue is characterized by an accumulation of Advanced Glycation End-Products (AGEs)
and that states that diabetics are impacted more by their accumulation. This is important as it can alter
the glycation of proteins such as collagen that are abundant in the stroma. Their study on tendons
in vitro demonstrated that AGEs reduce the viscoelasticity of the tissue. The data on the accumulation
of AGEs over time and their impact on collagen fibrils and the spacing of proteoglycans is not known.

In a recent review, McKay et al., stated that collagen cross-linking provides the strength for
maintaining the integrity of the cornea and that aging and diabetes are associated with an increase in
collagen cross-linking [26]. However, the review then stated that while corneal hysteresis and corneal
resistance factor were elevated in the diabetic population there were inconsistencies and they proposed
it was due to the heterogeneity of the human patient population. Consistency within a diabetic
population is extremely difficult to control for several reasons including severity and length of the
disease. For this reason, study of several different mouse diabetic models over time will be interesting
to resolve this question. McKay did report increased stromal thickness with none to moderate increase
in stiffness depending on the studies. In our studies we found that there was an increase in stromal
thickness in the DiO cornea Kneer et al. (2018).

Other investigators hypothesized that the increase was associated with diabetes, and found instead
that there was no association of lysyl oxidase (LOX) with diabetes or obesity in their cohort [27]. While
we measured stiffness, we did not measure LOX and its expression needs to be examined in the DiO
mouse at different times of diet. In fact, their in vitro studies showed a greater association of elevated
LOX with hypoxia. Furthermore, Mankus et al. (2012) demonstrated in the P2X7 knock out mouse
that LOX was elevated as was Type III collagen and was not indicative of increased cross-linking [28].
However, in the DiO mouse and in diabetic human corneas, P2X7 mRNA is significantly elevated 7–10
fold [19,28]. The functional meaning of this elevated expression is not yet understood. In our current
studies collagen fibril measurements were not performed, and future studies will further examine the
extracellular matrix of the stroma. It is possible that there is a change in the sulfation of proteoglycans
as this could also affect the stiffness.

Our studies propose that the impaired wound healing in the DiO cornea could reflect the difference
in stiffness or a change in the matrix molecules such as fibronectin. In the control the fibronectin was
detected along the stromal nerves and at the leading edge of control compared to the DiO corneas.
A reduction in fibronectin was detected in corneas subjected to hypoxia, where healing was delayed
compared to control [15,22,29]. It is even possible that the lack of compliancy reflects the decrease in
fibronectin as in vitro studies have shown that stretching of fibronectin causes it to unfold leading to
exposure of cryptic binding sites [30]. The usage of the nanoindenter on mice of the same background
at different ages and environmental stresses provides a controlled study for a field that has much
conflicting data because the human model is so complex. Additional studies over time and on Type 2
diabetic models of obese and non-obese mice will be conducted to further test our results. Identification
of specific factors that alter the integrity of the cornea will be used in treating and preventing changes.
In summary, study of the physical features of the cornea such as stiffness in situ provides insight into
the mechanisms of wound repair in control and diseased conditions.
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