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Abstract: Enzymatically concentrated anchovy oil (concentrate) is known to be much less stable than
unconcentrated anchovy oil. However, we previously showed that concentrate surprisingly forms
more stable microcapsules, when produced by complex coacervation, than does unconcentrated
anchovy oil. Here we investigate the mechanism of this unexpected stability. We also investigate
whether or not incorporation of concentrate can be used as an additive to improve the stability of
unconcentrated anchovy oil microcapsules. Results showed that microcap stability increased as the
amount of added concentrate increased. Decreased emulsion droplet size, lower positively charged
zeta potential, and higher surface hydrophobicity were observed in the oil/water (O/W) emulsion,
with the incorporation of concentrate in the oil phase, compared with the unconcentrated anchovy oil
O/W emulsion. Both the decreased zeta potential and the increased hydrophobicity of concentrate in
the mixed oil phase may improve droplet agglomeration, leading to enhanced oxidative stability of
the concentrate-containing microcapsules. Decreased repulsive forces between droplets result in a
more compact structure, thicker outer shell, and smoother surface, resulting in enhanced oxidation
stability of the concentrate-containing microcapsules.

Keywords: anchovy oil; enzymatic concentration; microencapsulation; oxidative stability; mechanism;
concentrates

1. Introduction

Omega-3 polyunsaturated fatty acids (PUFAs) are essential fatty acids and have been shown to be
associated with important nutritional and biological functions, including inflammation, membrane
lipid composition, signal transduction, cellular metabolism, and the regulation of gene expression [1,2],
with these properties primarily attributed to the long-chain omega-3 fatty acids eicosapentaenoic acid
(EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3). With increasing awareness of the health
benefits of omega-3 PUFAs and the low levels of their dietary intake in many Western countries [3],
a large amount of research has been carried out on the development of food delivery systems for
these oxidatively unstable oils [4]. This is particularly important since even low levels of omega-3
PUFA oxidation products can produce undesirable odor and cause sensory problems in the fortified
products [5,6].

Microencapsulation techniques, with the susceptible compounds as ‘core’ material entrapped
within a surrounding ‘wall’ material, can be employed to protect bioactive compounds against adverse
reactions such as oxidation [7], nutritional deterioration [8], or volatile loss [9] during their production,
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storage, and handling [10]. A range of microencapsulation methods have been applied to omega-3 oils,
with the most commercially useful being spray-dried emulsions and complex coacervation. Complex
coacervation has several advantages over spray-dried emulsions, including higher payload, thicker
outer shell, better control of droplet size and particle size, and lower surface oil [11]. Wang et al.
(2014) reported significantly enhanced oxidative stability of fish oil based on microencapsulation
using complex coacervation [12]. However, the microencapsulation process is costly and so it is
important for commercial viability to deliver as high a dose of omega-3 as possible. [5,6,13]. One way
to achieve a high omega-3 payload per gram of oil is to use a concentrated omega-3 oil. Therefore,
microencapsulating omega-3 acylglycerol concentrates prepared using enzymatic hydrolysis is a useful
strategy to increase the EPA and DHA dose per gram of powder, thereby lowering the cost per dose
of omega-3. However, omega-3 oil stability decreases significantly as levels of EPA and DHA rise,
implying that microencapsulated omega-3 acylglycerol concentrates should be significantly less stable
than those that are produced from unconcentrated oils.

We previously produced acylglycerol concentrates by selective partial hydrolysis using
Thermomyces lanuginosus lipase (TL 100L) [14] and subsequently microencapsulated these concentrates
using complex coacervation [12]. Surprisingly, this microencapsulated omega-3 acylglycerol
concentrate exhibited enhanced oxidative stability compared to the microencapsulated anchovy oil,
even though the omega-3 acylglycerol concentrate itself was much less stable than the native oil [15].
However, the mechanism of this improvement remains unknown. In this study, we investigated
possible factors contributing to the enhanced stability of microencapsulated omega-3 acylglycerol
concentrate. We also added varying amounts of omega-3 acylglycerol concentrate into unconcentrated
refined anchovy oil prior to the microencapsulation and thereby determine if small amounts of added
acylglycerol concentrate could stabilize anchovy oil microcapsules. Anchovy oil was used in this study
since it contains relatively high levels of both EPA and DHA, and is the major commercial source of
both nutritional and pharmaceutical omega-3 products.

2. Results

2.1. Oxidative Stability of Anchovy Oil, Anchovy Oil Acylglycerol Concentrate, and Refined Anchovy Oil
Microcapsule

Accelerated oxidation using Rancimat to test lipid oxidative stability is a fast and reliable analytical
method [16] with good repeatability [17]. Figure 1 shows the oxidative stability index (OSI) of three
different microcapsules (Mic) test using Rancimat at 70 ◦C and 90 ◦C, respectively.
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homogenized at 22,000 rpm dropped dramatically, possibly due to air entrapped during 
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Figure 1. OSI of anchovy acylglycerol concentrate (AAC) microcapsule, anchovy oil (AO) microcapsule,
and refined anchovy oil (RAO) microcapsule tested at 70 ◦C and 90 ◦C, respectively.

As shown in Figure 1, the OSI of unconcentrated anchovy oil (AO) microcapsule were 16.0 h at
70 ◦C and 4.6 h at 90 ◦C, respectively, while the microencapsulated enzymatic anchovy acylglycerol
concentrate (AAC) with degree of hydrolysis of approximate 30% exhibited significantly enhanced OSI
value, 66.0 h at 70 ◦C and 26.5 h at 90 ◦C, respectively. All experiments were carried out in triplicates
and the data was replicable.

In order to further study whether this enhancement in the oxidative stability of the microcapsules
was as a result of the separation process where the concentrate was extracted from the anchovy
oil hydrolysis, the same hydrolysis (lipase blank) and separation process was also carried out on
unconcentrated anchovy oil and the separated lipids are referred to below as ‘refined anchovy oil’.
The refined anchovy oil (RAO) was microencapsulated in the same encapsulation process and its OSI
was found to be slightly lower compared to the unconcentrated anchovy oil microcapsule (13.5 h at
70 ◦C and 3.8 h at 90 ◦C, respectively), suggesting the separation process of the lipids did not contribute
to the observed enhanced OSI value of the microcapsules.

2.2. Effect of Homogenizer Conditions on the OSI of Microcapsule

During microencapsulation, it was observed that the droplet size of the concentrate O/W emulsion
was significantly smaller than that of the unconcentrated anchovy oil O/W emulsion (as shown in
Figure 6). In order to investigate if the enhanced oxidative stability of the concentrate microcapsule
was caused by the decreased size of the O/W emulsion droplets, both unconcentrated anchovy oil
and concentrate O/W emulsions were prepared in a homogenization range of 10,000 to 220,000 rpm
for 15 min, followed by microencapsulation using complex coacervation under the same conditions.
The OSI values of the final dried microcapsules are shown in Figure 2, and show that unconcentrated
anchovy oil microcapsule had an OSI value less than 20 h across the homogenization speed range,
while the concentrate microcapsules exhibited significantly higher OSI values (p < 0.01) than those
of the unconcentrated anchovy oil microcapsules at the same homogenization speed. The OSI value
of unconcentrated anchovy oil microcapsules prepared using the O/W emulsion homogenized at
22,000 rpm dropped dramatically, possibly due to air entrapped during homogenization. Wang et al.
(2015) also reported the entrapment of the air within the microencapsulation system compromised
stability, as measured by OSI, for some microcapsule [10]. Interestingly, the OSI value of unconcentrated
anchovy oil microcapsules prepared from O/W emulsion homogenized at 22,000 rpm was significantly
lower than that of the concentrate microcapsules produced from O/W emulsion homogenized at
15,000 rpm (5 vs. 60 h), even though the average droplet size of the O/W emulsion tested by Zetasizer
Nano ZS was similar (both approximately 730 nm). Hence, the enhanced oxidative stability of the
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microencapsulated concentrate does not appear to be primarily due to the differing O/W emulsion
droplet size.
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Figure 2. Effect of homogenizer speed on the OSI of concentrate (AAC) microcapsule and
unconcentrated anchovy oil (AO) microcapsule.

2.3. Oxidative Stability of Anchovy Oil Microcapsules with a Range of Concentrate Content

The impact of added concentrate on the oxidative stability of the microencapsulated mixed
oil phase was investigated. Concentrate was mixed with unconcentrated anchovy oil from 0–100%
(w/w) (concentrate/mixed oil phase), followed by homogenization and dehydration under the same
conditions. The OSI values of the produced microcapsules are shown in Figure 3, which shows that
as the level of concentrate increases so does the OSI stability. This indicates that the addition of
concentrate can stabilize unconcentrated oil microcapsules, but only in proportion to the amount
of concentrate added. That is, the addition of small amounts of concentrate results in only a small
amount of stabilization. This result is consistent with droplet size change not being the primary factor
impacting microcapsule stability, since the addition of a small amount of concentrate (3.13%) results in
the largest decrease in droplet size, but not the largest increase in stability.
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Figure 3. Effect of incorporated concentrate (AAC) on the OSI of microencapsulated anchovy oil.

2.4. Lipid Class Analysis of the Acylglycerol

The lipid class and fatty acids profiles of unconcentrated anchovy oil and concentrate were
compared. Lipid class was analyzed using capillary chromatography (Figure 4), with anchovy oil
being 100% triacylglycerol (TAG), while after hydrolysis appreciable levels of monoacylglycerol (MAG),
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diacylglycerol (DAG), and free fatty acid (FFA) were observed in the oil phase. The TAG, FFA, MAG,
and DAG content in the acylglycerol concentrate were 53.7, 1.24, 31.0, and 12.4%, respectively. Most
of the FFA in the hydrolysis product was removed during the separation of concentrate. MAG and
DAG are effective surfactants and nonionic emulsifiers, which are widely used in food products
because of their emulsifying, stabilizing, and conditioning properties [18,19]. Moreover, MAG is also
widely used in pharmaceutical products, as binders in tablets, as emollients for transdermal products
and in slow-release drugs [20]. Hence, we anticipate that MAG and DAG are embedded within the
wall material, facilitating droplet agglomeration during complex coacervation in the cooling step by
‘binding’ the O/W emulsion droplets by hydrophobic forces.
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Waraho et al. [21] reported antioxidative activity for MAG and DAG in a soybean oil-in-water
emulsion, which may be due to the forming of a liquid crystal physical barrier surrounding the oil
phase, decreasing interactions between unsaturated fatty acids and prooxidants or oxygen [22]. In the
current research, during homogenization, some MAG and DAG in the oil phase may adsorb at the
O/W interface to form a ‘hydrophobic shell’, which provided superior oxidative stability, compared
to the unconcentrated anchovy oil microcapsules, which are entrapped by the ‘double complex
coacervates shell’. Miyashita, et al. (1997) also reported higher oxidative stability of polyunsaturated
monoacylglycerols compared to triacylglycerol in aqueous micelles [23].

2.5. Fatty Acid Composition Analysis of the Acylglycerol

Our previous research has shown that the EPA content in the unconcentrated anchovy oil
and concentrate were similar, while the DHA content in concentrate was found to be significantly
higher [15]. In the current research, the MAG, DAG, and TAG components of concentrate were
separated by TLC plate and their fatty acids were analyzed by GC, with results shown in Figure 5.
There were some fatty acid differences between MAG, DAG, and TAG, with more EPA found in DAG
than TAG and more DHA in MAG than in TAG. The total content of EPA and DHA was 38.9% in the
DAG form, and 36.1% in MAG, which were both higher than in TAG (33.2%). This is consistent with
the lipase preferentially hydrolyzing shorter chain fatty acids and saturates. Omega-3 containing MAG
and DAG may have improved bioavailability compared with TAG [24].
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Figure 5. Fatty acid profile for anchovy oil, concentrate, and the separated single acylglycerols (TAG,
DAG, and MAG) from concentrate.

2.6. Effect of the Concentrate Incorporation on the Interfacial and Emulsion Characteristics of Gelatin-Stabilised
Oil-in-Water Emulsions

Results from the characterization of the O/W emulsion during microencapsulation, stabilized
by gelatin before complex coacervation—including emulsion droplet size, zeta-potential, and surface
hydrophobicity—are shown in Figure 6. At the same homogenization speed, the O/W emulsion
exhibited a significantly smaller droplet size increasing concentrate content in the mixed oil phase,
from 1018 ± 79 nm in anchovy oil emulsion to 737 ± 31 nm in concentrate emulsion. Unlike TAG,
MAG and DAG are more effective surfactants and emulsifiers. Bornscheuer [18] and Feltes et al. [19]
reported surface tension reduction when MAG and DAG were adsorbed at the O/W interface during
homogenization, which improved emulsification and their adsorption at the oil/water interface [18,19].
Therefore, the presence of MAG and DAG can result in finer emulsions with smaller and more uniform
droplet sizes during homogenization [25,26].
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Zeta-potential of the O/W emulsion decreased with an increase in the concentrate content in
the mixed oil phase, from 6.19 ± 0.35 mV in anchovy oil emulsion to 4.67 ± 0.43 mV in concentrate
emulsion, probably because of less adsorbed positively charged gelatin at the O/W interface and a
smaller O/W droplet size. Recent research indicates that surfactants and polymers will impact the
zeta potential significantly in fine particle colloidal suspensions, and accelerate particle aggregation
decreasing the absolute value of the zeta potential [27]. Zeta potential is a critical factor for the
stability of colloidal dispersions and has been widely used to quantify the magnitude of electric
charge distribution that surrounds particles and characterizes the stability of colloidal dispersions [28].
Colloids are electrically stabilized when they have high zeta potential, and when the magnitude of the
zeta potential decreases, attractive forces may exceed this repulsion causing the dispersion to break
and flocculate [29]. When the zeta potential is between ±30 to ±10 the colloidal dispersions will be
incipiently unstable. When the Zeta potential decreases from 0 to ±5, the colloidal dispersions will
rapidly coagulate or flocculate [30,31].

However, the surface hydrophobicity of the O/W emulsion droplets significantly increased with
an increase in the concentrate content in the mixed oil phase, from 176.11 ± 10.15 in anchovy oil
emulsion, increasing to 338.38 ± 15.98 in concentrate emulsion. This decreased O/W emulsion droplet
resulted in more overall droplet surface area and therefore a lower ratio of gelatin to hydrophobic
droplet surface area, which may explain the change in surface hydrophobicity.

2.7. Physicochemical Properties of Various Microcapsules Using Anchovy Oil Incorporated with Various
Amounts of Concentrate

The physicochemical properties of the prepared microcapsules were investigated. The surface
oil content, total oil, encapsulation efficiency, and microcapsule droplet size are shown in Table 1.
The high payload (>50%) and extremely high encapsulation efficiency (>95%) of the microcapsules
in this study are consistent with our previous work [12,15]. Surface oil content increased with an
increase of concentrate in the mixed oil phase, together with a decrease in encapsulation efficiency,
perhaps due to higher levels of FFA in the concentrate. This FFA content might also contribute to
the increased conductivity in the concentrate microcapsules at the beginning of the heating in the
accelerated oxidation test, as shown in Figure 1.

Table 1. Physical properties of various microcapsules using anchovy oil incorporated with differing
amounts of concentrate.

Concentrate Context in the
Mixed Oil Phase

Surface Oil
(%) Total Oil (%)

Encapsulation
Efficiency (%)

Microcapsule Droplet Size

D [4,3] (µm) D [3,2] (µm) Span

Unconcentrated anchovy oil 0.82 ± 0.27a 54.83 ± 1.17 98.51 ± 0.51 96.00 ± 8.80d 63.99 ± 2.28d 1.78 ± 0.39
3.13% Concentrate 1.91 ± 0.22b 53.02 ± 0.84 96.40 ± 0.39 69.29 ± 7.25c 40.20 ± 3.87c 1.73 ± 0.05
6.25% Concentrate 1.64 ± 0.23b 53.92 ± 0.57 96.97 ± 0.41 62.83 ± 2.91c 40.30 ± 6.24c 1.52 ± 0.01
12.50% Concentrate 2.26 ± 0.19c 53.21 ± 0.94 95.76 ± 0.42 57.41 ± 1.85b 32.25 ± 4.48b 1.47 ± 0.10
25.00% Concentrate 2.16 ± 0.25c 52.42 ± 0.96 95.89 ± 4.14 52.58 ± 1.24a 35.67 ± 3.16b 1.63 ± 0.01
50.00% Concentrate 2.30 ± 0.54c 53.10 ± 1.16 95.67 ± 0.91 51.77 ± 3.72a 30.94 ± 3.24a 1.55 ± 0.01

Concentrate 2.59 ± 0.57c 53.34 ± 0.81 95.12 ± 1.09 49.34 ± 4.67a 28.86 ± 1.94a 1.85 ± 0.06

The different small letters on OSI values within the same column indicate significant difference by Duncan’s test
(p < 0.05).

3. Discussion

Both the decreased zeta potential and the increased hydrophobicity of concentrate in the mixed oil
phase may improve droplet agglomeration leading to enhanced oxidative stability of the microcapsules.
Droplet size is an important factor, but since a small amount of concentrate (3.13%) has the largest
impact on droplet size (Table 1) but not on stability (Figure 3) other factors play an important role
in stability. Zeta potential and increasing hydrophobicity correlate with improved stability and are
important factors in strengthening the interactions between particles, leading to a more compact
structure and greater oxidative stability. The complex coacervation microencapsulation process during
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the cooling step is shown in Figure 7. Step 1 and Step 2 show the emulsion droplets agglomeration
during complex coacervation, with the arrows in Step 1 representing the surrounding hydrophobic
forces. Step 3 shows the outer shell formation. O/W emulsion droplet agglomeration occurred because
of the formation of the ‘free complex coacervates’, which was in the surrounding aqueous phase
rather than at O/W interface. During the cooling step, these free coacervates adsorb onto the surface
of the agglomerated droplets to form an outer shell, due to hydrophobic forces. In the presence of
concentrate in the oil phase, the microcapsules tended to have a more compact structure due to their
decreased droplet size, decreased zeta-potential values (i.e., weaker repulsive forces) and increased
surface hydrophobicity (i.e., stronger attractive hydrophobic forces) in the O/W emulsion. In addition,
the outer shell in microcapsules containing concentrate appear to be thicker and smoother, probably as
a result of the more compact internal structure.
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4. Materials and Methods

4.1. Materials

Anchovy oil was provided by DSM Nutritional Products (Dartmouth, Nova Scotia, Canada) and
stored at 4 ◦C before use. Thermomyces lanuginosus lipase (TL 100L) was obtained from Novozymes
Australia Pty. Ltd. (North Rocks, NSW, Australia). Antioxidant Duralox Blend AN 110XT were
provided by Kalsec Incorporation (Kalamazoo, MI, USA). Transglutaminase (Activa® KS–LS) was
purchased from Ajinomoto (Tokyo, Japan) and stored at 4 ◦C before use. All other chemicals used
were analytical grade and purchased from Sigma-Aldrich Australia (Sydney, NSW, Australia).

4.2. Preparation of Anchovy Oil Acylglycerol Concentrate

Enzymatic anchovy acylglycerol concentrate (concentrate) was prepared according to a previous
reported method [14,15] with minor modifications: 100 g anchovy oil was mixed with the lipase TL
100 L at the dosage of 2000 U/g oil, followed by the addition of 0.1 M pH7.5 phosphate buffer at the
oil/buffer ratio of 1.8 mL/g. The mixture was flushed with nitrogen and incubated under the agitation
at 300 rpm in the phosphate buffer at 40 ◦C for 3 h, then KOH solution (0.5 M in 30% ethanol) was
used to neutralize the free fatty acids (FFA) released during the hydrolysis [32] and the acylglycerol
portion was separated using diethyl ether and then heptane. The collected concentrate was kept in
glass bottles in the presence of nitrogen at 4 ◦C until used.

4.3. Preparation of Oil-in-Water Emulsion

Twenty g of oil was mixed with 150 g (8%, w/w) gelatin dispersion and this mixture was
stirred using a mechanical stirrer at 1200 rpm for 5 min. The mixture was then emulsified at
15,000 rpm for 15 min using a homogenizer (Unidrive 1000, CAT Scientific, Paso Robles, CA, USA)
to prepare the oil-in-water (O/W) emulsion for microencapsulation. Then 2 g O/W emulsions were
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withdrawn and diluted 20 times using Milli-Q water to avoid their gelation, the emulsion was stored
at 4 ◦C as the stock emulsions before their droplet size distribution, zeta-potential, and surface
hydrophobicity determination.

4.4. Microencapsulation of Oil Phases Using Complex Coacervation

Microcapsules of anchovy oil, anchovy oil concentrate, and their mixture were prepared using
gelatin-sodium hexametaphosphate complex coacervates as shell material based on our previous
study [12,15]. Antioxidant Duralox Blend AN 110 XT was incorporated to the oil phase at 0.4% (w/w)
prior to microencapsulation to avoid the oxidation of the omega-3 oils during the processing.

4.5. Accelerated Oxidative Stability Test of Microcapsules

Accelerated oxidation tests of microcapsule were carried out using a Rancimat (Model 743,
Herison, Switzerland) following a previously described method [12]. 2 g microcapsules were heated at
70 ◦C or 90 ◦C under a purified air, at a flow rate of 10 L/h. The induction times of the tested samples
were recorded and used as their oxidative stability index (OSI).

4.6. Separation of Lipid Class by TLC

Lipid class was separated by TLC. 500 mg of oil sample was suspended in 5 mL of heptane and
carefully spotted onto thin layer chromatographic plates (TLC; 20 × 20 cm) (Merck). Plates were
developed in hexane/diethyl ether/acetic acid (60:17:0.2) for 22 min and spots were visualized after
spraying the plate with 60% H2SO4 and dried at 120 ◦C for 30 min. Once the lipid classes have been
identified using standards, spot representing each lipid class was scraped off after being visualized
under UV, resuspended in methanol for 12 h and then further analyzed by Iatroscan and GC. Each lipid
class was identified using the SIC-480 II software for multiple chromatogram processing.

4.7. Analysis of Lipid Class and Fatty Acid Profile

The lipid classes of the native anchovy oil and concentrate were analyzed by capillary
chromatography with flame ionization detector (Iatroscan MK5, Iatron Laboratories Inc., Tokyo,
Japan) based on our established method [14,33]. The major fatty acid profile analysis using a gas
chromatograph (6890 model, Agilent Technologies, Santa Clara, CA, USA) was performed using a
previously reported method [15,34].

4.8. Measurement of Emulsion Average Droplet Size and Zeta Potential

The stock emulsions were further diluted 5-fold and the average droplet size and zeta potential
values of the O/W emulsion droplets were analyzed using a NanoZS Zetasizer (Malvern Instruments
Ltd., Worcestershire, UK).

4.9. Measurement of Surface Hydrophobicity

The surface hydrophobicity of the emulsion was measured according to previously methods with
some modifications [35,36]. Stock O/W emulsions were double diluted with Milli-Q water to 320, 640,
1280, 2560, 5120, and 10240 times, and then the droplet surface hydrophobicity was measured using
1-anilinno-napthalene sulphonate (ANS) as a hydrophobic probe. 20 µL of ANS (4.0 mM in 0.1 M
phosphate buffer, pH 7.0) was added to 4 mL of diluted O/W emulsions and mixed well, followed
by the incubation in darkness for 30 min at room temperature. The fluorescence intensity (FI) of the
mixtures was measured using Cary Eclipse spectrofluorimeter (Varian Australia, Sydney, Australia).
FI for ANS solution alone was determined by using the same amount of ANS in Milli-Q water and the
relative fluorescence intensity (RFI) for each concentration was calculated using Equation (1) given
below [37]:

RFI =
Fs − F0

F0
(1)
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where Fs and F0 are fluorescence intensity of protein-ANS conjugate and ANS alone, respectively.
The surface hydrophobicity was expressed as the initial slope of the plot of RFI versus protein
concentration (mg/mL).

4.10. Physicochemical Properties of the Microcapsules

The physical properties of microcapsules, including moisture content, surface oil content, total oil
content, encapsulation efficiency (EE), payload (PL), and encapsulation yield (EY), were determined
based on reported methods [12].

4.11. Particle Size Distribution of Microcapsules

The particle size distribution of the final microcapsule powder was determined using a Malvern
Mastersizer 2000 (Malvern Instruments Ltd., Worcestershire, UK). The volume surface average
diameter, d(3, 2) (µm), volume weighted average diameter, d(4, 3) (µm) and dispersion index (Span)
were calculated using Equations (2), (3), and (4), respectively.

d(3, 2) = ∑ nidi
3

∑ nidi
2 (2)

d(4, 3) = ∑ nidi
4

∑ nidi
3 (3)

Span =
d(0.9)− d(0.1)

d(0.5)
(4)

where, ni is the number of the droplets with the same diameter; di is the droplet size. The d (0.1), d(0.5)
and d(0.9) are the average droplet size values corresponding to the cumulative distribution at 10, 50,
and 90%, respectively.

4.12. Statistical Analysis

All the experiments were carried out in triplicates and the SPSS statistical package (IBM SPSS
statistics 21, Foster City, CA, USA) was used for the analysis of variance (ANOVA) to test the significant
difference between the mean values.

5. Conclusions

In the current study, we investigated the stabilizing effect of MAG and DAG on anchovy
oil containing microcapsules. Possible reasons for the enhanced oxidative stability of concentrate
microcapsules were investigated. The concentrate separation process and the O/W emulsion droplet
size under various homogenization speeds were found not to be the most significant factors in stability
enhancement. The involvement of concentrate during homogenization, specifically, the possible
embedment of the DAG and MAG in the complex coacervate shell, may be partially responsible for
the significantly improved OSI of the concentrate microcapsules. Moreover, the smaller size, lowered
zeta-potential and higher hydrophobicity of the O/W droplets with high levels of concentrate content
in the mixed oil phase may improve droplet agglomeration packing, leading to enhanced oxidative
stability of the microcapsules. This more density compacted internal structure appears to also enable
the formation of a thicker outer shell, further improving microcapsule stability.
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