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Lossless Airy Surface Polaritons in 
a Metamaterial via Active Raman 
Gain
Qi Zhang1, Chaohua Tan1 & Guoxiang Huang1,2

We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons 
(SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a 
negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. 
By using the ARG from the quantum emitters and the destructive interference effect between the 
electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM 
but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-
diffractive Airy SPs may propagate for very long distance without attenuation. We also show that 
the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum 
emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the 
system.

In a seminar paper, Berry and Balaze1 showed that a quantum-mechanical wavepacket with the form of Airy 
function has the ability to resist dispersion and can freely accelerate without requiring any external potential. It 
was argued later on that such wavepacket may be used to represent a nonrelativistic particle falling in a gravita-
tional field, and hence the phenomenon discovered in ref. 1 is related to Einstein’s equivalence principle2.

Since there is a similarity between the Schrödinger equation in quantum mechanics and the Maxwell equa-
tion in electrodynamics under a paraxial approximation, much efforts have been paid to the study of Airy light 
beams in recent years due to their many attractive properties3–5. Besides spatial-beam optics, Airy beams have 
also been demonstrated for temporal optical pulses, spin waves, plasma, and electron beams6–10. In addition, 
some nonlinear effects of Airy beams have also been explored11–13. Airy beams have a wide range of applications, 
including trapping, guiding, sorting of micro-objects, manipulation of slow-light wavepackets in atomic gases, 
signal processing14–18, and so on.

On the other hand, surface plasmon polaritons (SPPs), i.e. surface electromagnetic waves coupled to 
charge-density waves and propagating along the planar interface between a metal and a dielectric material, have 
attracted great attention19,20. SPPs have a field component decaying exponentially from metal-dielectric interface, 
thus can localize light within a subwavelength domain in the direction perpendicular the interface, making them 
ideal tools for enhancing light-matter interaction and hence for realizing many new types of nanoplasmonic 
devices21–25. However, the diffraction of SPPs in one of the directions in the metal-dielectric interface still exists.

Recently, Airy beams were introduced to a metal-dielectric interface as a technique for an effective control of 
SPPs26. The diffraction of SPPs in one of the directions in the interface, which is unavoidable in usual cases, can 
be eliminated by means of the non-diffractive property of Airy beams. Furthermore, some detrimental effects 
resulted from the imperfection of the interface can be suppressed based on the self-healing characteristics of 
Airy beams. Such study26 opened a new avenue for realizing nondiffracting SPPs in all transverse directions and 
stimulated many experimental efforts27–33. However, the Airy SPPs realized with such a scheme have a very short 
propagation distance due to the existence of large Ohmic loss inherent in metals, which severely limits their 
practical applications.

In this article, we propose a scheme for generating linear and nonlinear Airy surface polaritons (SPs) and real-
ize their lossless propagation in an active metamaterial (for active optical metamaterials, see the recent review34). 
Different from previous studies26–34, the system we consider is a planar interface superposed by a NIMM and a 
dielectric where three-level quantum emitters are doped near the interface. By using the ARG from the quantum 
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emitters and the destructive interference effect between the electric and magnetic responses in the NIMM, we 
show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be 
completely eliminated. As a result, non-diffractive Airy SPs obtained can propagate for a very long distance with-
out attenuation and deformation. We also show that the Kerr nonlinearity of the system can be largely enhanced 
due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons propagating 
down the NIMM-dielectric interface with very low power can be realized.

Results
Model.  We consider a system consisting of two superposed planar materials, i.e. a NIMM and a dielectric, 
with a planar NIMM-dielectric interface (Fig. 1). The NIMM in the lower half-plane (x <  0) has frequency-de-
pendent permittivity ε1 and permeability μ1, and the dielectric in the upper half-plane (x >  0) has frequency-in-
dependent permittivity ε2 and permeability μ2. We assume that Λ -type three-level quantum emitters (e.g. atoms, 
quantum dots, rare-earth ions, denoted by black dots in the figure) are doped in the thin layer of the dielectric 
near the interface, and interact with a pump field of angular frequency ωp and a signal field of angular frequency 
ω ; see the inset of Fig.  1.  j  ( = , , )j 1 2 3  represent the energy-levels of the quantum emitters. 

ω ω∆ = ( − ) − ( − )/E Ep2 2 1  ( ω∆ = − ( − )/ )E Ep3 3 1  is two-photon (one-photon) detuning, with Ej the 
eigenenergy of the level j . Γ 13 (Γ 23) is the rate of spontaneous emission from 3  to 1  ( 3  to 2 ), Γ 12 (Γ 21) is the 
rate of incoherent population exchange from 2  to 1  ( 1  to 2 ). The three energy levels combined with the reso-
nant pump and signal fields constitute a typical ARG scheme discussed in ref. 35. SPs can be excited in the 
NIMM-dielectric interface36 via an end-fire coupling19 for the signal field, with the pump field incident from the 
above of the dielectric.

The system described above is similar to that employed in refs 37–40, where all-optical control of SPs through 
an excitation scheme of electromagnetically induced transparency (EIT) was suggested. Differently, in stead of 
EIT, the excitation scheme of the quantum emitters employed in our system is ARG. Contrary to the EIT scheme 
where signal field operates in an absorption mode, the central idea of the ARG scheme is that the signal field 
operates in a stimulated Raman emission mode. It is just the use of such emission mode that makes the Ohmic 
loss in the NIMM and the light absorption in the quantum emitters eliminated and hence a robust propagation of 
the signal field realized, as shown below.

The SP propagation in the system is controlled by Maxwell equation describing electromagnetic (EM) field 
and Bloch equation describing the quantum emitters. The Maxwell equation reads

µ µ∇ × ∇ × ( , ) +
∂
∂
= −

∂
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( , ) −
∂
∂
∇ × ( , ) , ( )t

c t t
t
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where ( , )tE r , ( , )tP r , and ( , )tM r  are intensity vectors of electric field, electric polarization, and magnetization, 
respectively. Throughout the text, for simplicity we assume all fields are continuous waves (CWs), i.e. the disper-
sion effects from both the host materials and the quantum emitters can be neglected. By assuming the SP propa-
gates in z-direction, we have ( , ) = ( ) + . .α α

β ω( − )t eF r F r c ci z ta  Here Fα represents Eα, Pα, and Mα, and Fα(r) is a 
slowly-varying function of r, with α =  1 (α =  2) standing for the quantity in the NIMM region where x <  0 (the 
dielectric region where x >  0); β β β≡ ( ) + ( )iRe Ima a a , with β( )Re a  (real part) denoting the propagation con-
stant and β( )Im a  (imaginary part) denoting the attenuation (if β( ) >Im 0a ) or growth (if β( ) <Im 0a ) of the SP 
during propagation. Because constitution relations are different in the NIMM and the dielectric regions, we 
reduce Eq. (1) in different regions for the convenience of later calculations.

In the NIMM region, we have ε ε( , ) = ( − ) ( ) + . .β ω( − )t eP r E r1 c ci z t
1 0 1 1

a  and ωε ε∇ × ( , ) = −t iM r1 0 1  
µ( − ) ( ) + . .β ω( − )eE r1 c ci z t

1 1
a . Then Eq. (1) reduces into

ε ω µ ω∇ × ∇ × ( ( ) ) + ( ) ( ) ( ) = , ( )β βe k eE r E r[ ] 0 2i z i z
1 0

2
1 1 1

a a

with k0 =  ω/c. Note that ε ω( )1  and µ ω( )1  are respectively the permittivity and permeability of the NIMM, which 
can be parameterized by using the Drude model37–39 with ε ω ε ω ω γ ω( ) = − /( + )∞ ie e1

2 2  and 

Figure 1.  Model. Airy SP with angular frequency ω excited via ARG at the interface between a NIMM (in the 
region x <  0) and a dielectric (in the region x >  0). The lowest layer is a silica substrate. Inset: energy-level diagram 
and the ARG excitation scheme of the Λ -type quantum emitters (denoted by black dots) doped in the dielectric 
near the interface. j  ( = , , )j 1 2 3  are energy-levels of the quantum emitters and Δ j ( = , )j 2 3  are detuning. ωp 
(ω) is the angular frequency of the pump (signal) laser field, Γ 13 (Γ 23) is the rate of spontaneous emission from 3  
to 1  ( 3  to 2 ), Γ 12 (Γ 21) is the rate of incoherent population exchange from 2  to 1  ( 1  to 2 ).
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µ ω µ ω ω γ ω( ) = − /( + )∞ im m1
2 2 , where ωe and ωm are the electric and magnetic plasmon frequencies, γe and γm 

describe the corresponding decay rates, and ε∞ and μ∞ are background constants, respectively. Note that such 
permittivity and permeability can be obtained if the signal field is normally incident into the NIMM designed by 
a periodical array of silver-based double-fishnet structures of meta-atoms along z direction (see refs 41–45 and 
related references cited in ref. 34).

In the dielectric region, one has ( , ) =tM r 02  and ( , ) = ( , ) + ( , )t t tP r P r P r2 2
dielectric

emitter , where 
ε ε( , ) = ( − ) ( ) + . .β ω( − )t eP r E r1 c ci z t

2
dielectric

0 2 2
a  and ( , )tP remitter  can be obtained by solving the Bloch equation 

of the quantum emitters (see below), given by σ( , ) = + . .ω−t N eP r p[ c c ]a
i t

emitter 23 32 . Here Na is the concentra-
tion of the emitters, p23 (σ32) is electric-dipole matrix element (density matrix element in interaction picture) 
related to  the  states  2  and 3 .  Using these  relat ions ,  Eq.   (1)  is  reduced to  the  form 

µ ε ε σ∇ × ∇ × ( ( ) ) + ( ) + ( / ) =β βe k e NE r E r p[ ] [ ] 0i z i z
a2 0

2
2 2 2 0 23 32

a a . To obtain σ32, we must solve the Bloch 
equation46 σ σ( + Γ) = ,∂

∂
i H[ ]

t int , with σ the 3 ×  3 density matrix (with matrix element σjl), Hint the interaction 

Hamiltonian of the quantum emitters, and Γ  the 3 ×  3 relaxation matrix describing the spontaneous emission and 
dephasing of the system. The explicit form of the Bloch equation and the result of σ32 obtained through solving 
the Bloch equation are presented in Methods. As a result, we have
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are respectively the first-order and the third-order optical susceptibilities contributed by the quantum emitters, 
where the definitions of ( )a32

1  and ( )a32
3  can be found in Methods.

Since the oscillating frequency of the pump field is different from that of the signal field, the pump field has no 
contribution to the boundary conditions (BCs) of the signal-field envelopes at the NIMM-dielectric interface. 
Thus the BCs read × ( ( ) − ( )) =e E r E r 0x 2 1  and ⋅ ( ( ) − ( )) =e D r D r 0x 2 1  (where ex is the unit vector along 
x-direction), i.e.

( ) | = ( ) | , ( ) | = ( ) | , ( )= = = =E E E Er r r r 5z x z x y x y x1 0 2 0 1 0 2 0

ε ε ε ε σ( ) | = ( ) + ( ) | , ( )
β
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i z
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a

where Fαj(r) represents the j-component (j =  x, y, z) of Fα(r) (α =  1, 2). Note that Eq. (6) is a nonlinear BC since 
σ32 depends on E2(r) nonlinearly.

SP solution and linear dispersion relation.  Now we present the propagating modes of SPs in the system. 
Different from metal-dielectric interfaces, our system allows both TE and TM modes. Here we concentrate on the 
TM mode, which has the form ( ) = ( ) + ( )α α αE x E xE r e ex x z z . By solving Eqs (2) and (3) under BCs (5) and (6) 
in linear level, we obtain
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1 1 2, where A is a constant. The linear dispersion 

relation (propagation constant) reads
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We first discuss the case where the emitters are absent (i.e. Na =  0 and hence χ =( ) 0a
1 ). In this case, Eq. (9) 

reduces to

β ω ω ε ε ε µ ε µ
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For illustrating the character of the above result, we consider a realistic physical system with a silver-based 
NIMM44. The parameters for the permittivity are given by37,44 γ = × −9 10 se

13 1, ω = . × −1 37 10 se
16 1, ε = .∞ 1 7, 

where γe is assumed to be three larger than that of bulk silver45. The parameters for the permeability are given by 
γ = × −5 10 sm

9 1, ω = . × −3 15 10 sm
15 1, and µ = .∞ 1 7, within the reasonable value scope37.
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Line 1 (blue solid line) and line 2 (red dashed line) in Fig. 2 show Im(β) and Re(1/k2) of the SP excited in the 
NIMM-dielectric interface as a function of ω, respectively. When plotting the figure, we have chosen the dielectric 
with ε2 =  2.5 and μ2 =  1. We see that Im(β) is nearly vanishing at ω ω π= = × . × −2 3 69 10 scri

14 1, which means 
that the Ohmic loss at ωcri is largely suppressed. The reason for the suppression of the Ohmic loss is contributed 
by the destructive interference of the electric and magnetic responses because ε1 and μ1 in the NIMM can be 
simultaneously negative37. For comparison, Im(β) for a metal (silver)-dielectric interface is also shown in the 
figure (i.e. line 3; black dotted line), where the permittivity and permeability of silver are respectively 
ε ω ω ω γ ω( ) = − /( + )i1 e e1

metal 2 2  and µ ω( ) = 11
metal . Obviously, the metal-dielectric interface has much larger 

Ohmic loss than the NIMM-dielectric interface.
Unfortunately, the suppression of the SP loss in the NIMM-dielectric interface is always accompanied by a 

de-confinement (or called de-localization) of the SP because at ω =  ωcri, Re(1/k2) →  ∞; see line 2 in Fig. 2 (the red 
dashed line). In order to acquire an acceptable suppression of the SP loss and a required SP confinement simulta-
neously, we are forced to select the signal-field frequency ω to have a small deviation from ωcri

37,38. However, the 
deviation from ωcri will make the electric field of the SP decay during propagation. For instance, if taking 
ω ω π= = × . × −2 3 84 10 ss

14 1, one has β( ) | = .ω ω=
−Im 32 97 cm 1

s
 (see the large blue solid circle on the line 1 

of Fig. 2). That is to say, although the electromagnetic field can have a tight confinement within a scale of 
| ≈ω ω

−
=k 985 nm2

1
s

, which is still superior to conventional slab dielectric waveguides (without NIMM), a small 
loss exists simultaneously. In particular, the loss will be significant for a long-distance propagation, hindering 
practical applications of SPs.

Such difficulty can be overcame by using the quantum emitters doped in the NIMM-dielectric interface and 
working in the ARG scheme. When Na ≠ 0, the positive imaginary part in the propagation constant caused by the 
Ohmic loss inherent in the NIMM can be completely eliminated by the negative imaginary part of χ ( )a

1  contrib-
uted by the gain from the quantum emitters. As an example of our model, we choose 87Rb atoms as the quantum 
emitters with | 〉 = | , = 〉/S F1 5 22

1 2 , | 〉 = | , = 〉/S F2 5 12
1 2 , | 〉 = | , = 〉/S F3 5 22

3 2 . The system parameters are 
given as πΓ = Γ = Γ / = × .2 6 07 MHz13 23 3 , Γ = .0 5 kHz21 , Γ = .0 01 kHz12 , = . × ⋅−p 3 58 10 C cm31

27 , 
∆ = . × −2 7 10 s3

9 1 ,  ∆ = −10 s2
4 1 ,  = . × −N 9 18 10 cma

13 3 ,  a n d  Ω = . × −1 4 10 sp
7 1 .  We  o b t a i n 

β( ) | =ω ω ω= +∆Im 0a s
 with ω∆ = − −10 s4 1, which means that the quantum emitters can indeed provide a gain 

to compensate for the Ohmic loss in the NIMM. Thus the contradiction between the confinement and the sup-
pression of the Ohmic loss is resolved satisfactorily.

Linear Lossless Airy SPs.  We now explore the possibility to get lossless Airy SPs excited at the 
NIMM-dielectric interface doped with quantum emitters. To obtain linear Airy SP solutions, we solve Eqs (2) and 
(3) under BCs (5) and (6) by employing the asymptotic expansion (similar to that used in ref.  47) 
( ) = + + +α α α α

( ) / ( ) ( )
g g gE r E E E1 3 2 2 2 3 ,  w i t h  ω ω ω= ( − )/g 0 0  a n d  = ( , , )α α α α

( ) ( ) ( ) ( )E E EE m
x
m

y
m

z
m  

( = , , , …)m 1 2 3  being functions of x, =y g y1 , and z2 =  gz. Here ω ω δω= +s0 , a particular frequency deter-
mining a pure real propagation constant β β= |ωa0 0

, as discussed above. To give a consistent expansion, we fur-

ther assume ε χ ε ε+ = +( )
a2

1
20 21, with ε ε χ= ( + ) ω ω

( )
=a20 2

1

0
, and ε ω ω= ( − ) ⋅ |

χ

ω ω ω

∂

∂ =

( )

21 0
a

1

0

.
Substituting the above expansions into Eqs (2) and (3), we obtain the unified form

Figure 2.  Linear dispersion relation of SP. Im(β) (line 1; blue solid line) and ( / )kRe 1 2  (line 2; red dashed line) 
of the SP in the NIMM-dielectric interface as a function of ω. The black dotted line (line 3) is the Im(β) of the SP 
in a metal-dielectric interface. The large blue solid circle on line 1 corresponds to the selected signal-field 
frequency ω ω π= = × . × −2 3 84 10 ss

14 1.
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( = , , )m 1 2 , which can be solved order by order. Here β ε µ= ( − )
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(both valued at ω =  ω0). For saving space, the explicit expressions of α
( )T j
m  (j =  x,  y,  z; = , , m 1 2 ) and the expan-

sions for BCs (5) and (6) are omitted here.
At the first order (m =  1), we get the TM mode solution of Eq. (11)

β
( ) =





−





( , ) ,

( )
( ) i

k
A y z eE r e e

12z x
k x

1
1 0

1
1 2

1

β
( ) =





+





( , ) ,

( )
( ) −i

k
A y z eE r e e

13z x
k x

2
1 0

2
1 2

2

which are similar to Eqs (7) and (8), but here A is an envelope function of the slow variables y1 and z2.
Solving Eq. (11) at the second order (m =  2) gives the solution of the signal field ( ) = ( , )( ) B y z eE r ey
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2 , where B is another slowly-varying envelope function. The boundary condition for 

magnetic field Hα(r), i.e. × ( ( ) − ( )) =e H r H r 0x 2 1  with ωµ µ( ) = /( ) ∇ × ( )α α αiH r E r[1 ]0  (α =  1,  2), at this 
order yields the relation β= −( / )∂ /∂B i A y0 1. We see that to this order the signal field is no longer a TM wave 
since a y-component of the electric field appears.

Similarly, solving Eq. (11) at the third order (m =  3) we obtain the solution of the signal field, which is presented 
in Method. The BC at this order results in β ∂ /∂ + ∂ /∂ + =i A z A y fA2 00 2
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2, and U0 being, respectively, 

typical beam radius, diffraction length, and amplitude of the signal field, we obtain the dimensionless equation
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1 , a constant introduced for making the peak intensity of u to be 1.

Using the above expressions, we obtain the explicit expression of E for the Airy SP propagating down to the 
NIMM-dielectric interface
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The Airy SP solution (16) and (17) has three notable features. (i) It is non-diffractive and bends along the 
parabolic trajectory ( )β= /y z R4 y

2
0
2 3 . (ii) Generally, f is a complex number when ω ≠ ω0, which means that the 

amplitude of the Airy SP increases or decreases during propagation. However at ω =  ω0 one has f =  0 and hence 
the solution (16) and (17) has no attenuation upon propagation. We call such solution as lossless Airy SP. The 
reasons for the lossless propagation of the Airy SP are due to the contributions by the destructive interference 
effect between the electric and magnetic responses of the NIMM and by the ARG from the quantum emitters.

However, the Airy function solution (15) is of infinite energy, which is not realistic and unobservable. A finite 

energy (or truncated) Airy beam solution of Eq. (14) is given by3 ( ) )(η η( , ) = − + η−u s V ias eAia
s i
4

s s2
2

2
6

η− +ea ias a s2
2

2
2 , where a being a small, positive real number (apodization parameter) introduced to make the ideal 

Airy beam have an finite energy, and η η≡ ( ) ( )−V amax[Ai exp ]a
1  is an auxiliary factor introduced for conveni-
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ence (i.e. for setting the beam peak intensity to be 1 for any a). Then the explicit expression of electric field for the 
finite energy Airy SP upon propagation is still given by Eqs (16) and (17) but with

( , ) =

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− +
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.
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Shown in Fig.  3(a) is the intensity profile u 2 of the finite energy Airy SP propagating along the 
NIMM-dielectric interface (i.e. the y-z plane) for ω =  ω0. When plotting the figure, we have chosen a =  0.02 and 
Ry =  30μ m and the other system parameters the same as used above. Figure 3(b) shows the propagation of the 
intensity profile u 2 of the finite energy Airy SP in a similar system where the NIMM is replaced by a metal (i.e. a 
metal-dielectric interface). We see that the Airy SP undergoes no obvious absorption when propagating upon the 
NIMM-dielectric interface. In contrast, the Airy SP propagating along the metal-dielectric interface has a signif-
icant propagation loss and hence it attenuates very rapidly so that the bending of its motional trajectory cannot 
even be observed (Fig. 3(b)).

The system may acquire a neat gain through the quantum emitters. Figure 3(c) shows Im(f) for the 
NIMM-dielectric interface. For ω =  ω0, Im(f) =  0 (the green solid circle in Fig. 3(c)), and hence the system has a 
exact balance between loss and gain and a lossless Airy SP can be excited. For ω >  ω0, Im(f) <  0 (the red solid 
circle in Fig. 3(c)), and hence the system has a neat gain, which can be used to incompletely compensate the 
Ohmic loss in the NIMM and also the loss resulted by the introduction of the positive apodization parameter a. 
In this case, the Airy SP can propagate to a long distance without any attenuation. Figure 3(d) shows the intensity 
profile u 2 of the Airy SP for ω −  ω0 =  220 s−1. We see that, comparing with Fig. 3(a), instead of attenuation the 
Airy SP has indeed a gain during propagation.

Airy surface polaritonic solitons.  Because for ω >  ω0 the system has a neat gain, the Airy SP will be ampli-
fied when propagating along the NIMM-dielectric interface. For a long propagation the Airy SP will be amplified 
significantly, the linear theory given above is no longer valid. Thus it is necessary to extend the linear theory to a 
nonlinear regime and consider the possibility to generate lossless Airy surface polaritonic solitons in the system.

Figure 3.  Linear lossless Airy SPs. (a) u 2 of the finite energy Airy SP propagating upon the NIMM-dielectric 
interface (i.e. the y-z plane) for ω =  ω0. (b) u 2 of the finite energy Airy SP propagating upon a metal-dielectric 
interface for ω =  ω0. (c) Im(f) for the NIMM-dielectric interface as a function of ω− ω0, the green (red) solid 
circle indicates the particular value of Im(f) at ω− ω0 =  0 ω ω( − = )−220 s0

1 . (d) u 2 of the finite energy Airy SP 
propagating along the NIMM-dielctric interface for ω ω− = −220 s0

1 (corresponding the red solid circle in 
panel (c)).
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To this end, we assume that the nonlinear effect in the system comes only from the quantum emitters due to 
the resonant character of the interaction between the EM field with the quantum emitters. To derive a envelope 
equation for the signal field with a weak nonlinearity, we assume the perturbation expansion 
( ) = + + +α α α α

/ ( ) ( ) / ( )
g g gE r E E E1 2 1 2 3 2 3  (α =  1, 2), with α

( )E m  ( = , , , …)m 1 2 3  the functions of the multi-scale 
variables x, =y g y1 , and z2 =  gz. Substituting this expansion into Eqs (2) and (3), we obtain a set of equations 
similar to those given in Eq. (11), which can be solved order by order.

At the first two orders (m =  1, 2), we obtain solutions of the signal field, which are the same as those given in 
the linear case presented above. The solution at the third order (m =  3) is given in Method. The BC of at this order 
is nonlinear, which results in the equation for the envelope A as β ∂ /∂ + ∂ /∂ + + =i A z A y fA W A A2 00 2

2
1
2 2 . 

Here χ= |ω ω=
( )W k W a0

2
m 0

3
0

 is nonlinear coefficient, with ω= /k c0 0 , µ µ β= ( + )( + )ω ω=W k k k km 1
2

1 1 2 2 0
2

2
2

0
 

β( + )/ ( − ) | | ( ) +k k k k k k{ [Re ]}0
2

2
2

2
2

1
2 2

2
2

2 2  and χ χ= |
ω ω

( ) ( )
=a a0

3 3

0
. The real part of W (i.e. Re(W)) accounts for 

the self-phase modulation (SPM) effect corresponding to the self-focusing (for Re(W) >  0) or self-defocusing (for 
Re(W) <  0). Here we focus only on the self-focusing in order to generate bright Airy surface polaritonic solitons. 
After returning to the original variables and making the transformation η=y Ry , =z L sDiff , and A =  U0u, the 
above equation convertes into the dimensionless form

η
∂
∂
+
∂
∂
+ + = − + ,

( )
i u

s
u l u g u u i l u g u u1

2
[ ]

19

2

2 r r
2

i i
2

with β= ( )/( )l L fRe 2r diff 0 , β= ( )/( )l L fIm 2i diff 0  and = ( ) /g W L LSgn[Re ]r diff NL, β= ( )/( )g U L WIm 2i 0
2

diff 0 , 
where β= / ( )L U W2 [ Re ]NL 0 0

2  is typical nonlinearity length. For obtaining a stable soliton, one requires a bal-
ance between the diffraction and the nonlinearity, i.e. =L Ldiff NL, and thus = / | ( )|U R W2 [ Re ]y0

2 .
Although Eq. (19) has complex coefficients, the imaginary parts of these coefficients can be made much 

smaller than their real parts due to the contribution by the ARG induced by the quantum emitters, and hence one 
can generate Airy surface polaritonic solitons when the initial profile of the signal-field envelope is an Airy func-
tion. For this aim, we give a realistic parameter set for the formation of an Airy surface polaritonic soliton in the 
system. By selecting Ry =  30μm, ω ω− = −400 s0

1, and other parameters the same as those given in above dis-
cussion, we thus obtain = = .L L 1 14 cmdiff NL , = . × /−U 1 23 10 V cm0

2 , and the dimensionless coefficients of 
the equations lr =  − 4.59, li =  − 0.35, gr =  1, and gi =  − 0.16 ×  10−2. One can see that the imaginary part of the 
coefficients are indeed much smaller than their corresponding real parts, hence in the leading order the terms on 
the right side of the Eq. (19) can be safely neglected.

With the SPM coefficient W given above it is easy to estimate the optical Kerr effect of the system by using the 
formulas = +n n n I0 2  and β= /( )n W 22 0

2 , where n is total refractive index, n0 is linear refractive index, n2 is 
Kerr coefficient, and I is the light intensity of the signal field. Based on the above parameters we obtain 
= ( . − . ) × /−n i4 58 0 73 10 cm V2

2 2 2, which is quite large comparing with conventional systems (such as optical 
fibers).

We numerically solve Eq. (19) by using a split-step Fourier method, with the initial condition given by 
η η( = , ) = ( ) ηu s u V e0 Aia

a
0 , where u0 is an amplitude parameter, and η η≡ ( ) ( )−V amax[Ai exp ]a

1  is, as defined 
above, a normalization factor of the amplitude dependent on the apodization factor a. Figure 4 shows the evolu-
tion of u  as a function of /y Ry and /z LDiff  for different u0, with a =  0.06. We see that for a smaller u0 (i.e. 
u0 =  0.5) the Airy beam has a shedding of CW radiations (Fig. 4(a)) during propagation. However, as u0 increases 
(i.e. u0 =  1.3), a static surface polaritonic soliton (i.e. the straight bright strip near at y =  0) is shed from the Airy 
beam (Fig. 4(b)), with additional CW radiations. As u0 increases further (i.e. u0 =  2.4), besides the appearance of 
a static surface polaritonic soliton (“soliton 1” in Fig. 4(c)) which displays an obvious oscillation along z-axis, a 
pair of moving surface polaritonic solitons (i.e. “soliton 2” and “soliton 3” in Fig. 4(c)) is also generated. Two 
solitons in the pair have the same amplitude and opposite velocity, ensuring the conservation of the total momen-
tum in the system. In this case, except for the production of the static soliton and the moving soliton pair, some 
CW radiations are also appear. Although these phenomena are similar to those found in refs 12,13, what we 
explored here is for Airy surface polaritonic solitons, which are not reported in literature up to now.

The threshold of the optical power density for generating the Airy surface polaritonic solitons can be calcu-
lated by using Poynting’s vector35, which reads = .P 1 47 nWmax . Thus for generating the Airy surface polaritonic 
solitons very low input power is needed.

Discussion
The analysis presented above showed that lossless propagation of linear and nonlinear Airy SPs can be realized 
indeed via ARG. We now make some remarks on them. First, we have assumed, like that done in refs 37–40, the 
NIMM is spatially homogeneous. Such assumption requires the lattice constant d of the array of meta-atoms (i.e. 
artificial subwavelength building blocks) in the NIMM must be at least one order of magnitude smaller than the 
wavelength λs of the signal field. In this situation, the NIMM can be taken as an effective and spatially homogene-
ous medium. In our model, λs =  780 nm (i.e. at the red end of visible spectrum), hence d must be less than 100 nm. 
Such optical NIMMs may be designed by using double-fishnet structures and are now available experimentally 
(see refs 34,41–44). However, in NIMMs there exist inhomogeneities due to the roughness of sample and the 
fluctuations in the meta-atom size of the meta-atom array, which may result in an inhomogeneous broadening for 
the absorption spectrum of the signal field. Related calculation including such inhomogeneous broadening can be 
carried out in our theoretical scheme, which is, however, beyond the scope of the present work.
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Second, in our analysis the influences from the lower boundary of the NIMM and the upper boundary of the 
dielectric have been neglected. Such assumption is valid when the thicknesses of both the NIMM and the dielec-
tric are large enough. Additionally, because both the linear and nonlinear Airy SP beams have curved trajectories 
during propagation, the theoretical approach presented above maybe violate the assumption of paraxial approxi-
mation26. By simple calculations based on the results in Figs 3 and 4, we obtain the deflection angles of the linear 
and nonlinear Airy SPs to be about 2.3 ×  10−3 rad and 2.6 ×  10−3 rad, respectively. Such small deflection angles 
ensure the validity of the paraxial approximation used in the derivation of the envelope equations (14) and (19). 
In the case of large deflection angle, the paraxial approximation is broken and hence the approach given above 
must be generalized48–50.

Third, noise is usually an important problem for a system where SPs are compensated by a gain medium. In 
our analysis the noise problem is not considered since it is another topic beyond the scope of the present work. We 
should, however, point out that in our system the noise induced by the ARG gain is not significant because in our 
consideration the one-photon detuning Δ 3 is taken to be large (order of GHz), and hence the population in the 
level 3  is very small σ( ≈ . × )

( ) −2 40 1033
0 5 . As a result, the gain contributed by the quantum emitters is not large 

and thus the noise induced by the gain, attributing to amplified spontaneous emission, plays a negligible role. 
Note that a significant gain is not needed in our scheme because the Ohmic loss in the NIMM has already been 
greatly suppressed by the destructive interference effect between the electric and magnetic responses in the 
NIMM; see Fig. 2 and related discussions. In addition, in our system the photon number in the signal field is large 
(≈ 5800), and hence the noise induced by the quantum effect of the signal field can be neglected.

In summary, we have proposed a scheme for realizing a lossless propagation of linear and nonlinear Airy sur-
face polaritons in a NIMM-dielectric interface where three-level quantum emitters working in an ARG regime 
are doped. By using the ARG from the quantum emitters and the destructive interference effect between the 
electric and magnetic responses from the NIMM, we have shown that not only the Ohmic loss of the NIMM but 
also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy 
SPs can propagate for a very long distance without attenuation. We have also shown that the Kerr nonlinearity 
of the system can be largely enhanced due to the contribution of the quantum emitters, and hence lossless Airy 
surface polaritonic solitons propagating down the NIMM-dielectric interface with very low power can be real-
ized in the system. The lossless Airy SPs predicted here may have not only fundamental interest in the research 
of nanophotonics but also promising applications for the light information processing and transmission by using 
active micro-nano structures.

(a)

(c) 1 notil os so
lito

n 2soliton 3

(b)

Figure 4.  Airy surface polaritonic solitons. Nonlinear evolution of u  as functions of y/Ry and z/LDiff for 
different u0. (a) u0 =  0.5: Airy beam with shed CW radiations; (b) u0 =  1.3: Airy beam with shed static surface 
polaritonic soliton (i.e. the straight bright strip near at y =  0) and CW radiations. (c) u0 =  2.4: Airy beam with 
shed static surface polaritonic soliton (i.e. “soliton 1”), the pair of moving surface polaritonic solitons (i.e. 
“soliton 2” and “soliton 3”), and CW radiations.
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Methods
Bloch equations and solution for σ32.  Explicit expression of the Bloch equation describing the motion of 
the quantum emitters with the three-level ARG configuration reads
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where βΩ ( ) = ( ( ) ( ) ⋅ )/i zr E r pexps a2 32  (Ω = ( ⋅ )/ )E pp p 31  is the half Rabi frequency of the signal (pump) 
field, with Ep being the electric field of the pump laser (which is a constant vector and given). γ= ∆ +d i21 2 21, 

γ= ∆ +d i31 3 31, and γ= ∆ − ∆ +d i32 3 2 32. Here γ γ= (Γ + Γ )/ +2jl j l jl
col are coherence decay rates 

(Γ ≡ ∑ Γ )<l E E jlj l
, with Γ jl denoting the population decay rate and γjl

col denoting the dipole dephasing rate from 
the state l  to the state j .

Solution of σ32.  We first give some remarks on the Eqs. (20–25). (i) In our ARG excitation scheme, the 
detuning Δ 3 is assumed to be large enough so that inhomogeneous (energy-level) broadening of the emitters can 
be largely suppressed. (ii) As usual35, the pump field is taken to be strong enough so that its depletion is negligible 
(i.e. Ω p is a constant) during the propagation of the signal field. (iii) For CW excitations the time derivatives in 
Eqs. (20–25) can be safely neglected because the time duration τ0 of the pulsed signal field satisfies the condition 
τ γ  10 max , with γmax being the maximum decay rate of the quantum emitters in the system. Therefore one can 
get σ32 by solving Eqs. (20–25) algebraically.

For solving σ32, we make the expansion Ω = Ω + Ω + Ω +( ) ( ) ( )
s s s s

1 2 3 , σ σ σ σ σ= + + + +( ) ( ) ( ) ( )
jk jk jk jk jk

0 1 2 3 . 
Then Eqs. (20–25) can be solved order by order. Base state solution reads
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The solution of the second order reads σ = Ω( ) ( ) ( )ajj jj s
2 2 1 2

 (j =  1,  2,  3), σ = Ω( ) ( ) ( )a s31
2

31
2 1 2

, and other σ =( ) 0jk
2 , 

where

= − 


+ Ω ( + )
,

( )
( ) ( ) ( ) ( )⁎a

d
a a a1 2

32p31
2

31
21

1
11

2
22

2

( )
=
(Γ + Γ ) − + (−Γ + Γ + )( − )

(Γ + Γ )(Γ + Γ ) + ( Γ + Γ + Γ )
,

( )
( )

Ω ( ) Ω ( ) ( ) ( )⁎ ⁎
⁎

⁎

a i
a a D a a

D2 33
d d

11
2 12 23 21

1
21

1
12 13 32

1
32

1

12 21 13 23 12 21 23

p p

31 31

( )
=
(Γ − Γ ) − −(Γ + Γ + )( − )

(Γ + Γ )(Γ + Γ ) + ( Γ + Γ + Γ )
,

( )
( )

Ω ( ) Ω ( ) ( ) ( )⁎ ⁎
⁎

⁎

a i
a a D a a

D

2

2 34
d d

22
2 21 23 21

1
21

1
21 13 32

1
32

1

12 21 13 23 12 21 23

p p

31 31

= −( + ), ( )( ) ( ) ( )a a a 3533
2

11
2

22
2

The solution of the third order reads σ = Ω Ω( ) ( ) ( ) ( )a s s32
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and others are omitted here.
With the above results and using the definition βΩ ( ) = ( ( ) ( ) ⋅ )/i zr E r pexps a2 32 , we obtain [up to the third 

order in E2(r)]
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Expressions of the signal field at the third order (m = 3).  In the linear case, the expression of the 
solution of the signal field at the third order is given by
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The expressions of α
( )E y
3  are not needed and thus omitted here.

In the nonlinear case, the expressions of ( )E j1
3  ( = , )j x z  at the third order are the same as those in the linear 

case given above, while the expressions of ( )E j2
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3  α( = , )1 2  are not needed and thus omitted here.
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