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ABSTRACT
Since the beginning of 2020, worldwide attention has been being focussed on SARS-CoV-2, the
second strain of the severe acute respiratory syndrome virus. Although advances in vaccine
technology have been made, particularly considering the advent of mRNA vaccines, up to date,
no single antigen design can ensure optimal immune response. Therefore, new technologies
must be tested as to their ability to further improve vaccines. Nanosecond Pulsed Electric Field
(nsPEF) is one such method showing great promise in different biomedical and industrial fields,
including the fight against COVID-19. Of note, available research shows that nsPEF directly dam-
ages the cell’s DNA, so it is critical to determine if this technology could be able to fragment
either viral DNA or RNA so as to be used as a novel technology to produce inactivated patho-
genic agents that may, in turn, be used for the production of vaccines. Considering the available
evidence, we propose that nsPEF may be used to produce inactivated SARS-CoV-2 viruses that
may in turn be used to produce novel vaccines, as another tool to address 20 the current
COVID-19 pandemic.

KEY MESSAGES

� Viral inactivation by using pulsed electric fields in the nanosecond frequency.
� DNA fragmentation by a Nanosecond Pulsed Electric Field (nsPEF).
� Opportunity to apply new technologies in vaccine development.
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Introduction

Nanosecond Pulsed Electric Field (nsPEF) is a novel tech-
nology first developed in 1995 [1], exhibiting an ex-plo-
sive research growth since �2005 [2]. This technique
consists of the delivery of a series of pulses composed
of high amplitude electric fields (�1–300kV/cm) in the
nano and sub-nanoseconds timescale into biological tis-
sues or cells. Its primary effect on cells in the formation
of membrane nanopores and the activation of ionic
channels [3–14]. The main cellular consequence of nsPEF
is the increment in the cytoplasmic concentration of
Ca2þ [15–18], triggering signalling cascades ending
either on apoptosis [19–25], or cell proliferation [26–28]
and differentiation [29]. In contrast to other forms of
electrostimulation, such as electroporation, nsPEF uses
timescales similar to that of the charging time of cellular
membranes (�100ns in mammalian cells). This turns
nsPEF capable of affecting inner organelles [15,30–33],
including the nucleolus [30], making nsPEF a unique tool

to manipulate cells. As different cell types have different
membrane charging times and different conductivity in
their surrounding media, the effects of nsPEF could be
cell-type tailored. This characteristic has been exploited
by researchers to propose a broad spectrum of nsPEF
applications such as: neuron [7,11,34–37] and myocyte
activation [38–41], wound healing [6,42–44], phenotype
manipulation [29], modulation of gene expression
[45–50], the antiparasitic effect [51–53], increment of the
immune response [54–59], cell proliferation [26–29],
improvement in fermentation [60,61] and sterilisation for
the food industry [62–64], seed germination [65–67] and,
most importantly, cancer treatment [2].

nsPEF-induced damage in cell’s DNA

As of May 2022, there is only one study proposing the
use of nsPEF as an alternative technology to fight
against the COVID-19 pandemic [68]. Given the
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improvement of the immune response after a nsPEF
stimulus [54–59], Alawadhi et al. [68] proposed that
the delivery of a nsPEF pulse during the application of
a SARS-CoV-2 vaccine may increase the title of anti-
bodies, therefore improving the SARS-CoV-2 host
immunity. Despite an interesting approach, it is worth
mentioning that several studies link the DNA damage
caused by nsPEF to cell apoptosis. In fact, DNA dam-
age can be described as a secondary effect of nsPEF
application [3,19,69]. Notably, Chen and co-workers
showed a strong nsPEF effect on the HL-60 cell
nucleus [70]. They observed the quenching of acridine
orange (a DNA-intercalating dye) fluorescence after
the application of a nsPEF protocol, suggesting that
nsPEF directly alters DNA conformation. Stacey et al.
[71] registered nsPEF-derived DNA damage by per-
forming a comet assay to evaluate cell survival. To
determine if DNA damage was a direct effect of
nsPEF, Jurkat cells were lysed and their DNA extracted
right after the application of a nsPEF protocol. Their
results were interpreted as DNA damage resulting dir-
ectly from nsPEF exposure [71]. In a continuation
study, Stacey et al. [72] collected cells under alkaline
conditions to unwind DNA, allowing detection of dou-
ble- and single-stranded breaks. In their report (see
Figure 1) they show a clear DNA fragmentation of
nsPEF exposed cells vs the control condition. This dir-
ect damage to DNA caused by nsPEF can be under-
stood because DNA is a heavily-charged and
polyelectrolyte macromolecule so the proximity of its
linear/folded structures to the nuclear membrane
might render it susceptible to nsPEF effects. Other
studies also support that nsPEF and other closely-
related technologies, such as intense burst sinusoidal

electric field (IBSEF), can directly cause DNA damage
[72–74]. Furthermore, nsPEF exposed cells show a
DNA electrophoresis migration profile similar to that
observed in gamma-irradiated K562 erythroid
cells [75].

Is electroporation an alternative to induce
direct DNA damage in cells?

Significant damage to DNA can also be achieved by
electroporation (EP) resulting in the activation of apop-
totic pathways leading to DNA fragmentation. For
instance, irreversible electroporation (IRE) induces DNA
fragmentation by apoptosis as determined by TUNEL
(terminal deoxynucleotidyl transferase dUTP nick-end
labelling) assay [76–78]. Importantly, no available evi-
dence in the literature suggests that EP may induce
damage directly to DNA. Thus, we may wonder why
nsPEF can damage DNA directly but not EP? This is par-
ticularly appealing due to the fact that the electric fields
applied in both nsPEF and EP are similar (0.1–100kV/cm)
[79]. A theoretical analysis could shed some light on the
controversy surrounding this question. If the cell is con-
sidered, for the sake of simplicity, like solid metal and
conducting sphere, we know that when an external elec-
tric field is applied to it, electrons contained in the
sphere should migrate to the anode. After a defined
amount of time, this continuous migration of electrons
should result in an asymmetric charge distribution—cre-
ating a self-induced electric field around the sphere (the
reaction field) that could nullify the external electric
field—resulting in zero electric fields inside the sphere.
This is similar to what may happen in cells due to nsPEF
application; however, instead of electrons moving
around creating an equilibrium in charge distribution, a
much longer time, far behind the time-scale of nsPEF
application is needed, to nullify the applied electric field.
The characteristic time it takes for the external electric
field in cells to dissipate is in the order of microseconds
or even milliseconds [80]. However, when nsPEF is
applied, the pulse duration is in the nanosecond or even
sub-nanosecond scale. Hence, during the application of
nsPEF, internal charges will continue to move by the
influence of the external electric field, continuously per-
turbing the internal structure and dynamics of the cell.

Conformational changes in proteins due
to nsPEF

Besides the formation of nanopores in membranes
[4,6,8], extensive available evidence suggests that the
application of nsPEF protocols may also affect the

Figure 1. Gel electrophoresis of DNA extracted from Jurkat
cells right after the application of a nsPEF protocol (60 kV/cm,
60 ns, 5 pulses). Figure 3 extracted from the article
"Differential effects in cells exposed to ultra-short, high-inten-
sity electric fields: cell survival, DNA damage, and cell cycle
analysis", journal Mutation Research/Genetic Toxicology and
Environmental Mutagenesis Volume 542, Issues 1–2, 9
December 2003, Pages 65–75. Reproduced with permission.
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structure of voltaged gated (VG) ion channels such as
VG Calcium Channels [7,9,10,12–14] and VG Sodium
Channels [5,7,11]. Whether nsPEF induces directly the
gating of ion channels or their gating is the result of
the charge imbalance produced by the movement of
ions as a result of the external electric field, is still a
matter of debate [81]. Thus, the conformational
changes occurring in these channels may either be a
direct result of the applied electric field or be the con-
sequence of the internal ion imbalance. Interestingly,
available evidence gathered from Molecular Dynamics
(MD) simulation suggests that conformational changes
resulting from nsPEF occur directly in the voltage
sensing structure of the human VG calcium channel
[82]. On top of that, Beebe et al. [83] showed that a
single nsPEF pulse (the same nsPEF protocol used to
elicit DNA damage), decreased the activity of the C-
subunit of the cAMP-dependent protein kinase (cAMP-
dPKA), during 15min after nsPEF application. Although
the actual mechanisms of nsPEF-induced in-activation
remain to be determined, it should happen through
reversible conformational changes in a fraction of the
cAMP-dPKA proteins: since 15min after the pulse, the
basal activity was recovered. Moreover, particularly
interesting for our hypothesis, pulsed electric field
technology has been evaluated to determine its ability
for viral inactivation. Mizuno el at. [84], used wine ves-
icular disease virus (SVDV) and equine herpes virus-1
(EHV-1) to determine the effect of high voltage pulsed
electric fields. Of note, both viruses were successfully
inactivated. Notably, the shape of the protein shell of
SVDV remained unaltered while its RNA completely
disappeared. Despite apparent damage to the enve-
lope around EHV-1 being detected, the authors sug-
gested that it may be related to either the used
medium or some other differences in the applied

protocol. It is worth mentioning that MD studies (mim-
icking a nsPEF protocol consisting of two pulses last-
ing for 8 ns of 1,000 kV/cm and 10,000 kV/cm)
suggested an irreversible conformational change
resulting in the disruption of the myoglobin secondary
structures without fragmentation [85,86]. However,
these MD studies used a much higher electric field
compared to that of the 60 kV/cm necessary to pro-
duce direct DNA fragmentation in cells.

The application of nsPEF protocols to
inactivate SARS-CoV-2

A thorough revision of the literature suggests that a
single nsPEF pulse of 60 kV/cm with a duration of
60 ns is actually capable of fragmenting the DNA
shielded by the cell nucleus [71]. It is then possible
that by modulating different parameters of the nsPEF
protocol (i.e. electric field intensity, number of pulses
and their duration), a specific combination of them

Figure 3. Schematic representation of the SARS-CoV-2 virus
showing its RNA and main proteins: spike (S), envelope (E),
nucleocapsid (N) and membrane glycoprotein (M).

Figure 2. Representation of a nsPEF over a SARS-CoV-2 virus, nsPEF would fragment the viral RNA, with possible transient mem-
brane nano-pores and reversible protein conformational changes. After a certain time interval, the membrane would reseal, and
the proteins would return to their native conformation, leaving an inert virus with its initial capsid intact.
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may fragment SARS-CoV-2 RNA, without causing irre-
versible conformational changes on the envelop and
spike viral proteins. As the SARS-CoV-2 virus has a
non-segmented positive single-stranded long RNA,
with 26–32 kb [87,88], it is expected to be more sus-
ceptible to nsPEF-derived single-stranded breaks as
the energy required to produce double-stranded
breaks is much higher. Therefore, in our opinion, the
application of a specific nsPEF protocol into a solution
containing SARS-CoV-2 viral particles may result in
RNA fragmentation and a completely inert viral par-
ticle (Figure 2). Importantly, if the elicited conform-
ational changes occurring in viral proteins are indeed
reversible, it will overcome one of the main problems
of current vaccines using inactivated viruses.
Traditional methods to produce inactivated viruses use
heat, detergents and other chemicals. These are
aggressive techniques that may produce drastic
changes in the conformation of proteins, particularly
in the case of spike proteins in SARS-CoV-2. These
conformational changes may occlude or even create
new epitopes that can hinder the immune response.
Of note, Liu et al. used state-of-the-art cryo-electron
microscopy technologies to characterize the architec-
ture of inactivated SARS-CoV-2 viruses [89]. The
authors found that the viral spikes are mostly in a
postfusion state, a conformation that is not desirable
for vaccine development because, in vivo, neutralising
antibodies will not recognise the prefusion conform-
ation of the SARS-CoV-2 spike (S) protein. Additionally,
there is no evidence of whether the rest of the SARS-
CoV-2 proteins retain their conformation after inactiva-
tion by current methods. Thus, maintaining the native
conformation is particularly interesting as the majority
of RNA-based vaccines only encode for the target pro-
tein antigen of the SARS-CoV-2 virus. In fact, four of
the most used vaccines worldwide [90] are RNA-based
encoding for the S protein [91]. The usage of an
inactivated virus having its proteins in its biologically
relevant conformation may elicit a more relevant
immune response. Therefore, other SARS-CoV-2
proteins exposed in the capsid besides the S protein
such as the envelope (E), nucleocapsid (N) and mem-
brane glycoprotein (M) may also play a role in the
enhancement of an appropriate immune response
(Figure 3) [92].

As was described in the introduction, one of the
primary effects of nsPEF is the induction of nanopores
in cell membranes [4,6,8]. Although these nanopores
could also appear in the SARS-CoV-2 membrane after
the application of a nsPEF protocol they would spon-
taneously reseal after the given time. Evidence for this

resealing of the pores has been reported in EP. Saulis
et al. [93] observed the complete resealing of mem-
brane pores occurring in human red blood cells,
20–30min after the application of an EP electric pulse
of 4 kV/cm of 2ms. This transient formation of pores
has also been reported in other cell types [94–96]. In
the case of nanopores, the resealing process is much
faster. Recent results conclude that nanopore resealing
occurs in a couple of minutes [97–103].

It is important to mention that other kinds of elec-
tromagnetic waves capable to damage nucleic acids,
such as x-Ray [104] or gamma-Radiation [105] based
on highly unspecific ionising radiations are not suit-
able for viral inactivation, since their photons are also
absorbed by proteins. Thus, these radiations cannot
produce inactivated SARS-CoV-2 viruses suitable to be
used for a vaccine because their application will elicit
irreversible conformational changes in the SARS-CoV-2
proteins. Therefore, the advantage of nsPEF is that it
may be a suitable technique than can be used for the
production of highly immunogenic and inactivated
SARS-CoV-2 viruses.

Despite seeming an obvious alternative, we believe
that nsPEF has not been taken into account perhaps
because it is a new field that most molecular biolo-
gists are unfamiliar with. Additionally, this technique
may be of particular interest to the industry consider-
ing that nsPEF is an inexpensive and accessible tech-
nology. In fact, it is perfectly feasible to build an in-
house nsPEF device. An excellent review remarking on
this point can be read at [106].

Conclusions

A larger body of research is needed to capitalise on
the basic knowledge accumulated in the nsPEF field in
order to translate it into real demonstrable applica-
tions. This paper proposes one of such new applica-
tions. In the light of the continuous appearance of
new SARS-CoV-2 variants, evaluating nsPEF to gener-
ate inactivated SARS-CoV-2 that may, in turn, be used
for the production of novel vaccines, is an urgent task.
It is expected that, after the application of a suitable
nsPEF protocol an inactivated virus harbouring intact
proteins and fragmented RNA, should be produced.
Thus, resulting inactivated viruses could be used to
develop a novel SARS-CoV-2 vaccine where inert
viruses expose their proteins in the same conform-
ation as the original viruses. This will ensure that the
viral epitopes will remain intact boosting the immune
response. This new approach to vaccine development
may be not only important to fight against the
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COVID-19 pandemic, but also to develop vaccines suit-
able to better address future pandemics.
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