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Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. Genome-wide association studies (GWAS) have
identified ~30 AUD risk genes in European populations, but many fewer in East Asians. We conducted GWAS and genome-wide
meta-analysis of AUD in 13,551 subjects with East Asian ancestry, using published summary data and newly genotyped data from
five cohorts: (1) electronic health record (EHR)-diagnosed AUD in the Million Veteran Program (MVP) sample; (2) DSM-IV diagnosed
alcohol dependence (AD) in a Han Chinese–GSA (array) cohort; (3) AD in a Han Chinese–Cyto (array) cohort; and (4) two AD Thai
cohorts. The MVP and Thai samples included newly genotyped subjects from ongoing recruitment. In total, 2254 cases and 11,297
controls were analyzed. An AUD polygenic risk score was analyzed in an independent sample with 4464 East Asians (Genetic
Epidemiology Research in Adult Health and Aging (GERA)). Phenotypes from survey data and ICD-9-CM diagnoses were tested for
association with the AUD PRS. Two risk loci were detected: the well-known functional variant rs1229984 in ADH1B and rs3782886 in
BRAP (near the ALDH2 gene locus) are the lead variants. AUD PRS was significantly associated with days per week of alcohol
consumption (beta= 0.43, SE= 0.067, p= 2.47 × 10−10) and nominally associated with pack years of smoking (beta= 0.09, SE=
0.05, p= 4.52 × 10−2) and ever vs. never smoking (beta= 0.06, SE= 0.02, p= 1.14 × 10−2). This is the largest GWAS of AUD in East
Asians to date. Building on previous findings, we were able to analyze pleiotropy, but did not identify any new risk regions,
underscoring the importance of recruiting additional East Asian subjects for alcohol GWAS.
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INTRODUCTION
Globally, alcohol use disorders (AUD) are among the top causes of
morbidity and mortality [1]. Numerous factors predispose to the
risk of developing AUD. Genetic factors contribute substantial risk
to the etiology of AUD [2], and the heritability has been estimated
to be ~0.5 in twin studies [3]. Genome-wide association studies
(GWAS) of AUD have been completed in multiple populations
including European (EUR), African, Latin American and Asians
[4–13]. To date, the largest GWAS of problematic alcohol use (PAU,
a proxy for AUD) in 435,563 EUR subjects identified 29
independent risk variants [14]. In contrast, the largest GWAS of
AUD in East Asians included less than 1% of this number:
3381 subjects (533 cases) [12]. Genetic architecture often differs
between populations; polygenic risk prediction between popula-
tions, though sometimes useful, often is not transferable [15]. Thus,
it is critically important that non-EUR populations be investigated

to permit inferences to be made about these ancestral populations,
which represent the majority of the world’s people [16, 17].
Because of the limited sample available and consequent lack of

power for GWAS, little is known about the genetic architecture of
AUD in East Asians. The most consistent loci identified are ADH1B
(alcohol dehydrogenase 1b) and ALDH2 (aldehyde dehydrogen-
ase). Candidate studies of ADH1B*rs1229984 and ALDH2*rs671 in
East Asians showed strong associations between these functional
variants and alcohol dependence (AD) [18, 19]. The first GWAS of
AD in a Chinese sample was conducted in 102 male cases and 212
male controls; rs3782886 in the ALDH2 region was genome-wide
significant [5] despite the very small sample size. The first GWAS of
AD in Thai samples included 1045 subjects and identified
rs149212747 in the ALDH2 region as the lead variant [6]. The
latest GWAS of AUD in a Chinese cohort identified both ADH1B
and ALDH2 genes as risk loci [12]. However, only a small
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proportion of the variance was explicable by variants in these
genes. Larger samples are required to identify more risk variants
to provide a better understanding of the genetic architecture in
Asian populations.
Here we conducted a GWAS that combined five datasets from

previously published cohorts and newly genotyped subjects
from Thai and MVP cohorts. In total, 13,551 subjects of East
Asian ancestry were analyzed, including 2254 AUD cases. We then
analyzed the resulting AUD PRS in an independent East Asian
sample for associations with 26 phenotypes from surveys or ICD
diagnoses. This GWAS of AUD is the largest to date in East Asians.

METHODS AND MATERIALS
Datasets
Thai METH–GSA. As described previously [6], subjects were recruited in
two stages for studies of the genetics of methamphetamine dependence
(Thai METH). For both stages, subjects were recruited in Bangkok and
assessed using the Thai version of the Semi-Structured Assessment for
Drug Dependence and Alcoholism [20]. The IRB protocols were approved
by both the Chulalongkorn University (Thailand) IRB and the Yale
University Human Research Protection Program. All subjects provided
written informed consent prior to their research participation.
The first stage included methamphetamine users hospitalized between

2007 and 2011 for 4 months of residential drug treatment (Thai
METH–GSA, Table 1) [21]. DNA samples were genotyped on the Illumina
(San Diego, CA) Global Screening Array (GSA) which includes ~640 K SNPs.
Among the 863 genotyped subjects, we removed those with sample
genotype call rate <0.9, mismatched genotypic and phenotypic sex, or
excess heterozygosity rate [6]. Unlike for our prior report, here we retained
related subjects and applied linear mixed models (LMM) to correct for
relatedness (see below). SNPs with genotype call rate ≥0.95, minor allele
frequency (MAF) ≥0.01, and Hardy–Weinberg equilibrium (HWE) p value
>10−6 were kept for imputation. Imputation was done by IMPUTE2 [22]
with 1000 Genome project phase 3 (1KG) data [23] as reference. SNPs with
imputation INFO score ≥0.8, best-guess genotype call rate ≥0.95,
MAF ≥0.01and HWE p value >10−6 were retained for association analyses.
Principal component analysis (PCA) was performed for the remaining
subjects using EIGENSOFT [24, 25]. In contrast with our previous study,
here we used DSM-IV AD to define case status, rather than the DSM-IV AD
criterion count to match the design in other cohorts. This yielded 127
cases and 405 were exposed controls. LMM implemented in GEMMA [26]
were used to test association, with age, sex, and the first ten PCs as
covariates.

Thai METH–MEGA. Second-stage subjects (N= 3,161; the Thai METH-
MEGA sample, Table 1) were recruited from 2015 to 2020 [6]. DNA samples
were genotyped using the Illumina Multi-Ethnic Global Array (MEGA) which
includes ~1.78 M SNPs. We removed subjects with sample genotype call
rate <0.95, sex mismatch, excess heterozygosity rate, or that were
duplicates. SNPs with genotype call rate ≥0.95, or MAF ≥0.01, or HWE
p value >10−6 were retained for imputation as with the Thai METH–GSA
sample. The same imputation processes and post-imputation quality
controls (QC) were applied. We included 794 cases and 1576 alcohol-
exposed controls in the association analysis, which used GEMMA and age,
sex and the first ten PCs as covariates.

MVP–EAA. The Million Veteran Program (MVP) is an ongoing observa-
tional cohort study and mega-biobank supported by the U.S. Department
of Veterans Affairs [27, 28]. In October 2020, MVP released the latest
genotype data (Release 4), which included 658,582 subjects. MVP subjects
were genotyped using an Affymetrix Axiom Biobank Array with ~687 K
markers. QC was first done by the MVP Release 4 Data Team and included
the removal of duplicate DNA samples and those with sex mismatch,
excessive heterozygosity, or a genotype call rate <0.985. We ran PCA for
the MVP subjects with 1KG as the reference, Euclidean distances between
each participant and the centers of the five reference populations were
calculated using the first ten PCs, with each participant assigned to the
nearest reference population. For subjects grouped as East Asian
Americans (EAA), we ran a second PCA and removed outliers with PC
scores >6 standard deviations from the mean on any of the ten PCs (as we
did before [8]), yielding in 7364 EAAs. Imputation [22] was performed
specifically for the EAAs using the 1KG as reference. SNPs with genotype
call rate ≥0.95, MAF ≥ 0.01, HWE > 1 × 10−6, and imputation INFO ≥ 0.8
were retained for analysis. As for our prior study in EUR [14], subjects with
≥2 outpatient or ≥1 inpatient International Classification of Diseases (ICD)
codes for AUD were defined as cases (N= 701, Table 1) and subjects with
no AUD ICD code as controls (N= 6254). BOLT-LMM [29] was used to
correct for relatedness, with age, sex, and the first ten PCs as covariates.

Han Chinese–Cyto. This first GWAS of AD, flushing response, and
maximum daily drinks consumed in a Han Chinese family sample [5] used
the Illumina Cyto12 array containing ~300 K SNPs (Table 1). Whereas the
cohort was not imputed in the original report, we re-analyzed the data and
imputed the SNPs for an AD GWAS. Subjects with genotype call rate <0.95,
duplicated DNA samples, mismatched sex, or excessive heterozygosity
were removed, resulting in 511 subjects for imputation. Imputation used
IMPUTE2 and 1KG reference, SNPs with MAF <0.01, genotype call rate
<0.95, HWE p value <1 × 10−6, or imputation INFO < 0.8 were removed
from further analyses. Due to the drinking practices and characteristic of
this particular population that result in few AD cases in females, only males
were included in this analysis. After QC, 99 DSM-IV-diagnosed male AD
cases and 214 male alcohol-exposed controls were analyzed using GEMMA
to correct for relatedness, with age, sex and ten PCs as covariates.

Han Chinese–GSA. The second case-control AD GWAS in Han Chinese [12]
included 533 cases and 2848 alcohol-exposed controls who were
genotyped using the GSA array (Table 1). Here we used the summary
statistics from previous study.

Meta-analysis
Using association analyses or summary statistics for each of the five
cohorts, effective sample-size-weighted meta-analysis was performed
using METAL [30]. SNPs present in only one cohort or in less than 15%
of the total samples were removed (6.8 million SNPs remained). To define
lead variants, the meta-analysis summary data were clumped by LD with r2

< 0.1 in a 2500-kb window, using 1KG East Asians as the LD reference. For
the two lead SNPs in the ADH1B gene region (rs1229984 and rs1814125),
we performed conditional analysis [31] for rs1814125 conditioning on
rs1229984 to test if its association is independent from rs1229984.
Regional association plots were generated using LocusZoom v1.4 [32] with
reference LD calculated from corresponding 1KG populations. We
converted the effect sizes of lead SNPs from the LMM to odds ratios
(OR) for comparison and further investigation of cohort heterogeneity [33].

Table 1. Sample characteristics.

Cohorts Traits N (%female) # Cases Mean (SD), Age Country of recruitment

Thai METH–GSA DSM-IV AD 532 (49.4) 127 26.6 (6.9) Thailand

Thai METH–MEGA DSM-IV AD 2370 (42.5) 794 34.7 (10.1) Thailand

MVP–EAA ICD-9/10 AUD 6955 (10.7) 701 53.4 (17.1) United States

Han Chinese–GSA DSM-IV AD 3381 (29.9) 533 34.2 (8.3) China

Han Chinese–Cyto DSM-IV AD 313 (0) 99 49.6 (14.7) China

Total 13,551 2254

Thai METH studies of the genetics of methamphetamine dependence in Thailand, GSA Global Screening Array, MEGA Multi-Ethnic Global Array, EAA East Asian
American, Cyto Cyto12 array, AD alcohol dependence, AUD alcohol use disorder.
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This method takes sample prevalence, effect size from LMM, and allele
frequency as input. We also did meta-analyses for the lead SNPs using
inverse variance-weighted meta-analysis using METAL and the converted
log(OR) as input, for comparison.

Polygenic risk scores
Target dataset. We requested and downloaded dbGaP (phs000788.v2.p3)
data from the Kaiser Permanente Research Program on Genes, Environ-
ment, and Health Genetic Epidemiology Research on Adult Health and
Aging (GERA) cohort. This large and ethnically diverse cohort contains gen-
otype data from 5182 self-reported Asians using a custom Affymetrix
Axiom array [34]. All subjects completed a broad written consent.

Imputation. Subjects with mismatched sex or genotype call rate <0.95
were removed. The genomic build was transferred from 36 to 37 using
LiftOver [35]. As we did for MVP, we ran PCA for the 5182 Asian subjects
using the 1KG as reference, clustering them into different groups. A second
PCA among Asians was used to remove outliers, resulting in 4464
genetically classified East Asians for imputation. Imputation was performed
using IMPUTE2 and 1KG reference, SNPs with MAF <0.01, genotype call
rate <0.95, HWE p value <1 × 10−6, or imputation INFO < 0.8 were removed
from further analysis.

Target phenotypes. Two sources of phenotypes are included in this study.
The first is survey data on physical observations, lifestyle and environment,
including phenotypes such as BMI, general health, physical activity, alcohol
use, smoking status and pack years. The second is ICD-9-CM disease and
conditions measures. Participant were coded as cases if there were at least
two diagnoses in a disease category. Binary phenotypes with less than 100
cases were removed from analyses. See Table 2 for details of the target
phenotypes.

Polygenic risk scoring and association. PRS-CS [36] was used to infer
posterior effect sizes of SNPs using GWAS summary statistics for AUD from
this study, and an external East Asian LD reference panel (generated by the
authors of PRS-CS using the 1KG East Asian reference). We used PLINK v1.9
[37] for polygenic risk scoring in the GERA East Asian samples. GEMMA was
used to analyze associations between the PRS and target phenotypes,
accounting for relatedness and correcting for age (in 5-year categories),
sex and the first ten PCs. Bonferroni correction was applied such that
associations with p value <0.05/26= 1.92 × 10−3 are considered significant.

Additional downstream analyses
We used LD score regression [38] to estimate the SNP-based observed
scale heritability of AUD using 1KG East Asians as the LD reference. We also

Table 2. Tested phenotypes in GERA and association results with AUD PRS.

Traits Distribution Beta (SE) p value

Alcohol use in days per week 1= 2757, 2= 603, 3= 503, 4= 159, 5= 267c 0.43 (0.07) 2.47 × 10−10

Smoking in pack years 0= 3232, 1= 530, 2= 306, 3= 128, 4= 44d 0.09 (0.05) 4.52 × 10−2

Ever vs. never smoked 1= 1055, 0= 3232 0.06 (0.02) 1.14 × 10−2

Former vs. current smoker 1= 924, 0= 131 −0.04 (0.04) 2.50 × 10−1

Physical activity 1= 897, 2= 958, 3= 1181, 4= 1323e 0.02 (0.06) 7.97 × 10−1

Health status 1= 740, 2= 1506, 3= 1625, 4= 476 f 0.03 (0.05) 5.23 × 10−1

Disease or conditions

Acute reaction to stress 1= 275, 0= 4189 −0.01 (0.01) 5.22 × 10−1

Allergic rhinitis 1= 1307, 0= 3157 0.01 (0.03) 5.62 × 10−1

Asthma 1= 654, 0= 3810 −0.01 (0.02) 7.21 × 10−1

Cancer: anya 1= 529, 0= 3935 −0.00 (0.02) 9.36 × 10−1

Cardiovascular disease: anyb 1= 688, 0= 3776 −0.03 (0.02) 1.48 × 10−1

Major depressive disorder 1= 262, 0= 4202 0.01 (0.01) 3.66 × 10−1

Dermatophytosis 1= 374, 0= 4090 −0.01 (0.02) 4.87 × 10−1

Type II diabetes 1= 729, 0= 3735 0.03 (0.02) 9.65 × 10−2

Dyslipidaemia 1= 2192, 0= 2272 −0.02 (0.03) 5.17 × 10−1

Hemorrhoids 1= 716, 0= 3748 0.01 (0.02) 6.19 × 10−1

Hernia abdominopelvic cavity 1= 177, 0= 4287 0.00 (0.01) 7.54 × 10−1

Hypertensive disease 1= 2028, 0= 2436 −0.00 (0.02) 9.52 × 10−1

Insomnia 1= 185, 0= 4279 −0.01 (0.01) 2.30 × 10−1

Iron deficiency anemias 1= 118, 0= 4346 0.00 (0.01) 9.14 × 10−1

Irritable bowel syndrome 1= 103, 0= 4361 0.00 (0.01) 7.05 × 10−1

Macular degeneration 1= 130, 0= 4334 −0.00 (0.01) 7.94 × 10−1

Osteoarthritis 1= 941, 0= 3523 −0.01 (0.02) 6.72 × 10−1

Osteoporosis 1= 392, 0= 4072 0.01 (0.01) 6.46 × 10−1

Psychiatric disorder: any 1= 433, 0= 4031 −0.00 (0.02) 9.93 × 10−1

Peripheral vascular disease 1= 160, 0= 4304 0.01 (0.01) 3.81 × 10−1

If not specified for distribution, 1 is case and 0 is control. Traits with p value < 0.05 are labled in bold font..
aCancer: includes malignant tumors, neoplasms, lymphoma and sarcoma.
bHeart disease: includes ischemic heart disease, cardiac arrest, congestive health failure, dysrhythmias, cardiomyopathy, aortic aneurysm, and cerebrovascular
disease, but excludes PVD which is encompassed by the PVD variable.
cDays of alcohol intake per week, 1 is no days, 2 is 1 day, 3 is 2–4 days, 4 is 5–6 days, 5 is every day.
dPack years for former or current smoker, 0= 0, 1 < 10, 2= 10–20, 3= 20–30, 4 ≥ 30.
ePhysical activity total metabolic equivalency of task (MET), 1= first quartile, 0–173 for males and 0–74 for females, 2= second quartile, 174–600 for males and
75–344 for females, 3= third quartile, 601–1380 for males and 345–983 for females, 4= fourth quartile, 1381+ for males and 984+ for females.
fHealth status, 1= excellent, 2= very good, 3= good, 4= fair.
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investigated the trans-ancestry genetic correlation between this study
sample and PAU in EUR populations using Popcorn, a method that uses
only summary-level data from GWAS while accounting for LD [39]. Trans-
population meta-analysis between this study and PAU in EUR was
conducted using METAL. Multi-trait analysis [40] was performed, which
combined data from this study with excessive alcohol consumption
defined as weekly intake >150ml of alcohol for ≥6 months from the
Taiwan Biobank [41].

RESULTS
Genome-wide association and meta-analyses
As in our previous study of AUD in East Asians [12], in a meta-
analysis here of 2254 cases and 11,297 controls, we confirmed two
loci that were significantly associated with AUD (Table 1 and
Fig. 1). One locus is on chromosome 4q23 and includes multiple
alcohol dehydrogenase genes. After LD clumping, there are two
lead SNPs in this locus. The first is rs1229984 (Arg48His, p= 3.35 ×
10−17, Fig. 2a) in ADH1B (Alcohol Dehydrogenase 1B (Class I), Beta
Polypeptide), the second is rs1814125 (p= 2.14 × 10−10) near
ADH1C. Conditional analysis indicated that rs1814125 is not
independent from rs1229984. For comparison, we also looked up
the association of rs1229984 in other populations. Rs1229984 is
also associated with PAU in European populations [14] (Fig. 2b). In
African Americans from MVP, rs122994 is nominally significantly
associated with AUD while another coding variant, rs2066702, is
the lead SNP [8] at ADH1B (Fig. 2c). Another locus is a long region
with high LD on chromosome 12 for which there is positive
selection in East Asians [42], which includes ALDH2 (Aldehyde
Dehydrogenase 2) and BRAP (BRCA1 associated protein) genes.
The lead SNP is rs3782886 (p= 1.68 × 10−29), a coding variant in
the BRAP gene. The previously reported functional coding variant
rs671 in ALDH2 is the second most significant SNP (p= 2.70 ×
10−28); it is not independent from rs3782886. No other
independent associations were detected in this study. There are
allele frequency differences among cohorts for these two lead
SNPs, and moderate heterogeneity of effect sizes (the converted
ORs) detected by the IVW meta-analyses (Fig. S1). The

heterogeneity p values are 6.17 × 10−13 for rs1229984 and is
2.63 × 10−5 for rs3782886 by IVW meta-analysis, justifying the use
of effective sample size-weighted meta-analysis.

Polygenic risk score for AUD
We calculated PRS for AUD in an independent East Asian cohort
from the GERA cohort. We tested 26 phenotypes from survey and
ICD-9-CM diagnosed conditions for association with the AUD PRS
(Table 2). As expected, AUD PRS is significantly associated with
alcohol consumption as measured in days per week of drinking
(beta= 0.43, SE= 0.067, p= 2.47 × 10−10). Also, AUD PRS is
nominally significantly associated with pack years of smoking
(beta= 0.09, SE= 0.05, p= 4.52 × 10−2) and ever vs. never
smoking (beta= 0.06, SE= 0.02, p= 1.14 × 10−2), but these
associations did not survive Bonferroni correction. None of the
other traits in this small target sample were associated with
AUD PRS.

Additional downstream analyses
SNP-based heritability of AUD was estimated to be 0.11 (SE=
0.07), which is not a significant estimate (probably due to the
limited sample size). Genetic correlation between AUD in East
Asian and PAU in European samples is 0.62 (SE= 0.23, p= 8.42 ×
10−3), showing moderate trans-ancestry genetic correlation. None
of the trans-population meta-analysis between this study and PAU
in EUR or multi-trait analysis with excessive alcohol consumption
from Taiwan Biobank identified additional association signals.

DISCUSSION
We collected data from 13,551 subjects with East Asian ancestry to
conduct the largest meta-analysis to date for an alcohol-related
trait in this population (quadruple the previous largest reported
sample). We detected association signals at the ADH1B and ALDH2
loci with substantially stronger statistical significance than has
been seen previously, but did not identify any novel risk loci. This
is mostly consistent with observations from other studies, where
GWAS of alcohol-related traits with sample sizes in this range are
generally underpowered to detect multiple replicable variants
[4, 7,43–46]. In EUR and African-Ancestry populations, the first and
strongest associations detected have been at ADH1B. The ALDH2
association is, to this date, unique to East Asians (rs671, a well-
known functional ALDH2 variant, is apparently unique to certain
Asian populations [19]). It is a common issue for complex traits like
AUD that many variants contribute to the heritability, each with a
small effect size [47, 48]. Missing ancestral diversity in human
genetic studies is a critical issue and recruitment of non-EUR
subjects is crucial to addressing this disparity [16, 17]. The
identification of ALDH2, which as noted is unique to Asians,
exemplifies that there are differences in the genetic architecture
of AUD between Asians and, for example, EUR, making well-
powered investigations in this population an important scientific
issue. Beyond identifying ADH1B and ALDH2 with greater statistical
significance than previous studies, the present investigation
extends prior findings in several ways, including by examining
the utility of the AUD PRS derived from this meta-analysis in an
independent cohort of 4,464 East Asians and testing the
association between the AUD PRS and alcohol, smoking, and
other traits.
The two genes implicated—ADH1B and ALDH2—are involved in

ethanol metabolism [48]. ADH1B encodes an alcohol dehydrogen-
ase that oxidizes alcohol to acetaldehyde, which is then oxidized
to acetate by aldehyde dehydrogenases, including that encoded
by ALDH2. This is the major metabolic pathway for ethanol
metabolism but other genes are involved as well. For example, in
the first step, ADH1C, ADH4 and ADH7, which map to the same
chromosome 4 gene cluster as ADH1B, encode proteins that
perform similar biological functions under certain conditions,

Fig. 1 Association results for AUD meta-analyses. a Manhattan
plot for AUD, ncase= 2254, ncontrol= 11,297. Effective sample size-
weighted meta-analyses were performed using METAL. Red line
indicates genome-wide significant after correction for multiple
testing (p < 5 × 10–8), blue line indicates suggestive significant (p <
1 × 10–5). b QQ plot for AUD.
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ALDH1A1 and ALDH1B1 similarly encode proteins with roles that
are sometimes overlapping with that of ALDH2 [49]. Given the
importance of other genes in the metabolic pathway, lead variants
in genes other than ADH1B*rs1229984 (EUR and Asian) and
ALDH2*rs671 (Asian) have been reported [6, 8, 12, 14]. Some of
these associations are supported by conditional analyses [8, 14],
and some appear to be variants that “hitchhike” with rs1229984 or
rs671 due to their strong LD. Here, conditional analyses identified
only one lead variant at each locus: rs1229984 (p= 3.35 × 10−17) in
the AHD1B region and rs3782886 (p= 1.68 × 10−29) in the ALDH2
region. The high LD between rs3782886 and rs671 (r2= 0.98)
makes it difficult to distinguish the real causal variant, though
biochemical analysis favors rs671 (reviewed in [48]), which is
nearly a null variant. A single copy of the rs671*T allele renders the
aldehyde dehydrogenase protein product nearly inactive and it is
also more rapidly degraded, which causes flushing in East Asians
and other associated symptoms that are protective against heavy
drinking and AUD [50].
Rs3782886 in the BRAP gene (breast cancer suppressor protein

(BRCA1)-associated protein) has been associated with many traits
in East Asians, include alcohol-related traits [41, 51], myocardial
infarction [52], and a biochemical trait—alanine aminotransferase
level [53]. Some or all these associations could be due to the high
LD with rs671 (as in this study), or reflect effects on activity of the
metabolic pathway or cerebral cortical neurogenesis (argued in
[41]). We would suggest that the different lead variants (rs671 or
rs3782886) in this high LD region could reflect uncertainty
introduced by different SNP arrays, imputation processes,

association analyses, or random variation in comparatively small
samples. More data are needed to ascertain the true causal variant
(or variants) despite the previous support and mechanistic appeal
of rs671.
We used additional analyses to explore the genetic architecture

of AUD in East Asians. The SNP-based heritability estimate was
very low with a large standard error (SE), indicating a lack of
statistical power. Moderate genetic correlation (rg= 0.61, SE=
0.23, p= 8.42 × 10−3) was detected between the main meta-
analysis of this study and PAU in EUR populations, indicating
shared genetic architecture across ancestries. However, the trans-
population meta-analysis in which PAU in EUR was added did not
detect any novel signals, probably due to the limited power in this
study. Multi-trait analysis combining this study sample and
excessive alcohol consumption from the Taiwan Biobank also
identified no novel variants. Thus, additional study samples of East
Asian ancestry are needed to provide adequate power for GWAS
of AUD in East Asians.
Since it is a genetically complex trait, we expect that there are

many variants that contribute to the genetic risk of AUD, consistent
with findings in EUR [14]. Polygenic risk score analysis is a powerful
tool for the application of GWAS results to investigate associations
with traits of interest, which has been used widely in studies to test
the association with AUD or related phenotypes in target cohorts
[7, 8, 12, 14]. Here, we analyzed AUD PRS from our meta-analysis
in an independent East Asian cohort from GERA, a US cohort
collected to facilitate research on the genetic and environmental
factors that affect health and disease [34]. We tested the

Fig. 2 Regional Manhattan plots for the top SNPs. a Regional plot for rs1229984 in East Asians. b Regional plot for rs1229984 in European
populations in a previous study (Zhou et al. [14]). c Regional plot for rs1229984 in African Americans from a previous MVP study (Kranzler et al.
[8]) where rs1229984 is nominally significant, rs2066702 is the lead variant. In total, 500 kb in the upstream and downstream of rs1229984
were presented in a–c. d Regional plot for rs3782886 in East Asians. Given the high LD in this region, 1 Mb from both sides were extended.
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association between AUD PRS and 26 phenotypes in 4464 subjects
of East Asian ancestry. AUD PRS was significantly associated with
alcohol consumption as measured using days of drinking per week
(see Table 2), and nominally significantly associated with pack
years of smoking and ever vs. never smoking, consistent with the
shared genetic architecture of AUD and alcohol and (possibly)
smoking traits in East Asians. These same, or closely similar,
associations, have been well established in EUR [8, 14]. These was
no association detected between AUD PRS and other diseases or
conditions in this study.
This study has limitations, the most important of which is the

sample size, which despite being the largest reported so far for
East Asian provides limited statistical power. Second, the
phenotypes among the different study samples are not identical,
with AUD diagnosed as ICD-9/10 codes in MVP and DSM-IV AD in
other cohorts. This analytic approach is supported by the high
genetic correlation between AUD and AD in EUR, which is
estimated to approach 1.0 [14]. Third, some cohorts used alcohol-
exposed controls, and others used unscreened controls (i.e., the
MVP). Controls with demonstrated exposure to alcohol are ideal,
but such exposure is commonplace in all the populations studied.
Finally, although all of the cohorts are of East Asian ancestry, there
are population differences among cohorts that increase hetero-
geneity and reduce power [54, 55]. These include cultural or
environmental differences that affect trait prevalence (e.g.,
drinking practices), and geographical differences that introduce
genetic differences (Fig. S1).
In conclusion, we conducted a GWAS of AUD in 13,551 East

Asian subjects, in which we confirmed the two previously known
risk loci and applied the AUD PRS in an independent cohort.
Despite a large increment in sample size over the previous largest
Asian-population GWAS, the power remains an important limita-
tion. Accordingly, we will continue to recruit more East Asian
subjects for alcohol studies and urge other investigators to do
the same.

DATA AVAILABILITY
Summary statistics are available on dbGaP (https://www.ncbi.nlm.nih.gov/gap) under
study accession (phs001672).
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