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Epilepsy is an abnormal function disease of movement, consciousness, and nerve

caused by abnormal discharge of brain neurons in the brain. EEG is currently a

very important tool in the process of epilepsy research. In this paper, a novel noise-

insensitive Takagi–Sugeno–Kang (TSK) fuzzy system based on interclass competitive

learning is proposed for EEG signal recognition. First, a possibilistic clustering in Bayesian

framework with interclass competitive learning called PCB-ICL is presented to determine

antecedent parameters of fuzzy rules. Inherited by the possibilistic c-means clustering,

PCB-ICL is noise insensitive. PCB-ICL learns cluster centers of different classes in a

competitive relationship. The obtained clustering centers are attracted by the samples

of the same class and also excluded by the samples of other classes and pushed

away from the heterogeneous data. PCB-ICL uses the Metropolis–Hastings method

to obtain the optimal clustering results in an alternating iterative strategy. Thus, the

learned antecedent parameters have high interpretability. To further promote the noise

insensitivity of rules, the asymmetric expectile term and Ho–Kashyap procedure are

adopted to learn the consequent parameters of rules. Based on the above ideas, a TSK

fuzzy system is proposed and is called PCB-ICL-TSK. Comprehensive experiments on

real-world EEG data reveal that the proposed fuzzy system achieves the robust and

effective performance for EEG signal recognition.

Keywords: noise insensitive, TSK fuzzy system, Bayesian framework, possibilistic clustering, Ho–Kashyap

procedure, asymmetric expectile term

INTRODUCTION

Epilepsy occurs randomly and may occur multiple times in a day. In the case of epileptic seizures,
the patients have a sudden physical convulsions and loss of consciousness, which bring great
physical and psychological pain to patients (Ahmadlou and Adeli, 2011; Gummadavelli et al., 2018;
Cury et al., 2019). Seizures will lead to brain cell death, affect brain function, and even threaten
patients’ lives in serious cases. The incidence of epilepsy is high, and the age range is very wide,
including children, adolescents, and the elderly, but the incidence of children and adolescents is
the highest. Both men and women are likely to have the disease, and men are more likely to have
this disease than women. As an important clinical means of monitoring and diagnosing epilepsy,
EEG provides a more rapid and stable low-cost and non-invasive technology in monitoring the
brain activity of the cerebral cortex. It provides information that other physiological methods
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cannot provide. The specific waveforms such as spike, sharp, and
complex wave can be reflected by EEG. Therefore, the prevention
and treatment of epilepsy research for epilepsy patients is of
great significance. In the process of diagnosis and treatment of
epilepsy, EEG plays an irreplaceable role. Doctors usually judge
the condition of patients by observing their EEG.

The traditional way to judge the EEG signal is not only
inefficient, but also because of the difference of experts’ subjective
experience, the automatic detection of EEG signal is still one
of the hot issues in biomedical research (Jiang et al., 2017a;
Martinez-Vargas et al., 2017; Li et al., 2019). An automatic
epilepsy detectionmethod can help doctors improve the accuracy
of epilepsy diagnosis and also greatly save time. The research of
automatic epilepsy detection is of great value to the prevention,
diagnosis, and treatment of epilepsy. At present, epilepsy can
be detected by machine learning and data mining. Firstly,
the effective feature information is extracted from EEG and
preprocessed for data analysis; secondly, the preprocessed EEG
data are sent to the classifier for analysis and detection of epileptic
and non-epileptic EEG data. In the above implementation
process, the key research is to design an effective prediction
and discrimination method that can be applied to normal EEG
signal and epileptic EEG signal. Many effective methods have
been successfully applied to automatic epilepsy detection system,
including extreme learning machine (ELM), artificial neural
network, Bayesian linear discriminant analysis, support vector
machine (SVM), and fuzzy system (Kabir and Zhang, 2016; Qi
et al., 2017; Akhavan and Moradi, 2018; Truong et al., 2018;
Hossain et al., 2019; Liu et al., 2019; Sreej and Samanta, 2019;
Xia et al., 2020). The fuzzy system is a model constructed to
deal with the thinking, analysis, reasoning, and decision-making
processes in production and practice. It can directly translate
natural language into computer language. Due to its ability to
process uncertain and ambiguous information, it has a high
degree of interpretability and strong learning ability (Juang et al.,
2007; Gu et al., 2017a; Jiang et al., 2017b,c; Gu and Wang, 2018).
However, the traditional fuzzy system has poor robustness and
anti-interference ability, and the classification accuracy is not
high in data noise scenarios. But in real life, the classification
of noise data is widely used. For example, in actual application
scenarios, due to differences in machine advices or scanning
technology, such as different rotation angles and noise, the
quality of medical images may vary greatly (Siuly and Li, 2015;
Hussein et al., 2019; Razzak et al., 2019).

Based on key technology of fuzzy system modeling, this
paper proposes a novel noise-insensitive Takagi–Sugeno–Kang
(TSK) fuzzy system. How to determine the antecedent and
consequent parameters is the key to modeling the noise-
insensitive fuzzy system (Takagi and Sugeno, 1985; Jiang et al.,
2015). For the antecedent part of fuzzy rules, clustering is one
kind of a commonly used strategy, such as fuzzy c-means (FCM)
clustering (Bezdek et al., 1984), fuzzy (c + p) clustering (Leski,
2015), Bayesian fuzzy clustering (BFC) (Glenn et al., 2015),
and possibilistic c-means (PCM) clustering (Krishnapuram and
Keller, 1993). However, FCM, fuzzy (c + p), and BFC are
sensitive to noise and will lead to unsatisfactory partition in noisy
scenarios. PCM inherits the practicability and flexibility of fuzzy

clustering and greatly enhances the clustering performance of
data with noise or outliers. However, the unsupervised nature
of PCM makes it unable to use the class label information of
samples, which easily causes the insufficient fuzzy space partition,
thus further affecting the learning of antecedent parameters of
fuzzy rules. The principle of antecedent parameter learning using
PCM clustering is shown in Figure 1A. PCM clustering is directly
used on whole datasets or on samples in each class, and then the
antecedent parameters are learned using the obtained clustering
results. Then the data samples are simply divided into several
clusters, without fully taking advantage of the geometry of data
and the label information of samples. In this case, in the data
overlapping regions, the distance between clustering centers may
be too small or the centers may overlap.

In this paper, we first propose a noise-insensitive possibilistic
clustering in Bayesian framework with interclass competitive
learning called PCB-ICL. Inherited by PCB, PCB-ICL is noise
insensitive; meanwhile, different classes of cluster centers will
produce a competitive relationship during the learning process.
That is, in the sample overlapping area, the clustering centers are
attracted by the samples of the same class and also excluded by the
samples of other classes and pushed away from the heterogeneous
data. The principle of antecedent parameter learning using PCB-
ICL clustering is shown in Figure 1B. PCB-ICL integrates the
competitive learning mechanism of clustering centers among
different classes in the Bayesian framework. PCB-ICL considers
the structure information of samples in the clustering procedure
and realizes the competition between clustering centers among
different classes. We obtain the antecedent part of fuzzy rules
by performing PCB-ICL alternatively on each class samples.
Then, a Ho–Kashyap procedure (Leski, 2003) with an asymmetric
expectile term (Huang et al., 2014a,b) is adopted to estimate
the consequent parameters of fuzzy rules. Due to the statistical
characteristics of the asymmetric expectile term, it is insensitive
to noise; so the asymmetric expectile term is used to measure
the misclassification error. Based on the above idea, the TSK
fuzzy system called PCB-ICL-TSK is developed, which learns
antecedent parameters by PCB-ICL clustering and consequent
parameters by the Ho–Kashyap procedure with an asymmetric
expectile term. We apply the proposed algorithm on the Bonn
EEG dataset, and the experimental results on several noisy
classification tasks demonstrate that PCB-ICL-TSK can achieve
satisfactory performance in EEG signal classification. The novelty
of our study is as follows. (1) Both the PCB-ICL and Ho–Kashyap
procedure with an asymmetric expectile term are insensitive to
noise; thus, the obtained antecedent and consequent parameters
are noise insensitive. (2) With the Bayesian framework, the
clustering results of PCB-ICL are globally optimal. In addition,
the competitive relationship strategy between cluster centers
enhances the interpretability of the antecedents of fuzzy rules.
(3) The experiments on real-word EEG datasets confirm the
effectiveness of PCB-ICL-TSK.

The detailed chapters are arranged as follows. Section
Backgrounds introduces the TSK fuzzy system and PCM
clustering. Section Possibilistic Clustering in Bayesian With
Interclass Competitive Learning explores PCB-ICL clustering.
Section Noise-Insensitive TSK Fuzzy System via Interclass
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FIGURE 1 | Principle of antecedent parameter learning using PCB-ICL clustering. (A) The principle of antecedent parameter learning using PCM clustering.

(B) The principle of antecedent parameter learning using PCB-ICL clustering.

FIGURE 2 | The epileptic EEG signals in groups A to E.

Competitive Learning explores the noise-insensitive TSK fuzzy
system PCB-ICL-TSK. Section Experiment is experiments on
noisy EEG data. Section Conclusion is the conclusion.

BACKGROUNDS

Dataset
The epileptic EEG in the experiment is the Bonn dataset from
Bonn University, Germany (Tzallas et al., 2009). The Bonn EEG
dataset consists of five groups of data, namely, A to E, shown in
Figure 2. Each group of data contains 100 EEG signal segments
of 23.6 s, which were selected from continuous single-channel
EEG recordings. The EEG signals were recorded under different
conditions with five patients and five healthy volunteers. The
basic information of groups A–E is shown in Table 1.

TABLE 1 | The basic information of EEG data groups of A–E.

Group Description

Healthy volunteers A EEG signals of healthy volunteers in an

awakened state with eyes open

B EEG signals of healthy volunteers in an

awakened state with eyes closed

Patients C EEG signals of patients in hippocampal

formation of the opposite hemisphere of

the brain

D EEG signals of patients in the

epileptogenic zone during periodic lulls

E EEG signals of patients during seizure

activity

TSK Fuzzy System
The most commonly used rule in the zero-order TSK fuzzy
system can be represented by

Rule Rk: IF x1 is Ak ,1 and x2 is Ak ,2 and . . . and xd is Ak,d,

then fk(x) = P k,0, (k = 1, 2, . . . ,K) (1)

where x1, x2, . . . , xd are input variables, Ak,i is a fuzzy subset, and
K is the number of fuzzy rules. For an input vector x, the output
of the corresponding TSK fuzzy system is represented by

y output =

K
∑

k=1

µk(x)pk,0

K
∑

k=1

µk(x)

=

K
∑

k=1

µ̃k(x)pk,0, (2)
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where the fuzzy membership µk(x) and the normalized fuzzy
membership µ̃k(x) is

µk(x) =
∏d

i=1
µA

k,i
(xi), (3)

µ̃k(x) =
µk(x)

K
∑

k
′
=1

µk
′ (x)

. (4)

For the sample xi, we can rewrite it by

d(xi) = [µ̃1(xi), µ̃2(xi), . . . , µ̃K(xi)]
T , (5)

Generally, antecedent and consequent parameters of rules are
determined separately. A popular way to estimate antecedent
parameters is to use a certain fuzzy clustering method (Takagi
and Sugeno, 1985; Gu et al., 2017b; Salgado et al., 2017). Then
µA

k,i
(xi) can be computed by

µA
k,i
(xi) = exp(−

(xi − y
k,i)

2

2δ
k,i

), (6)

where the width parameter δk,i can be obtained by

δk,i =

h ·
N
∑

j=1
uk,j(xji − y

k,i)
2

N
∑

j=1
uk,j

, (7)

where h is the scale parameter and uk,j is the fuzzy membership
of the jth input sample xj belonging to the kth cluster.

Then the learning of consequent parameters can be
represented by

min
p

N
∑

i=1

|lid(xi)
Tp− 1| (8)

Using the least square solution to minimize the squared loss,
Equation (8) can be written by

min
p

J(p) = (Dp− 1N×1)
TH(Dp− 1N×1)+ τpTp, (9)

where D = [l1d(x1)
T , . . . , lNd(xN)

T]T , the matrix H = diag(h1,
h2, . . . , hN), hi = 1/|lid(xi)

Tp−1| for lid(xi)
Tp−1 < 0, and

hi = 0 otherwise. τ is the regularization parameter. Using
the Ho–Kashyap iterative method (Leski, 2003), p can be
computed by

p = (DTHD+ τ I)
−1

DTH1, (10)

where I is the identify matrix.

PCM Clustering
PCM clustering is a probability clustering based on FCM. Based
on the framework of possibility theory, PCM not only takes
into account the general criteria of clustering with the minimum
distance within one class and the maximum distance between
classes but also emphasizes the principle of the maximum
membership value to avoid ordinary solution problems. The
objective function of PCM is

min
U,Y

N
∑

n=1

C
∑

c=1

umnc(xn − yc)
2 +

N
∑

n=1

C
∑

c=1

ηc(1− unc)
m, (11)

s.t. unc ∈ [0, 1],∀n, c

The closed solution of U and Y can be obtained by minimizing
the objective function with respect to unc and yc by.

yc =

N
∑

n=1
umncxn

N
∑

n=1
umnc

(12)

unc =
1

1+ ( (xn−yc)
2

ηc
)

1
m−1

(13)

POSSIBILISTIC CLUSTERING IN
BAYESIAN WITH INTERCLASS
COMPETITIVE LEARNING

Objective Function
A clusteringmethod implements data partition with some certain
degree of similarity. In the clustering process, the samples of one
class will have a repulsive effect on the clustering center of other
classes, especially in the overlapping regions of different classes of
samples; the greater the overlap density, the greater the repulsive
force. In these sample overlapping regions, clustering centers of
different classes form the competitive learning relationship. On
the one hand, the clustering centers are attracted by samples of
this class; on the other hand, the clustering centers are excluded
by different classes of samples and far away from the overlapping
region. In this paper, this idea is embedded into PCM clustering.
Based on the Bayesian framework, we propose the possibilistic
clustering in Bayesian with interclass competitive learning.

Suppose a given binary classification dataset X =
{

xn, ln
}N

n=1
,

in which X1 =
{

xn, ln
}N1

n=1
and X2 =

{

xn, ln
}N

n=N1+1
represent

two class samples and ln ∈ {+1,−1} is the class label of
the nth sample. Let the cluster number of one class samples
be C1 and the cluster centers of the other class Z be priorly

known Z =
[

z1,z2, . . . , zc2
]T
, where the cluster number is C2. We

suppose data X follows the normal distribution, and each sample
xi has an independent probability distribution. The maximum
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posterior estimation of data and parameters in X1 is expressed by

p(X1 ,U,Y) = p(X1 |U,Y)p(U|Y)p(Y)

∝ exp







−
1

2
(

N1
∑

n=1

C1
∑

c=1

umnc ||xn − yc ||
2 +

N1
∑

n=1

C1+C2
∑

c=C1+1

umnc ||xn − zc ||
2)







× (14)

[

N1
∏

n=1

C1+C2
∏

c=1

exp(−
1

2
ηc(1− unc)

m)× exp

{

−
1

2

C1
∑

c=1

(yc − µy)
T

∑−1

y
(yc − µy)

}]

,

where Y =
[

y1,y2, . . . , yc1
]T

is the unknown cluster center matrix
of one class sample. By taking the logarithm of Equation (14), the
objective function of PCB-ICL method can be obtained as

J(X1 ,U,Y) =

N1
∑

n=1

C1
∑

c=1

umnc||xn − yc||
2 +

N1
∑

n=1

C1+C2
∑

c=C1+1

umnc||xn − zc||
2

+

N1
∑

n=1

C1+C2
∑

c=1

ηc(1− unc)
m

+

C1
∑

c=1

(yc − µy)
T
−1
∑

y

(yc − µy). (15)

From Equations (14) and (15), we can see that (1) the PCB-ICL
method shows the competition relationship between clustering
centers of different classes. Different from the traditional
PCM clustering method, PCB-ICL not only considers the label
information of samples but also considers the competition
relationship between clustering centers, as shown in the first two
items. On the premise that the clustering centers of the other
class are priorly known, the clustering centers of the current
class will inevitably have a competition relationship with these
known clustering centers in the overlapping region. (2) Due
to simultaneously utilizing the global distribution structure and
the discrimination information of the samples, the obtained
antecedent part of fuzzy rules by PCB-ICL can realize the clarity
of fuzzy space partition and enhance the interpretability of the
fuzzy rules.

Parameter Learning
To obtain the optimal fuzzy partition matrix U, the PCB-
ICL method uses the Metropolis–Hastings method (Chib and
Greenberg, 1995; Elvira et al., 2017) to construct a Markov
chain to make p(U|X1, Y) stable. The conditional distribution
p(U|X1, Y) is proportional to the joint distribution p(X1, U,
Y) when the sample and clustering center are known and
also is proportional to the conditional distribution p(U|X1, Y).
Therefore, we only need compute p(xn, un|Y) of the sample xn:

p(xn , un|Y) = p(xn|un ,Y)p(un|Y)

∝ exp

{

−
1

2
(

C1
∑

c=1

umnc||xn − yc||
2 +

C1+C2
∑

c=C1+1

umnc||xn − zc||
2)

}

×

C1+C2
∏

c=1

exp(−
1

2
ηc(1− unc)

m). (16)

Thus, the process of the ith iteration of the Markov chain is

1) Generate a new state u+n of un with a uniform distribution as

u+n ∼ Uniform(0, 1),∀n (17)

2) The newly generated membership u+n is accepted by the
probability au as

au = min

{

1,
p(xn, u

+
n |Y)

p(xn, un|Y)

}

(18)

Then accepting au as the current state with probability un,

un =

{

u+n , µ ≤ αu

un, µ > αu
(19)

where µ is a random number in [0, 1]. The distribution of the
new state u+n obtained by sampling is independent of the current
sample, and the state u+n /un is independent, so au does not need
Hasting correction.

3) Compare p(xn,u
+
n |Y
∗) and p(xn, u

∗
n|Y
∗), where Y∗ and u∗n are

the optimal values of Y and un. If, p(xn,u
+
n |Y
∗) >p(xn, u

∗
n|Y
∗)

u+n is replaced by u∗n.

When the matrix U is fixed, we use Metropolis–Hastings
to sample the conditional distribution p(Y|X, U). In this case,
p(Y|X,U) is proportional to the joint distribution p(X,U, Y). We
estimate yc by using the Gaussian distribution as

y+c ∼ N

(

yc,
1

σ

∑

y

)

(20)

where y+c centers on the current value yc. σ is a positive number
and is used to control the compactness of cluster centers. In the
experiment, we empirically set σ to 10.

For the newly generated y+c , it is independent of other
clustering centers. Then the conditional distribution p(X, yc|U)
is represented by

p(X, yc|U) = p(X|U, yc)p(yc)

∝ exp

{

−
1

2

N1
∑

n=1

umnc||xn − yc||
2

}

× exp

{

−
1

2
(yc − µy)

T
∑−1

y
(yc − µy)

}

. (21)

Similarly, the newly generated membership y+c is accepted by the
probability ay as

ay = min

{

1,
p(X, y+c |U)

p(X, yc|U)

}

(22)

Since the Gaussian distribution is symmetric, ay does not need
Hasting correction.

Finally, we compute p(X, U∗, Y∗) using Equation (15) and
compare it with the current p(X, U, Y). If p(X, U, Y) > p(X, U∗,
Y∗), the {U, Y} is replaced by {U∗, Y∗}.

Based on the above analysis, we give
the procedure of the PCB-ICL method
in Algorithm 1.
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Algorithm 1 | PCB-ICL method.

Input: Dataset X1 of one class, the number of clustering C, priorly known

clustering center matrix Z of the other class;

Output: Fuzzy partition matrix U* and clustering center matrix Y*.

Step 1 Initiate u+n ∼ Uniform(0, 1),∀n ;

Step 2 Initiate y+c ∼N
(

yc,
1
σ

∑

y

)

, ∀c;

Step 3 Set u∗n = u+n , y
∗
c = y+c ;

For iter = 1, 2, …, Niter

For n = 1, 2, …, N

Step 4 Sample u+n using Equation (17) and accept it as un using Equations (18)

and (19);

Step 5 If p(xn,u
+
n |Y

∗) > p(xn,u
∗
n|Y
∗), then u∗n = u+n ;

Endfor

For c = 1, 2, …, C

Step 6 Sample y+c using Equation (20) and accept it as y∗c using Equations (21)

and (22);

Step 7 If p(X, y+c |U
∗) > p(X, y∗c|U

∗), then y∗c ← y+c ;

Endfor

Step 8 If p(X, U*, Y*) > p(X, U, Y), then U*← U, Y*← Y;

Endfor.

NOISE-INSENSITIVE TSK FUZZY SYSTEM
VIA INTERCLASS COMPETITIVE
LEARNING

Antecedent Parameter Learning in
PCB-ICL-TSK
In this section, we compute the antecedent parameters in PCB-
ICL-TSK. The premise of PCB-ICL clustering in Algorithm 1 is
that the clustering centers of other class are priorly known, which
is obviously not feasible in practical application. To perform the
fuzzy partition on the whole data set, we take the strategy of an
alternating cycle to perform Algorithm 1 on different classes. In
this case, the clustering results of one class influence the ones
of the other class. Taking binary classification as an example,
we perform Algorithm 1 on positive class X1 and negative class
X2 alternately. The detailed fuzzy partition of the whole data is
shown in Algorithm 2.

The numbers of clustering in two classes are C1 and C2, and
the cluster centers in two classes areY1 andY2, respectively. After
applyingAlgorithm 2 on the whole data, the center matrix Y can
be described by Y∗ = [Y(1)∗; Y(2)∗].

Consequent Parameter Learning in
PCB-ICL-TSK
In this section, we compute the noise-insensitive consequent
parameters in PCB-ICL-TSK. As discussed before, using
the obtained the antecedent parameters, the dataset

X =
{

xi, li
}N

i=1
is represented as S = {(µ̃(xi), li)}

N
i=1, where

µ̃(xi) = [µ̃1(xi)
T , µ̃2(xi)

T , . . . , µ̃(C1+C2)(xi)
T]

T
. Defining

the vector d(xi) = [µ̃1(xi)
T , µ̃2(xi)

T , . . . , µ̃(C1+C2)(xi)
T , 1]

T
,

the consequent vector p∗ = [p10, p
2
0, ..., p

(C1+C2)

0 ,w]
T

can be

Algorithm 2 | Fuzzy partition on the whole data.

Input: Two class samples X1 and X2, the numbers of clustering C1 and C2

in two classes;

Output: Fuzzy partition matrix U(1)*, U(2)* and clustering center matrix

Y(1)*, Y(2)*.

Step 1 Initiate u
(1)
n (u

(2)
n ) ∼ Uniform(0, 1) in two classes;

Step 2 Initiate in two classes;

Step 3 Set u
(1)∗
n = u

(1)
n , u

(2)∗
n = u

(2)
n , y

(1)∗
c1 = y

(1)
c1 , y

(2)∗
c2 = y

(2)
c2 ;

iter = 0;

Do

Step 4 Perform Algorithm 1 on X1;

Step 5 Perform Algorithm 1 on X2;

iter = iter + 1;

Until Y(1)* is |Y(1)* (ν) – Y(1)* (ν – 1)| ≤ ε or iter > Niter

computed by

f (xi) = (p∗)Td(xi) = p0
Tµ̃(xi)+ w

{

≥ 0, xi ∈ X1

< 0, xi ∈ X2
(23)

where the vector p0 = [p10, p
2
0, ..., p

(C1+C2)

0 ]
T
and w is the decision

threshold. If we multiply Equation (23) by the class label,
Equation (23) is represented as li(p

∗)Td(xi) ≥ 0 (i = 1, . . . , N).
Then, the vector p∗ can be computed by

li(p
∗)Td(xi) ≥ ε0 (24)

In particular, ε0 = 1 leads to the classical SVM. For simplicity, we
set ε0 = 1, and Equation (24) can be written as li(p

∗)Td(xi) ≥ 1.
Thus, Equation (24) can be written as

J(p∗) =

N
∑

i=1

(li(p
∗)Td(xi)− 1)2 (25)

Denote the matrix D = [l1d(x1)
T , l2d(x2)

T , . . . , lNd(xN)
T]T and

the error vector e=D∗p∗ – 1. Equation (25) can be rewritten as

min
p∗

J(p∗) =
1

2
(Dp∗ − 1)TH(Dp∗ − 1) (26)

where the matrix H = (λ/N)diag(h1, h2, . . . , hN), with hi = 0 for
error ei ≥ 0 and 1 otherwise.

However, the misclassification error in Equation (24) is noise
sensitive. To further improve the robustness of the TSK fuzzy
system, we use the asymmetric expectile term, which is noise
insensitive, especially to noise around the decision boundary. The
weight hi of the ith sample can be expressed by

hi =

{

q, ei ≥ 0
(1− q), ei < 0

(27)

where hi is the q (lower) expectile parameter. Obviously, when
q = 0, the loss term obtained in Equation (27) is equal to the
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Algorithm 3 | Learning algorithm for consequent parameters.

Input: The dataset X; the number of clusters (C1 + C2); the cluster centers Y1,

Y2 and the membership matrix U1, U2; the expectile parameter q; and the

regularization parameter τ ;

Output: Consequent parameters p0.

Step 1 Run Algorithm 2 to obtain the antecedent parameters;

Step 2 Compute themembership function d(xi )=[µ̃1(xi )
T , µ̃2(xi )

T , . . . , µ̃(C1+C2 )(xi )
T , 1]

T

by using Equations (5)–(7);

k = 0;

Do

Step 3 Obtain the parameters (p*)(k) using Equation (29);

Step 4 Compute the parameter e(k) using e(k) = D(p*)(k) – 1;

Step 5 Compute the parameter H(k+1) using Equation (27);

k = k + 1;

Until p* is convergence or k > kmax.

hinge loss, and when q = 0.5, the loss term is equal to the l2 loss
in Huang et al. (2014a,b).

At the same time, considering the regularization term,
Equation (26) can be rewritten as

min
p∗

J(p∗)(k) =
1

2
(D∗(p∗)(k) − 1)

T
H(k)(D∗(p∗)(k) − 1)

+
τ

2
(p0

(k))
T
p0

(k) (28)

where τ is the regularization parameter. p∗(k), H(k), and e(k) are
the kth iteration of p∗,H, and e, respectively.

The condition for optimality of Equation (28) in the kth
iteration is obtained by setting dJ/dp∗ = 0:

(p∗)(k) = ((D∗)TH(k)D∗ + τ Ĩ)
−1

(D∗)TH(k)1 (29)

where Ĩ is the identity matrix with the last element on the main
diagonal set to 0.

The consequent parameter learning in IB-TSK-FC on dataset
X is shown in Algorithm 3.

EXPERIMENT

Experimental Settings
The real-world EEG signals have characters of high
dimensionality and instability. Feature extraction is a necessary
stage before classification for EEG signal recognition. In general,
time domain and frequency domain feature extractions are two
types of feature extraction methods (Wen and Zhang, 2017). In
our experiments, we extract EEG features using kernel principal
component analysis (KPCA) and short-time Fourier transform
(STFT) (Blanco et al., 1997). The former is the time domain
feature extraction, and the latter is the frequency domain feature
extraction. In the experiment, we design eight classification
tasks, namely, four binary classification and four three-class
classification tasks, as shown in Table 2. We corrupt the original

TABLE 2 | EEG classification tasks in the experiment.

Tasks Number of classes Datasets

T1 Two classes A and C

T2 A and E

T3 B and D

T4 B and E

T5 Three classes A, C and E

T6 A, D, and E

T7 B, C, and E

T8 B, D, and E

TABLE 3 | Parameter settings for all methods in the experiment.

Methods Parameter settings

ε-margin-TSK-FS FS-FCSVM Number of rules∈ {1, 2, . . . , 12}, regularization

parameter ∈ {10−3, 10−2, . . . , . . . , 103}, scale

parameter ∈ {0.42, 0.62, . . . , 32}, fuzzy

index = 2

IB-TSK-FC Model sparsity parameter ∈ {1, 2, . . . , 6}, fuzzy

index = 2, number of particles = 10,

convergence thresholds = 10−3, convergence

threshold = 10–3, strength parameter = 3

CS-SVM Gaussian kernel parameter

∈ {10−2, 10−1, . . . , . . . , 102}, regularization

parameter ∈ {10−3, 10−2, . . . , . . . , 103}

FRSVM-ANCH Gaussian kernel parameter

∈ {10−2, 10−1, . . . , . . . , 102}, regularization

parameter ∈ {10−3, 10−2, . . . , . . . , 103}, pinball

loss parameter = 0.05

PCB-ICL-TSK Fuzzy index = 2, number of rules

∈ {1, 2, . . . , 12}, convergence

threshold = 10−3, strength parameter = 3,

expectile parameter = 0.05, maximum number

of iterations = 1,000 and 200 in Algorithms 1

and 2, respectively

datasets with different amounts of random noises at 5, 10, and
15% noise levels.

The experimental environment in this study is a computer
with Intel Core i3-3317U 3.40-GHz CPU and 8-GB RAM. To
validate the performance of MST-TSK, we compare three fuzzy
systems (FS-FCSVM; et al., 2007, ε-margin-TSK-FS; Leski, 2005,
and IB-TSK-FC; Gu et al., 2017b) and two robust classification
methods (CS-SVM; Iranmehr et al., 2019 and FRSVM-ANCH;
Gu et al., 2019). The Gaussian kernel is used for two SVM
methods. The parameter settings for all methods are listed
in Table 3. All parameters are obtained by a 5-fold cross-
validation strategy.

Classification Performance Comparison
In this section, eight EEG classification tasks are used to verify
the classification performance of PCB-ICL-TSK. Tables 4, 5

show the experimental results of six classification algorithms
using STFT and KPCA feature extraction methods at the 5%
noise level. Tables 6, 7 show the experimental results of six
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TABLE 4 | The classification accuracy for the 5% noise level using STFT features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 94.56 94.69 95.22 96.27 96.73 96.74

Task 2 94.88 94.81 95.34 96.19 96.51 96.62

Task 3 94.64 94.57 95.39 96.45 96.70 96.69

Task 4 94.21 94.34 95.57 96.58 96.54 96.67

Task 5 93.46 93.25 93.98 96.27 96.32 96.29

Task 6 93.37 93.42 93.96 95.89 96.14 96.12

Task 7 93.25 93.34 93.86 95.78 95.97 96.04

Task 8 93.38 93.29 93.75 95.86 96.09 96.10

The bold values indicate the best classification performance in the tasks.

TABLE 5 | The classification accuracy for the 5% noise level using KPCA features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 94.53 94.70 95.23 96.28 96.63 96.75

Task 2 94.92 94.78 95.39 96.23 96.50 96.59

Task 3 94.62 94.55 95.40 96.42 96.72 96.72

Task 4 94.23 94.33 95.56 96.62 96.51 96.65

Task 5 93.47 93.25 93.95 96.26 96.33 96.31

Task 6 93.38 93.44 93.97 95.94 96.11 96.19

Task 7 93.23 93.36 93.85 95.79 95.95 96.01

Task 8 93.37 93.34 93.76 95.89 96.10 96.11

The bold values indicate the best classification performance in the tasks.

TABLE 6 | The classification accuracy for the 10% noise level using STFT features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 92.79 92.84 93.44 94.64 95.09 95.29

Task 2 93.12 93.01 93.58 94.57 95.21 95.28

Task 3 92.76 92.76 93.59 94.86 95.39 95.30

Task 4 92.48 92.52 93.76 95.03 94.99 95.21

Task 5 91.60 91.45 92.16 94.63 94.66 94.93

Task 6 91.61 91.65 92.23 94.23 94.71 94.70

Task 7 91.44 91.58 92.09 94.18 94.61 94.68

Task 8 91.58 91.55 91.94 94.19 94.56 94.67

The bold values indicate the best classification performance in the tasks.

TABLE 7 | The classification accuracy for the 10% noise level using KPCA features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 92.75 92.80 93.39 94.61 95.24 95.27

Task 2 93.12 92.98 93.53 94.56 95.21 95.21

Task 3 92.77 92.72 93.63 94.85 95.14 95.26

Task 4 92.49 92.58 93.84 95.08 94.95 95.20

Task 5 91.63 91.42 92.20 94.66 94.77 94.96

Task 6 91.53 91.66 92.22 94.24 94.58 94.69

Task 7 91.45 91.52 92.10 94.24 94.51 94.68

Task 8 91.61 91.58 91.87 94.19 94.54 94.69

The bold values indicate the best classification performance in the tasks.
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TABLE 8 | The classification accuracy for the 15% noise level using STFT features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 90.73 90.77 91.39 92.98 93.48 93.88

Task 2 91.13 90.94 91.49 92.84 93.85 93.90

Task 3 90.70 90.76 91.53 93.18 93.70 93.88

Task 4 90.48 90.57 91.84 93.33 93.85 93.84

Task 5 89.68 89.39 90.19 92.91 93.07 93.57

Task 6 89.55 89.74 90.20 92.59 92.92 93.33

Task 7 89.49 89.48 90.05 92.48 93.04 93.28

Task 8 89.62 89.67 89.85 92.50 93.28 93.32

The bold values indicate the best classification performance in the tasks.

TABLE 9 | The classification accuracy for the 15% noise level using KPCA features.

Tasks FS-FCSVM ε-margin-TSK-FS IB-TSK-FC CS-SVM FRSVM-ANCH PCB-ICL-TSK

Task 1 90.73 90.77 91.39 92.96 93.47 93.87

Task 2 91.13 90.94 91.49 92.86 93.34 93.82

Task 3 90.70 90.76 91.53 93.20 93.73 93.90

Task 4 90.48 90.57 91.84 93.33 93.82 93.82

Task 5 89.68 89.39 90.19 92.93 93.12 93.49

Task 6 89.55 89.74 90.20 92.52 92.91 93.32

Task 7 89.49 89.48 90.05 92.47 92.99 93.24

Task 8 89.62 89.67 89.85 92.49 93.20 93.22

The bold values indicate the best classification performance in the tasks.

FIGURE 3 | The rules obtained by four fuzzy systems on the 5% noise level

using KPCA features.

FIGURE 4 | The rules obtained by four fuzzy systems on the 15% noise level

using KPCA features.

FIGURE 5 | The rules obtained by four fuzzy systems on the 5% noise level

using STFT features.

FIGURE 6 | The rules obtained by four fuzzy systems on the 15% noise level

using STFT features.
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FIGURE 7 | Fuzzy membership functions obtained by PCB-ICL on Task 1 with the 5% noise level using KPCA features.

classification methods using STFT and KPCA feature extraction
methods at the 10% noise level.Tables 8, 9 show the experimental
results of six classification methods using STFT and KPCA
feature extraction methods at the 15% noise level. From the
experimental results, it can be seen that the noise data seriously
affect the classification performance of the method. During
the learning process, considering the noise of the data is
helpful to promote the classification performance. Therefore, the
performances of FS-FCSVM, ε-margin-TSK-FS, and IB-TSK-
FC are poor. CS-SVM, FRSVM-ANCH, and PCB-ICL-TSK are
not sensitive to noise, and they can achieve good classification
results. In particular, PCB-ICL-TSK shows excellent classification
performance in different levels of noise occasions, and it
reflects strong robustness. Since PCB-ICL-TSK uses the PCB-
ICL and Ho–Kashyap procedure with an asymmetric expectile
term to compute antecedent and consequent parameters of
fuzzy rules, it is noise insensitive. In addition, in the Bayesian
framework, PCB-ICL obtains global optimal clustering results,
and the strategy of competitive relationship of clustering
centers can enhance the interpretability of the antecedents of
fuzzy rules.

Interpretability Comparison
In this section, we compare the number of fuzzy rules of four
fuzzy systems in Task 8. Figures 3, 4 show the number of fuzzy
rules on the 5 and 15% noise levels for four fuzzy systems using
KPCA features. Figures 5, 6 show the number of fuzzy rules on
the 5 and 15% noise levels for four fuzzy systems using STFT
features. From the results in Figures 3–6, compared with the
three fuzzy systems, the number of fuzzy rules obtained by PCB-
ICL-TSK is the least in all EEG classification tasks. It is known
that for fuzzy systems, the interpretability of fuzzy rules is related
to the number of fuzzy rules and the definition of fuzzy subsets.
The fuzzy membership function obtained by PCB-ICL on Task 1
at the 5% noise level using KPCA features is shown in Figure 7.

Because PCB-ICL clustering considers the influence of clustering
centers of different classes in the process of clustering, that is, the
competition relationship between different classes of clustering
centers, PCB-ICL clustering can obtain clustering centers with
a large interval, which guarantees the partition clarity of feature
space and the classification accuracy of the obtained fuzzy system
and the interpretation of rules.

CONCLUSION

The noise-insensitive PCB-ICL-TSK fuzzy system is proposed
in this paper. In the learning of rule antecedent parameters,
the proposed noise-insensitive PCB-ICL clustering based on
the Bayesian probability model is used. PCB-ICL clustering
considers the repulsion between different clustering centers,
which can ensure the interpretability of the rule antecedent.
PCB-ICL can learn the global optimal solution of clustering
results by using the Markov model. PCB-ICL-TSK learns
consequent parameters using the Ho–Kashyap procedure with
an asymmetric expectile term. Thus, it not only has strong
noise resistance but also has high classification performance.
The experimental results of a real EEG dataset show that
PCB-ICL-TSK has achieved satisfactory results in classification
performance and high interpretability. Our future work is to
further improve its practicability when the sample dimension
is large.
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