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Simple Summary: Dengue virus transmission from Aedes aegypti mosquitoes to humans is a growing
issue in the state of Florida in the United States of America. The majority of cases have occurred
in the southernmost counties, even though Ae. aegypti are present throughout much of Florida. To
understand this geographic partitioning of dengue fever cases in Florida, we compiled ten years
(2009–2019) of county-level data on human, environmental, and vector elements and identified risk
factors for laboratory-confirmed cases of dengue virus incidence in the state. Counties with the
highest average temperatures, highest minimum temperatures, and lowest maximum temperatures
were significantly more likely to have local dengue virus transmission. Additionally, moderate
rainfall and an increasing number of travel-related dengue cases were also significantly associated
with local transmission. This is the first study of its kind to identify county-level risk factors for
dengue incidence in Florida. This study provides a parsimonious model that may be useful for
prediction of future dengue occurrence based on routinely collected, publicly available data sources.
Our findings also highlight the importance of travel-related dengue fever cases to the state as well as
environmental conditions that promote dengue virus transmission in Florida by Ae. aegypti.

Abstract: Aedes aegypti mosquitoes are the main vector of dengue viruses globally and are present
throughout much of the state of Florida (FL) in the United States of America. However, local
transmission of dengue viruses in FL has mainly occurred in the southernmost counties; specifically
Monroe and Miami-Dade counties. To get a better understanding of the ecologic risk factors for
dengue fever incidence throughout FL, we collected and analyzed numerous environmental factors
that have previously been connected to local dengue cases in disease-endemic regions. We analyzed
these factors for each county-year in FL, between 2009–2019, using negative binomial regression.
Monthly minimum temperature of 17.5–20.8 ◦C, an average temperature of 26.1–26.7 ◦C, a maximum
temperature of 33.6–34.7 ◦C, rainfall between 11.4–12.7 cm, and increasing numbers of imported
dengue cases were associated with the highest risk of dengue incidence per county-year. To our
knowledge, we have developed the first predictive model for dengue fever incidence in FL counties
and our findings provide critical information about weather conditions that could increase the
risk for dengue outbreaks as well as the important contribution of imported dengue cases to local
establishment of the virus in Ae. aegypti populations.
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1. Introduction

The geographic distribution of the principal dengue virus (DENV) vector Aedes aegypti
(Ae. aegypti) is predicted to cover much of the southeastern United States of America (USA)
over the next thirty years [1]. There are DENV serotypes: DENV-1, -2, -3, and -4. These
viruses are the causative agents of dengue fever (“dengue”), the most prevalent arthropod-
borne virus illness in the world [2]. Globally, dengue is responsible for an immense human
health and economic burden [3]. Nearly half of the world’s population lives in at-risk
regions for dengue, and those regions are expected to expand in coming years [1,4]. There
are over 50 million symptomatic dengue cases yearly, with many more predicted to be
asymptomatic, and nearly 20% of dengue cases require hospitalization [5]. Dengue also
results in a global cost of almost USD 9 billion [5]. It is important to understand the nuances
of transmission in areas where dengue has the possibility to become endemic so as to halt
the increasing burden to humans and the global economy.

The expanding range of these mosquito vectors is predicted to also increase risk for
autochthonous (local) dengue transmission into new areas. Thus far, Texas and Florida (FL)
have been the sole states from the contiguous USA that have reported almost yearly local
dengue transmission [6]. Florida’s economy is largely dependent on tourism which could be
a contributing factor to the number of travel-related introductions of DENV to the state [7].
For example, in 2019, there were 397 travel-associated DENV cases [8]. Currently, the factors
that influence local dengue transmission in FL are poorly understood. Although studies
that considered personal-level risk factors for dengue virus exposure have been conducted
in FL and TX previously [9,10], more work is needed to predict where dengue occurs in
these states to better inform local vector and disease control programs. Additionally, a
better understanding of the factors associated with the spread of dengue into non-endemic
regions in general can be useful to limit the growing reach of this disease globally.

Ae. aegypti are present throughout most of peninsular FL but are absent from the
panhandle [11]. Many FL counties are found to have Ae. aegypti in addition to the secondary
dengue vector, Aedes albopictus [11]. Though presence of the principal or secondary vector
is a prerequisite for local DENV transmission, not every county in FL with Ae. aegypti
has reported local transmission over the last twelve years. Nearly all autochthonous
transmission of DENV in FL has occurred in the southern half of the state with the majority
of cases in the southernmost counties [6]. For this study, the state of FL served as the study
area due to its ideal Ae. aegypti environment, proximity to DENV endemic areas in the
Caribbean, Central and South America, and the increasing number of locally acquired cases
in the state in recent years. Despite having several vector control programs in the state,
resources to support this effort are not evenly allocated throughout FL. The goal of these
analyses was to develop a predictive model of dengue case occurrence in FL counties using
factors related to humans, environmental and the vector, which can inform the allocation of
resources towards more targeted control activities. Here, we hypothesize that county-level
average temperature and precipitation are significant predictors of county-level dengue
occurrence in FL.

Human population density is an important factor to consider when modeling dengue
occurrence because Ae. aegypti are a highly anthropophilic species that is almost universally
found in areas of high human population density [12]. DENV is not currently thought to be
endemic across FL, so transmission is dependent on local introductions by travelers or the
persistence of infections in the mosquito populations following a local outbreak. As such, it
is crucial to also account for imported cases to the state to better predict potential DENV
transmission [13–15]. Importation of arboviruses is not only a prospective issue to regions
of the USA but is also an ongoing international problem, especially in Europe [16–18]. For
example, over 15% of travel-related febrile illness is caused by dengue [19]. Florida is a
tourism hub and a hotspot for international travel. It would be ideal to minimize local
dengue transmission in FL as much as possible to also prevent any travel-related infections
exported out of the state. In the Americas, morbidity and mortality from dengue has been
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worsening in recent decades [20]. Preventing dengue from taking a foothold in the USA
would also limit the increase of regional transmission cycles in the Americas.

Regarding climate variables, temperature, precipitation and humidity are all factors
that affect a mosquito’s extrinsic incubation period for viruses (the time from virus uptake
by the vector to transmission to a human host), feeding rates, and survival [21]. In a
recent meta-analysis, both temperature and precipitation were significantly associated with
dengue fever risk, primarily in Southeast Asia and several studies from Brazil. [22]. Average
temperature, minimum temperature, and wind speed were also found to strongly correlate
with dengue incidence in Colombia [23], and rainfall and maximum temperature were
related to dengue prevalence in Pakistan [24]. The built-environment is a well-established
contributing factor to vector presence and abundance globally. For instance, roadways
in FL have been linked to genetic diversity among Ae. aegypti populations [25] by acting
as barriers between populations as well as a means to transport mosquitoes outside of
their normal flight range. The urban built-up environment has been positively associated
with dengue in Thailand and Taiwan [26,27]. Ae. aegypti is an urbanized vector so dengue
transmission in FL may also follow a similar trend of occurring in counties with the highest
percent urbanized land cover.

Increasing our knowledge of the risk factors for dengue transmission, especially in non-
endemic areas, can aid prevention by flagging potential hotspots in hopes of mobilizing
control efforts to those areas. Herein we used a negative binomial regression model,
incorporating a wide range of predictors across the human, environmental and vector
dimensions, to understand drivers of dengue virus transmission in FL.

2. Materials and Methods
2.1. Study Area and Risk Factor Data Collection

Forty counties in FL across eleven years (2009 to 2019) were included in the analysis,
reflecting 440 county-years. Counties from the panhandle (n = 27) were excluded since
Ae. aegypti is not present, and therefore, dengue transmission is not likely to occur in
these counties. Data were gathered on potential risk factors for dengue transmission
in FL from several publicly available sources (Table 1). Mapping and spatial analyses
were performed using ArcGIS (ESRI 2019, ArcGIS Desktop: Release 10.7.1. Redlands, CA:
Environmental Systems Research Institute). Statistical analyses were conducted using SPSS
statistical software (IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version
27.0. Armonk, NY, USA: IBM Corp).

Table 1. Human, environmental and vector-related factors by county-year included in predictive
model building for dengue occurrence in Florida, USA.

Level/Predictor Units Source

Human
Population density People per square kilometer U.S. Census Bureau American Community Survey
Imported dengue Number of cases Florida Department of Health via Dr. Andrea Morrison

Environment
Average temperature Degrees Celsius (◦C) Florida Automated Weather Network (FAWN)

Maximum temperature Degrees Celsius (◦C) FAWN
Minimum temperature Degrees Celsius (◦C) FAWN

Humidity Percent FAWN
Rainfall Centimeters (cm) FAWN

Wind speed Kilometer per hour (km/h) FAWN

Urban/built-up Percent total county area (minus wetlands
and water)

United States Geological Survey (USGS) MODIS Land
Cover Version 6

Highway kilometers Kilometers Florida Department of Transportation (FDOT)

Hurricane days Number of days experiencing hurricanes or
tropical storms per year

National Oceanic and Atmospheric Administration
(NOAA)

Vector

Aedes aegypti:Aedes albopictus
abundance Relative ratio

Dr. Derek Cummings, Florida Mosquito Control
Districts, Florida Department of Agriculture and

Consumer Services
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2.2. Response Variable

The response, or dependent, variable was number of local human dengue cases per
county-year. This variable ranged from 0 to 66 cases and had an average of 0.36 cases per
county-year. Data were shared by the Florida Department of Health for confirmed and
probable cases reported to the Florida Department of Health, classified using the Council
of State and Territorial Epidemiologists national surveillance case definition [28].

2.3. Predictor Variables
2.3.1. Human

Imported dengue case numbers by month and year per county were shared by the
Florida Department of Health. Imported/travel cases ranged from 0–234 for any given
county per year. Data were obtained from the American Community Survey (ACS) from
the U.S. Census Bureau (census.gov) to compute population density (people per square
mile) per county-year. Population density ranged from 15.69–3577.64 people/square mile.

2.3.2. Weather

Data were extracted from the Florida Automated Weather Network (FAWN) for
monthly averages of maximum, average and minimum temperature per year (converted
from degrees Fahrenheit to degrees Celsius (◦C)), humidity (%), rainfall (converted from
inches to centimeters (cm)) and wind speed (converted from miles per hour to kilometers
per hour (km/h)) (fawn.ifas.ufl.edu). FAWN provides monthly averages of each variable
from all forty weather stations in their network. As dengue transmission has been most
prominent between the months of May through October over the last eleven years, we
calculated average weather variables across those six months per county. Data during
months in which a hurricane or tropical storm occurred in FL was removed, to avoid biased
measurements due to extreme weather events. Weather stations are not located in every
county, so we used ArcGIS to interpolate weather values at unmonitored counties using
point data from each weather station across the state using inverse distance weighting
(IDW). IDW is commonly used for weather-related factors because it assumes spatial
autocorrelation where areas that are closer together have similar values. The weights in
IDW are proportional to the inverse distance between the point and its predicted location.
After interpolation, we were able to assign a weather value for each of the 40 counties
included in the analysis for 2009 through 2019.

Average temperature ranged from 23–27 ◦C and was reclassified into quartiles. Quar-
tiles were then included as a categorical (factor) variable into the model. We selected
quartiles in the model by comparing Akaike information criterion (AIC) between models
that fit the weather variables as the categorical quartiles versus (vs.) continuous predictor
values (AIC: 584 vs. 745, respectively). The AIC is a relative measure of model fit between
iterations, and lower values indicate a better fit of the model. Maximum temperature
ranged from 33.3–38.3 ◦C and the categorized data by quartiles had a better model fit
(AIC: 435) versus the continuous values (526). Likewise, minimum temperature (range:
7.7–20.8 ◦C, AIC: 661 vs. 678), rain (range: 6.35–25.4 cm, AIC: 625 vs. 788) and humidity
(range: 76–86%, AIC: 575 vs. 794) were all fit as quartiles. Wind ranged from 2–6 mph and
performed best in the model as a continuous measure (AIC: 655 for categorical, 623 for
scale). We also included a variable for number of days experiencing a tropical storm or
hurricane for each county-year, referred to as “hurricane days”, obtained from reports from
the National Oceanic and Atmospheric Administration (NOAA) (noaa.gov); this variable
ranged from 0–7 days.

2.3.3. Built-Environment

MODIS MCD12Q1 remotely sensed land cover data (MODIS Land Cover V6) were
extracted from the U.S. Geological Survey (USGS) (usgs.gov) [29]. We used land cover
data for each year between 2009 through 2019. There were 19 different land cover types, of
which we were only interested in the “urban and built-up” variable. An area is designated

census.gov
fawn.ifas.ufl.edu
noaa.gov
usgs.gov
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as urban and built up by the MODIS algorithm if 30% or greater of the land has impervious
surface area due to buildings, asphalt or vehicles [30]. We calculated the sum of the
area for each county and then subtracted land area designated as permanent wetlands
or water since these are uninhabitable and could confound county-wide measures of
percent urban/built-up environment of habitable lands. Our final variable was percent
urban/built-up landscape out of the total county area minus the area of permanent wetlands
and water, which we refer to as “percent urban” throughout. This variable was included as
a quantitative variable in further statistical modeling and ranged from 0.045–84.6%.

Data on km of highways per county between 2009 and 2019 were obtained from
the Florida Department of Transportation (fdot.gov). This measure included interstates,
highways, and freeways across each county, which are high speed roadways, ranging
from zero to 300.8 km. Kilometers of highways were included as a quantitative variable in
the model.

2.3.4. Vector

We received records for mosquito surveillance across FL dating from 2009 through
2019 that were collected by various Mosquito Control Districts across FL and compiled
and shared by the Cummings Laboratory at the University of Florida. Across those years,
FL counties had variable number of trapping days, number of trap sites and trap types
deployed. The variability between counties made it difficult to compare baseline mosquito
abundance of Ae. aegypti and Ae. albopictus, as originally intended. After calculating yearly
estimates of both Ae. aegypti and Ae. albopictus per county, we had 30% coverage across
the forty study counties between 2009–2019 and 70% missing values. This corresponded to
data on 132 county-years out of the total 440 county-years. Across the records, there were
on average 4.5 county years of data for each county between 200–2019. We calculated a
standardized measure of the ratio between Ae. aegypti to Ae. albopictus per county year to
be able to make comparisons and inferences about the relative abundance of the principal
DENV vector to the secondary vector between counties. The ratio of Ae. aegypti to Ae.
albopictus ranged from 0 to 890, the average county-year had a ratio of 11.66 and a median
ratio of 0.45.

2.4. Spatial Autocorrelation

The presence of spatial autocorrelation, the degree to which an object is similar to
its neighbors, was assessed using Moran’s I [31]. Moran’s I is an inferential statistic and
variant of the correlation coefficient. In this study, we defined counties to be “nearby” to
another county if they share a border or vertex with another county.

Using the calculated value of Moran’s I we then calculated a standardized Z value to
determine significance of the measured spatial autocorrelation. Z values that are greater
than 1.96 or less than −1.96 indicate a rejection of the null hypothesis, that there is random
dispersion. Z values between 1.96 and −1.96 indicate that the null hypothesis cannot be
rejected, and spatial randomness is assumed. We tested for spatial autocorrelation on the
response variable, number of local dengue cases per county-year, as well as the residuals of
the final model based on the training dataset.

2.5. Model Building Using Negative Binomial Regression

We partitioned the 440 county-year database into a training and testing dataset by
assigning random numbers to each of the records and creating a subset with the 20% lowest
random numbers (n = 88) for the testing data, and leaving the remaining 80% (n = 352)
records to build and train the statistical model to predict the occurrence of dengue in FL. Our
outcome of interest was case counts of dengue in FL between 2009–2019. Poisson regression
and negative binomial regression are common statistical methods to analyze count data
(positive integers), especially for low occurrence outcomes. Poisson regression has a strict
assumption of equidispersion, meaning that the mean and variance are equal. Negative
binomial regression does not have as strict an assumption about equidispersion and can be

fdot.gov
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used with overdispersed data, where the variance is greater than the mean. Upon testing
the assumption of equidispersion, it was found that the data did have overdispersion
(mean: 0.39, variance: 15.4). We therefore built and validated a statistical model to predict
dengue occurrence using negative binomial regression. In addition to a count outcome,
negative binomial regression must also have at least one or more predictor variables that
are categorical (nominal or ordinal) or continuous. When the response variable is a count
outcome with variable exposure among the population(s) of interest, an offset variable can
be used to compensate for this. The model herein included the natural log of population
size per county [ln(population size)] as the offset variable since counties with more people
overall will have a larger pool of dengue-susceptible people.

We evaluated univariate associations of each variable with the outcome and then in-
cluded all significant factors into multivariable model iterations. Overall model significance
was assessed by the omnibus test, and the test of model effects was used to determine
significance of each parameter based on Wald Chi-Square test p-value. Significance tests
were performed at an α level of 0.05 and variables were dropped from the multivariable
model if the Wald Chi-Square test p-value was not significant. If a model passed all signif-
icance tests, the AIC was then evaluated and the model of best fit selected based on the
lowest AIC. The output of binomial regression is the incident rate ratio (IRR), which is the
exponentiated beta coefficient (β). An IRR is a relative measure to compare incidences
between two events, otherwise considered to be an exponential effect size measure [32].
We also calculated a secondary measure of effect size known as the standardized mean
difference (SMD) effect size, which is the difference between two group means divided
by the standard deviation and can be calculated using a web interface designed by Coxe,
2018 [32].

2.6. Model Validation

After determining the model of best fit by comparing AICs between models in the
training set, each parameter estimate was included into the full additive equation that
incorporates the linear combination of predictors equating to the log of the outcome using
the 20% held out test set:

log(dengue cases) = Intercept + β1 +β2 +β3 . . .βn (1)

The equation above, where β1 (beta coefficient one) is the regression coefficient for
variable one added to each subsequent beta coefficient through variable n, was then applied
to the testing dataset to predict case counts per county year. We predetermined that only
those outcomes of positive integers would be counted as “cases” and that the predicted
outcome would be categorized into groups of “1 = predicted presence (case counts < 1)” or
“0 = predicted absence (case counts < 1)”. We then calculated model sensitivity, specificity,
accuracy, where a is both predicted presence (by the model) and observed presence (actual
historical health department records) of local dengue cases, b is predicted absence of dengue
cases but observed presence, c is predicted presence but observed absence and d is predicted
absence and observed absence.

sensitivity =
a

(a+b)
*100, (2)

specificty =
d

(c+d)
*100, (3)

accuracy =
a+d

a+b+c+d
*100, (4)

and the kappa statistic (K) to remove chance agreement from accuracy measures

chance agreement=
(

a+b
a+b+c+d

*
a+c

a+b+c+d

)
+
(

b+c
a+b+c+d

*
c+d

a+b+c+d

)
, (5)
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K=
accuracy−chance agreement

(1−change agreement)
, (6)

using an error matrix that displays “a” as true positives, “b” as false negatives, “c” as false
positives and “d” as true negatives (Table 2).

Table 2. Error matrix of predicted and observed dengue presence and absence for model validation.

Predicted Presence Predicted Absence

Observed presence 1 (a) 2 (b)
Observed absence 0 (c) 85 (d)

3. Results
3.1. Univariate Associations between Predictors and Dengue Cases

In the training dataset, population density was not significantly associated with
dengue case counts. Population density also exhibited multicollinearity with other predic-
tors in the model and was thus not included in the full model. When the model included
the Ae. aegypti:Ae. albopictus ratio per county, 72% of records were dropped due to missing
data. This variable was thus excluded from model building since this variable was not
missing at random. All weather-related factors (average temperature, maximum temper-
ature, minimum temperature, rain, wind, and humidity) were significantly associated
with dengue cases except for hurricane days. Additionally, imported case numbers, km
of roads per county and percent urban were also associated with dengue case counts in
bivariate models.

3.2. Model Training

All variables that were independently and significantly associated with dengue case
counts were included in the full model for training. The full model had a significant
omnibus test (p < 0.001) and an AIC of 218.665, but wind speed (p = 0.081) and km of
highways (p = 0.163) were no longer significant and were removed from the next iteration.
After removing wind speed and km of highways, the overall model fit was significant
(p < 0.001), but the AIC increased to 220.368 and humidity was no longer significant
(p = 0.41). Taking out humidity resulted in a significant model overall and every predictor
was also significant via Wald Chi-Square test. However, the AIC further increased to
222.29. We were interested to know if there was an interaction occurring between percent
urban and maximum temperature and included that term into the model. Including the
interaction term between percent urban and maximum temperature decreased the AIC to
217.378, the omnibus test was still significant (p < 0.001). Our final and best fitting model
(Table 3) had an AIC of 212.14, a significant omnibus test (p < 0.001), and all predictors
were significantly associated with dengue case counts, including average temperature,
maximum temperature, minimum temperature, rainfall, imported dengue case numbers,
and the interaction between maximum temperature and percent urban.

A conceptual model for the statistical model of best fit is presented in Figure 1. Coun-
ties with an average temperature between 23–24.7 ◦C (based on temperature quartiles)
had a dengue incident rate ratio 0.058 times that of counties with an average temperature
between 26.1–26.7 ◦C (p < 0.001) (Table 3). Similarly, counties with an average temperature
between 25–25.3 ◦C had a dengue incident rate 0.026 times that of counties with an average
temperature between 26.1–26.7 ◦C (p < 0.001). Lastly, counties with an average temperature
between 25.6–25.8 ◦C had a dengue incident rate 0.122 times that of counties with an
average temperature between 26.1–26.7 ◦C (p = 0.009). In summary, an increase of average
temperature is (non-linearly) associated with increasing dengue case numbers. Counties
with a maximum temperature between 33.6–34.7 ◦C had a dengue incident rate 46.418 times
that of counties with a maximum temperature between 36.1–38.3 ◦C (p = 0.041). The other
comparisons were not statistically significant. Counties with 11.4–12.7 cm of monthly rain
had a dengue incident rate 6.803 times that of counties with 16.5–25.4 cm of rain (p = 0.009).
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Counties with a minimum temperature between 7.8–13.9 ◦C had a dengue incident rate
0.093 times that of counties with a minimum temperature between 17.5–20.8 ◦C (p = 0.039).
Counties with a minimum temperature between 14.2–15.6 ◦C had a dengue incident rate
0.025 times that of counties with a minimum temperature between 17.5–20.8 ◦C (p = 0.008).
Thus, an elevation of minimum temperature was associated with increased dengue inci-
dence. A one unit increase in number of imported dengue cases corresponded to a 1.091%
increase in the rate of local dengue cases (p < 0.001). Finally, the interaction between percent
urban and lowest maximum temperature of 33.6–34.7 ◦C indicated that when there was a
one unit increase in percent urban, the effect of low maximum temperature decreases by
16.8%. An increase in the urban environment can decrease the magnitude of risk that a
milder maximum temperature has on dengue incidence.

Table 3. Test of model effects and parameter estimates for final selected predictive model for dengue
incidence in Florida, USA.

Source
Parameter Estimate
(β) (95% Confidence

Interval [CI])
p-Value IRR Standard

Error

Standardized
Mean Difference

Effect Size

(Intercept) −12.928 (−16.7, −9.1) 0.000 < 0.001 1.9291 –

Average temperature (◦C) – <0.001 – – –
23–24.7 −2.842 (−4.4, −1.3) <0.001 0.058 0.8097 −0.001 +

25–25.3 −3.650 (−5.4, −1.9) <0.001 0.026 0.8975 −0.002 +

25.6–25.8 −2.107 (−3.7, −0.5) 0.009 0.122 0.8109 −0.001 +

26.1–26.7 * – – 1 –

Maximum temperature (◦C) – <0.001 – – –
33.6–34.7 3.838 (0.2, 7.5) 0.041 46.418 1.8792 0.071
35–35.3 −2.299 (−6.6, 2.0) 0.295 0.100 2.1944 −0.001
35.5–35.8 −4.,772 (−9.7, 0.2) 0.062 0.008 2.5599 −0.002
36.1–38.3 * – – 1

Minimum temperature (◦C) – 0.009 – – –
7.8–13.9 −2.375 (−4.6, −0.1) 0.039 0.093 1.1481 −0.001 +

14.2–15.6 −3.700 (−6.4, −1.0) 0.008 0.025 1.3872 −0.002 +

15.8–17.2 0.683 (−0.8, 2.1) 0.353 1.981 0.7353 0.002
17.5–20.8 * – – 1 – –

Rain (cm) – <0.001 – – –
6.4–10.2 1.070 (−1.3, 3.5) 0.382 2.916 1.2247 0.003
11.4–12.7 1.917 (0.5, 3.3) 0.009 6.803 0.7286 0.009 +

14–15.2 0.469 (−1.2, 2.2) 0.592 1.598 0.8734 0.001
16.5–25.4 * – – 1 – –

Imported dengue cases 0.087 (0.04, 0.14) <0.001 1.091 0.0257 0.0001 +

Maximum temperature (◦C) *
Percent urban % – <0.001 – – –

33.6–34.7 ◦C x % urban −0.184 (−0.2, −0.1) <0.001 0.832 0.0258 −0.0002 +

35–35.3 ◦C x % urban −0.081 (−0.2, 0.02) 0.119 0.922 0.0520 0
35.5–35.8 ◦C x % urban 0.007 (−0.1, 0.1) 0.899 1.007 0.0583 0
36.1–38.3 ◦C x % urban −1.035 (−2.9, 0.8) 0.279 0.355 0.9560 −0.001

* Denotes comparison groups and “x” denotes an interaction; + Denotes statistical significance.
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Figure 1. Conceptual model of the risk for dengue occurrence in Florida, USA.

3.3. Spatial Autocorrelation

Neither the dependent variable nor the residuals of the model had significant spatial
autocorrelation. The Moran’s I value of the dependent variable was 0.01, the Z value
was 0.47, and the p-value was 0.68. The Moran’s I value of the residuals was 0.006, the Z
value was 0.30 and the p-value was 0.63. Both values were slightly positive, indicating a
minimal tendency toward clustering, but p-values corresponding to each Z value were not
statistically significant. It can be concluded that there is no evidence in our data for residual
spatial confounding due to spatial autocorrelation in the model.

3.4. Model Testing and Validation

We applied the additive equation derived from the model of best fit to the testing
dataset to predict case counts. Precited outcomes were dichotomized, and any predicted
positive integer was coded as “1” = any number of predicted cases, and all other instances
were coded as “0” = no predicted cases. The model predicted 59 dengue cases in 2019
when there were truly 16 cases that year. The model did not predict cases in any other
county within the testing dataset, although there was one case in Martin Co., FL, USA in
2011 and seven cases in Miami-Dade Co., FL, USA in 2014. Per the pre-determined case
dichotomization, the outcomes were reported as one instance of correctly predicted dengue
and two instances of missed occurrences of dengue. The model correctly predicted the
remaining 85 instances of dengue absence. We report these predictions as 85 instances of
correctly predicted absences with no occurrences of incorrectly predicted absences. The
predictive model had 97.7% accuracy and a kappa statistic of 0.976 which corresponds
to almost perfect agreement. The sensitivity was 33% and the specificity was 100%. The
largest effect sizes for this model were for the lowest quartile of maximum temperature
(IRR: 46.418 and SMD: 0.071) and for moderate rainfall (IRR: 6.803 and SMD: 0.009) are
classified in the small effect range.

4. Discussion

We identified human and environmental predictors for dengue incidence in FL. As
expected, climate-related factors appear to be most impactful since average temperature,
minimum temperature, maximum temperature, and rainfall were all significant predictors
of dengue occurrence in FL. Number of imported cases was also associated with dengue
occurrence in the state, as was the interplay between degree of urban development and
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maximum temperature. In summary, people in counties with the highest average tempera-
ture, most mild maximum temperature, most mild minimum temperature with mid-range
rainfall (11.4–12.7 cm) have the highest risk for dengue infection. Additionally, people in
counties with elevated imported dengue cases are also at a higher risk for dengue. Our
validated model may be of use in other sub-tropical and temperate areas where dengue
is non-endemic but has the potential to propagate through autochthonous cases. In such
countries internationally, epidemiologic [17], environmental [33], and entomological [34]
surveillance have been found to be useful tools for understanding dengue outbreaks. Our
work brought in data across these different dimensions to understand the risk factors for
dengue transmission and could be a useful tool to identify potential risk areas for dengue
in similar regions if validated in that location.

It is not surprising that climate-related factors were highly associated with dengue inci-
dence in FL. Globally, temperature, humidity, rainfall, and wind have all been identified as
risk factors for dengue elsewhere due to their connection to mosquito abundance [22,23,35].
However, the results from the present study highlight certain temperature and rainfall
ranges in which risk for dengue occurrence is significantly increased. Ae. aegypti survival
is impaired at extreme temperatures [36] with developmental impacts below 14.5 ◦C and
above 32 ◦C [37], which would explain why counties with a higher average temperature,
within that range, yet fewer extreme temperatures, outside of that range, would have the
highest risk for dengue. This would be particularly important protective factor for areas
that can reach extreme highs during the day time since Ae. aegypti are primarily daytime
biters, after sunrise and before sunset [38]. Similarly, rain is necessary to fill outdoor
containers that provide habitats for Ae. aegypti eggs to hatch and larvae and pupae to
mature, as Ae. aegypti are known to commonly use these types of containers to oviposit in
FL [39] and elsewhere [40,41]. Too much rainfall, however, could cause a flushing effect
that reduces vector abundance [42].

Although lower maximum temperatures are a substantial risk factor for dengue inci-
dence in this model (IRR: 46.418), compared to more elevated maximum temperatures, the
interaction of this variable with percent urban landcover suggests that highly urban areas
can have a high risk of dengue transmission even at the most extreme temperatures. It was
intriguing that percent urban alone was not significantly associated with dengue incidence,
but its interaction with maximum temperature lessens the impact of higher temperatures.
This interaction could be due to Urban Heat Islands (UHIs), where heat is generated by
the built environment when it consumes and re-radiates solar radiation. [43] UHIs and
microclimates have been associated with increased dengue incidence previously [44,45].
Therefore, it could be that a milder maximum temperature is more of a risk factor for
dengue transmission outside of highly urban areas. In the future we aim to conduct anal-
yses at higher resolution within dengue hotspots, like Miami-Dade or Monroe counties
to understand the impact of microclimates in urban settings on dengue incidence within
hotspot communities.

Our results provide an important foundation for understanding the dynamics of
DENV transmission in FL. This is the first study of its kind to develop and validate a
predictive model for dengue incidence in the state. This model has high accuracy (97.7%)
and specificity (100%), but less than desirable sensitivity (33%). We are confident in this
model’s ability to predict low and high dengue risk areas, but one limitation of the model
is that it may underperform when detecting very low case numbers. The model accurately
identified dengue incidence in the county with the highest case numbers in the testing
dataset (n = 16 for Miami-Dade in 2019) but failed to detect dengue incidence in two other
counties with lower incidence (n = 1 & n = 7). The low sensitivity may be a result of the
overall low incidence of dengue in FL, but the model could be refined further in the future.
The model could be adapted to a machine learning method. Machine learning algorithms
can accommodate missing data better than statistical models [46]. We believe that Ae.
aegypti:Ae. albopictus ratios would have been an important factor in the model if there
was more coverage over county-years due to a noticeably higher ratio of Ae. aegypti in
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counties with previous dengue transmission in our current database. A machine learning
approach could enable us to incorporate these data and such algorithms have been found
to outperform regression and timeseries analyses [47,48]. Additionally, though we verified
that there was no spatial autocorrelation in these data, a limitation of this work is that
we did not analyze temporal autocorrelation. In the future, we aim to better understand
potential temporal trends occurring year by year. Additionally, though many predictors in
the model are statistically significant the overall effect sizes are in the small effect range,
indicating that other factors could also be contributing to dengue occurrence in FL. We
could explore additional factors in the human, environmental and vector dimensions in
a future analysis. A final limitation of this work is that the model, though useful locally
in FL, USA, is not validated for use in other regions or nations. For use outside of our
study location, this model will need to be validated against ground truth data in other
locales. Nonetheless, our work still provides the first insights into county-level risk factors
for dengue transmission in FL. We envision that this model can provide a framework for
predicting dengue incidence throughout the state.

Statistical models can be useful tools for predicting areas of suitability for Ae. aegypti as
well as predicting disease incidence [27,49–52]. Poisson and negative binomial regression
have been commonly used to model dengue incidence, and many studies globally have
uncovered that weather-related factors such as rainfall, temperature and humidity in a
given location can be useful predictors of dengue [53–55]. Much remains to be investigated
regarding personal, community, and state-wide risk factors for DENV transmission in FL,
but this work contributes to a better understanding of several risk factors related to climate,
the built-environment and imported dengue case numbers. Previous work revealed several
individual-level risk factors for dengue in FL, including bird baths and vegetation around
residences as well as open windows [9,56] and our results contribute additional evidence
that at the county-level, higher average temperatures, moderate rainfall, and fewer extreme
temperatures coupled with increasing urban population and an increasing number of
imported cases could result in conditions favorable for DENV transmission in FL. Our
work overall is in line with the need for a more wholistic approach to arbovirus prevention
and control that considers the wider dimensions of human health, vector biology and
environmental science [57,58]. Finally, these findings contribute to potential wider reaching
implications to support the prevention of autochthonous cases wherein the virus could
become established in the local mosquito population or have the potential to spread as
travel cases to other nations.
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