
https://doi.org/10.1177/20417314221113391

Journal of Tissue Engineering
Volume 13: 1 –19 

© The Author(s) 2022
Article reuse guidelines: 

sagepub.com/journals-permissions
DOI: 10.1177/20417314221113391

journals.sagepub.com/home/tej

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons 
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, 

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open 
Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

The field of neuroscience has proven to be one of the more 
mystical fields in the realm of science and with that has 
attracted some of the most brilliant minds. Research span-
ning subdisciplines of cellular and molecular neuroscience, 
systems neuroscience, cognitive and behavioral neurosci-
ence, and computational neuroscience has gifted the world 
profound knowledge of the anatomy and physiology of the 
human brain. Furthermore, researchers immersing them-
selves in translational and clinical studies have been con-
tinuously pursuing innovative model systems to achieve 
valiant leaps into addressing some of the most complex 
central nervous system (CNS) diseases through study and 
trial for effective therapies, yet many of these disorders 

remain currently untreatable. While the field is rooted in 
the knowledge and insight that researchers bring with them, 
progress can only go forward as far as its tools and tech-
nologies will take it. There has been a continuous demand 
to minimize the gap between animal and human models in 
both basic and translational neuroscience for many years.1 
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While animal models provide an in vivo system that is more 
complete for studying neural development, disease pro-
gression, and treatment efficacy, there are several key dif-
ferences between animal models and humans that begin to 
manifest themselves on the most important scale: the 
patient. Therapies for a range of CNS disorders which were 
validated in animal models have often failed in human tri-
als.2 Therefore, more relevant human models, especially 
those generated from patient tissue, will significantly 
empower researchers to address human-specific disease 
mechanisms in a cost-effective and scalable manner. In 
addition, these human models will help shape novel cell 
transplantation strategies aimed at replenishing lost or 
damaged cells in CNS injuries and disorders.3

Limited access to functional human brain tissues 
impedes a comprehensive understanding of brain develop-
ment, disease mechanisms, and advancement of therapeu-
tics.4,5 Thus, for years, neurobiologists have turned to a 
variety of in vitro and ex vivo approaches to study the com-
plexity of the human brain and its molecular processes.4,5 
However, the application of model organisms in the study 
of the human brain has not been fully informative due to 
remarkable differences between human brain development 
and that of other species. To date, most attempts at apply-
ing human cells or tissues to model CNS disorders have 
been based on two-dimensional (2D) cell cultures that do 
not include many aspects of the complex physiological 
environment seen in the CNS. These cultures do not 
always accurately represent how cells grow in a human 
brain and how they may be affected by CNS disease and 
injury. Thus, the desire to develop a system that can 
closely recapitulate the crosstalk between various cell 
types in the human brain has led to the employment of 
three-dimensional (3D) cultures based on human mate-
rial. 3D tissue cultures have been in development since 
the early 20th century, as researchers for decades have 
realized their potential in disease modeling and drug 
development.6 3D human CNS tissue cultures, also known 
as human mini brains and spinal cords, are a subset of 3D 
models that usually retain a higher degree of structural 
complexity and maintain physiological homeostasis for 
prolonged durations. Some of them also contain various 
cell types that influence intricate cell-cell interactions, an 
element essential for the regulation of cell differentiation 
and metabolization. Ultimately, decades of experimental 
effort along with a continuously growing understanding of 
human CNS development have enabled progressive 
advancements in the generation of human mini brains 
resembling human brain structures. The field has greatly 
benefited from the use of these 3D brain technologies in 
studying cell-cell interactions and the assembly of neu-
ronal circuits. These new types of in vitro human brain 
models serve as alternatives to existing animal models and 
close the gap in recreating human specific physiology and 
pathology of CNS development and disorders.

One of the biggest challenges for obtaining robust 
human 3D CNS models has been the relative scarcity of 
pertinent foundational cellular components used in their 
production. Human pluripotent stem cells (hPSCs), 
especially human induced pluripotent stem cells (hiP-
SCs), have proved to be a milestone in the biomedical 
community. Through various reprograming and gene 
modification methods, researchers can use hiPSCs with 
specific genetic profiles as the building blocks to grow 
any somatic tissue or organ in vitro.7 From a neurosci-
ence perspective, a great deal of work to generate human 
mini brains and spinal cords has been done on the front 
end in developing tuned differentiation protocols that 
mimic developmental cues to pattern different cell types 
and regions of the CNS. However, to date, there is still a 
great deal to be discovered and improved in engineering 
in vitro human mini brain models. In this review, we 
characterize and summarize the three main types of 3D 
CNS models: neurospheres, CNS organoids, and CNS 
assembloids, based on their production strategies and 
structural complexity (Figure 1). We also describe the 
emergence and role of revolutionary organ-on-a-chip 
systems in modeling specific elements of the CNS. We 
explain how these diverse but related structures differ 
from each other, what specific purpose each of them aims 
to achieve, and where each can be improved. In addition, 
we discuss some of the supporting technology that may 
be used in concert with these 3D CNS models to help 
introduce critical physiological cues and support appro-
priate culturing environments. Ultimately, this review 
hopes to create some consistency in the field and inspire 
researchers to continue to bring creativity to the design 
and development of in vitro human mini brain and spinal 
cord modeling platforms.

Neurospheres: Simplified human CNS 
spheroids

Spheroids typically serve as an umbrella term for cultured 
3D sphere-like tissue structures. The multifunctionality of 
spheroid cultures with relatively homogenous cellular 
components allows them to be used as rudimentary 3D 
cellular models. A variety of cells, including hepatocytes, 
stem cells, tumor cells, and neural cells have been applied 
to generate spheroids with restricted cell types.8 3D 
human neural spheroids, commonly known as neuro-
spheres, were initially developed as 3D cellular structures 
that were comprised of neural precursors or post-mitotic 
neurons derived from 2D cultures.9,10 The early 1990s saw 
the first culture of neurospheres derived from the periven-
tricular area encompassing the subventricular zone in 
adult mice.9 In turn, adult neural stem cells emerged from 
the niche study of adult neurogenesis and the in vitro 
study of multipotent precursors from the adult brain.10 
Since then, human neurospheres have been differentiated 
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and developed from many types of human neural progeni-
tors and other types of stem cells including ciliary epithe-
lium cells, dental pulp stem cells (DPSCs), human 
umbilical cord blood (hUCB), and bone marrow derived 
mesenchymal stem cells (Figure 2). In general, these 3D 
multicellular spheroids, although mechanically simpli-
fied, manifest better structural representation and func-
tional design than do 2D cultures, including dynamic 
cell-cell and cell-matrix interactions that represent some 
features of the CNS microenvironment.11,12 Due to their 
substantial advantages over 2D neuronal cultures, 3D 
neurospheres pioneered the way for the use of in vitro 
human mini brains and spinal cords for CNS disease 
modeling.13–15

Unlike in long-established 2D cultures, the absence 
of an attachment surface or scaffold allows mono-dis-
persed cells to undergo self-assembly and aggregate to 
form cell specific spheroids.12 This self-assembly pro-
cess somewhat mimics developmental cellular processes 
like embryogenesis, morphogenesis, and organogene-
sis.12,16 Spheroid cultures usually form a gradient of oxy-
gen metabolites, soluble signals, and other essential 
nutrients necessary for an optimal in vivo like microen-
vironment.8 Neurospheres can be generated from neural 
progenitor cells isolated from either adult or fetal 
CNS.17,18 They are generally created by culturing 

originating cells in low adhesion plates.8 Low adhesion 
plates have an ultra-low attachment surface coating and 
a well-defined geometry (U-shaped bottom or V-shaped 
bottom) in each well to minimize cell adhesion and pro-
mote self-aggregation.19–21

One of the many advantages of using neurospheres as 
an in vitro human CNS model is the ease with which inter-
nal and external cues can be manipulated, proving a better 
means for modeling different elements of the CNS. 
Notably, neurospheres may be co-cultured with 2D cells or 
some acellular matrices, which essentially provide con-
tact-mediated directed differentiation cues. Such co-cul-
tures are able to not only instruct neurospheres to reach 
specific phenotypes, but promote their reparative proper-
ties for therapeutic purposes.22 This dynamic interaction 
was exemplified in a model in which neurospheres were 
developed from adipose stem cell derived neural progeni-
tor cells (ASC-NPCs) followed by co-culture with acellu-
lar dermal matrix. Such co-culture was demonstrated as a 
better therapeutic strategy to repair peripheral nerve inju-
ries when compared to using neurospheres alone.23 
Furthermore, neurospheres have been tested in several 
rodent transplantation studies targeting tissue regeneration 
in disease including Alzheimer’s disease, macular degen-
eration, and spinal cord injury (Table 1). Interestingly, 
transplanted neurospheres were better at restoring native 

Figure 1. Human stem cells can be used to generate mini brain and spinal cord models. Human pluripotent stem cells (hPSCs), 
as well as a variety of adult stem cells derived from multiple sources in the body can be differentiated into neural progenitor cells 
(NPCs). NPCs can then be differentiated into several types of neural lineage cells and aggregated to form neurospheres. HiPSCs can 
also be aggregated into embryoid bodies, which can be patterned into region-specific CNS organoids, which can then be assembled 
to create CNS assembloids. Circuitoids are a subset of assembloids which recapitulate neural circuit systems such as the motor 
pathway and visual system.
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cell populations compared to the transplantation of undif-
ferentiated cells and helped improve certain behavioral 
phenotypes in cognitively impaired animals.24,25 Indeed, 
neurosphere cultures allow us to examine fetal or adult 
CNS cells outside of their normal environment while 
maintaining its integrity as a model system for develop-
mental processes and therapeutic intervention. To date, 
several neurosphere phenotypes have been developed by 
different laboratories (Table 1). Despite its usefulness, 
there are significant drawbacks associated with neuro-
sphere technology that limit it from being a frontrunner in 
modeling complex CNS environments. These limitations 
include variations in development, maintenance, and size, 
lack of cellular complexity in specific cell types, uncon-
trolled proliferation and differentiation of cells, disordered 
cellular aggregation, and imprecise and unstandardized 
high-throughput compatible assays for drug screenings.8 
While simple and technically friendly, neurospheres have 
paved the way for the development of more complex 3D 
mini brain models, and continue to find utility in the study 
of the CNS and associated diseases.

CNS organoids: Self-organizing 
multicellular hierarchies mimicking 
distinct CNS regions

Human CNS organoids, including brain and spinal orga-
noids, have drawn substantial attention in the field of neuro-
science by becoming more relevant CNS models in relation 
to anatomical and physiological features of human brains and 
spinal cords. Unlike neurospheres, CNS organoids are mostly 
developed from hPSCs and usually represent multicellular 
structures that are hierarchically organized with sophisticated 
interstitial compartments. Various cellular phenotypes with 
orderly arrangement can be identified in these CNS organoids, 
including neural precursors, different types of neurons, astro-
cytes, and oligodendrocytes. To date, brain and spinal orga-
noids have become popular modalities for studying 
region-specific structures, 3D-microenvironments, and 
entire organs for both the brain and spinal cord, and own an 
insuperable advantage over animal models by way of their 
human origin.31,40,41,77 The first contemporary human cere-
bral organoid model was established from human embryonic 

Figure 2. Neurospheres pave the way for studying the CNS in 3D. Neurospheres are generated by culturing neural progenitor 
cells (NPC) derived from various stem cell sources in low adhesion plates allowing the cells to self-aggregate. This 3D model is 
currently used for disease modeling via co-culturing with other 2D cells, drug and toxicity screening, and may one day be used for 
transplantation into humans.
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Table 1. Representative human 3D CNS structures including neurospheres, CNS organoids, and CNS assembloids in disease 
modeling and therapeutic intervention.

Representative 
CNS region

Major cell type(s) Disease/process 
modeled

Cell transplantation Reference(s)

Neurospheres None Neural stem or 
progenitor cells 
isolated from fetal 
brain tissue

No Yes, for an 
Alzheimer’s disease 
mouse model

Poltavtseva et al.25

None Dental pulp stem cells 
(DPSCs) from the 
dental pulp of wisdom 
teeth

No Yes, for 
regenerative 
medicine and tissue 
engineering

Kawase-Koga et al.26

None Fetal ciliary epithelium 
cells; human umbilical 
cord blood derived 
lineage negative stem 
cells

No Yes, for age-
related macular 
degeneration, 
diabetic 
retinopathy, 
glaucoma in mice

Bammidi et al.24, Coles 
et al.27, Bammidi et al.28

None CNS stem cells No Yes, for spinal cord 
injury in mice

Hooshmand et al.29, 
Cummings et al.30

Organoids Cerebrum Various layer 
identities of the 
cortical plate

Neuropsychiatric 
disorders; 
neurodevelopment-
related diseases; 
neurotropic infectious 
diseases

Yes, for stroke and 
traumatic brain 
injury

Giandomenico et al.31, 
Wang et al.32, Pain et al.33, 
Gulimiheranmu et al.34, 
Renner et al.35, Camp et al.36, 
Chan et al.37, Yang and 
Shcheglovitov38, Wang et al.39

Spinal Cord Spinal motor neurons; 
interneurons

Spinal Muscular 
Atrophy

No Vieira de Sá et al.40, Khong 
et al.41, Hor et al.42, Hor and 
S-y43, Faustino Martins et al.44

Dorsal 
forebrain; 
Ventral 
forebrain

Glutamatergic 
neurons; GABAergic 
neurons

Prader-Willi syndrome; 
Autism spectrum 
disorders; Rett 
Syndrome

No Pașca45, Bagley et al.46, De 
Santis et al.47, Gomes et al.48, 
Bagley et al.49

Brainstem Midbrain/hindbrain 
progenitors; 
noradrenergic and 
cholinergic neurons; 
dopaminergic 
neurons; neural crest 
lineage cells

- No Eura et al.50

Midbrain Dopaminergic 
neurons; astrocytes

Parkinson’s disease No Zagare et al.51, Jarazo et al.52, 
Kim et al.53, Galet et al.54

Hindbrain Serotonergic neurons - No Valiulahi et al.55

Hypothalamus Arcuate nucleus cells Prader-Willi syndrome No Qian et al.56, Huang et al.57, 
Ozaki et al.58

Thalamus Thalamic neurons; 
neural progenitor 
cells; astrocytes

Schizophrenia; 
depression; autism 
spectrum disorder; 
epilepsy

No Xiang et al.59, Xiang et al.60

Cerebellum Cerebellar neurons Medulloblastoma No Nayler et al.61, Silva et al.62, 
Ballabio et al.63

Choroid plexus Myoepithelial cells Cerebrospinal fluid 
secretion

No Pellegrini et al.64

Hippocampus Granule neurons; 
pyramidal neurons

Alzheimer’s disease No Sakaguchi et al.65

Striatum Pallial and subpallial 
progenitors; cortical 
and striatal neurons; 
macroglia; mural cells

Autism spectrum 
disorders

No Miura et al.66, Wang et al.67

(Continued)
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Representative 
CNS region

Major cell type(s) Disease/process 
modeled

Cell transplantation Reference(s)

Assembloids Cerebrum (no 
region identity)

Human glioblastoma 
organoid-derived 
cell lines; primary 
human patient-derived 
glioblastoma cell lines

Mesenchymal subtype 
human glioblastoma

Yes, transplanted 
into the 
hippocampus of 
immunodeficient 
NOD/SCID/
IL2RGKO mice

Ogawa et al.68

Cerebrum (no 
region identity)

Patient-derived glioma 
stem cells

Glioblastoma No Linkous et al.69

Cerebrum (no 
region identity)

Human mesodermal 
progenitor cells

Parkinson’s disease; 
Alzheimer’s disease

Yes, tested 
vascular network 
functionality by 
transplanting 
into the chorion 
allantois membrane 
of a chicken 
embryo

Wörsdörfer et al.70

Cerebral 
cortex

Pericyte-like cells; 
cortical neurons; 
astrocytes

SARS-CoV-2 No Wang et al.71

Dorsal 
forebrain; 
ventral 
forebrain

GABAergic 
interneurons; MGE- 
and LGE/CGE-derived 
cortical interneurons

Schizophrenia No Bagley et al.46

Dorsal 
forebrain; 
ventral 
forebrain

Dorsal and ventral 
organoid-derived 
oligodendroglia

Neurodevelopmental 
disorders associated 
with myelin defects; 
CNS injury

No Kim et al.72

Dorsal 
forebrain; 
ventral 
forebrain

Human GABAergic 
interneurons

Schizophrenia; autism 
spectrum disorders; 
depression; seizure

No Yuan et al.73

Ventral 
forebrain; 
subpallium

Cortical glutamatergic 
neurons; cortical 
GABAergic neurons

Timothy syndrome No Birey et al.74

Medial 
ganglionic 
eminence; 
cerebral cortex

Human cortical 
interneurons; 
radial glial cells; 
Cajal-Retzius cells; 
astrocytes

Autism spectrum 
disorders; Rett 
syndrome

No Xiang et al.75

Cerebral 
cortex; 
thalamus

Thalamic neurons; 
neural progenitor 
cells; astrocytes

Schizophrenia; 
depression; autism 
spectrum disorder; 
epilepsy

No Xiang et al.59

Striatum; 
cerebral cortex

Medium spiny 
neurons; cortical 
neurons

Phelan-McDermid 
syndrome; 
Huntington’s disease; 
Tourette syndrome

No Miura et al.66

Cerebral 
cortex; 
hindbrain/spinal 
cord; skeletal 
muscle

Corticofugal neurons; 
spinal-derived motor 
neurons; skeletal 
myoblasts

Multiple sclerosis; 
spinal cord injury

Yes, studied muscle 
contraction by co-
culturing hSpS into 
mouse forelimb 
and hindlimb buds

Andersen et al.76

Table 1. (Continued)

stem cells (hESCs) in 2013 and used for analyzing human 
brain development, specifically aimed at exploring micro-
cephaly, a condition that cannot be precisely recapitulated in 

mouse models.78 Inevitably, this model provided researchers 
a foundational platform for studying neurological diseases 
with human specific genetic roots, as well as allowed for the 
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closer study of the unique development of the human CNS. 
Brain organoids are also a promising tool in healthcare’s shift 
toward personalized medicine. Through the reprogramming 
of patient peripheral blood mononuclear cells or skin fibro-
blasts into hiPSCs, clinicians can create patient-specific 
organoid models, in turn allowing them to better tailor treat-
ment regimens to patient needs.79

The generation of CNS organoids involves either 
direct or indirect neural induction, which starts with the 
aggregation of hPSCs into embryoid bodies (EBs). These 
EBs are then grown in suspension culture and patterned 
and matured in the presence of neuronal induction factors 
and small molecules that drive spatial organization and 
specific cell fate differentiation (Figure 3).41,50,64,80–83 As 
these organoids differentiate and mature, region-specific 
cell types and tissues begin to emerge including fore-
brain, midbrain, hippocampus, hypothalamus, spinal 
cord, etc. (Table 1).56,84 For instance, dorsal forebrain 
organoids contain significant amounts of excitatory glu-
tamatergic neurons while ventral forebrain organoids 
contain a high proportion of inhibitory GABAergic neu-
rons.84 The potential interaction and connectivity between 
cell types within brain organoids makes them more 
advanced models than neurospheres, especially when 
studying the communication between different cell types 
in a specific brain region. Thus, brain organoids with spe-
cific region identities allow for significant external con-
trol with limited variation and reinforce the integrated 
development of a variety of CNS cell types in a way that 
cannot be achieved with more basic spheroid models, 
such as neurospheres.

Spinal cord organoids, a subset of CNS organoids, are 
usually induced by morphogens and growth factors that cau-
dalize the CNS development. Retinoic acid is introduced to 
drive differentiation toward spinal motor neurons, while 
sonic hedgehog (SHH) is used to mimic ventral signals and 
drive spatial organization of the spinal cord. Growth differ-
entiation factor 11 (GDF-11) is used to increase rostro-cau-
dal patterning of the spinal cord as well as drive differentiation 
towards motor neurons and interneurons, which may provide 
either excitatory or inhibitory signals to sensory neurons and 
other glia.40,41,77 Indeed, the extreme complexity of the 
human spinal cord structure may intimidate the development 
of human spinal organoids, as the spinal cord not only dem-
onstrates an intricate separation of gray and white matter, but 
also contains a wide variety of interneurons and motor neu-
rons heterogeneously distributed along its length. Despite 
some advances in their development, the generation of 3D 
spinal cord tissue from hPSCs may ultimately require assem-
bling region-specific brain organoids, as well as peripheral 
neural ganglia in more complex constructs.

Human CNS organoids have been applied to: (1) disease 
modeling and drug screening for familial and sporadic neu-
rodevelopmental and neurodegenerative disorders, as well as 
CNS injuries, (2) elucidating human CNS development for 
neural differentiation and migration, (3) evaluating neuro-
toxicity induced by a wide variety of chemicals and patho-
gens, and (4) testing tissue replacement therapies.78,85–87 
Engineered brain organoids have been validated with appli-
cations in modeling Alzheimer’s disease, frontotemporal 
dementia, microcephaly, autism spectrum disorders, trau-
matic brain injury, and epilepsy, as well as SARS-CoV-2 

Table 2. Summary of strengths and weaknesses of various 3D CNS modeling strategies including neurospheres, CNS organoids, 
CNS assembloids, and Organ-on-a-chip.

Strengths Weaknesses

Neurospheres •  Simple procedure
•   Greater variety and accessibility of originating cell 

sources
•  Improved physiological relevance over 2D cultures

•  Limited and uncontrolled differentiation capacity
•  Lack of cellular and structural complexity

Organoids •  Complex cellular composition
•  Region-specific identities
•  Hierarchical organization
•  High adaptability

•   Very limited populations of certain CNS cell 
components

•  Poor long-term survivability
•  High variability
•  Low reproducibility
•  Undefined maturity

Assembloids •   Improved cellular complexity over organoids
•   Emergence of region-region circuitry and 

integrated tissue/organ systems
•  Expanded customizability

•  Complicated and unstandardized procedures
•  Poor long-term survivability
•  High variability
•  Low reproducibility
•  Undefined maturity

Organ-on-a-chip •  Low-cost and accessible materials
•   Advanced incorporation of relevant biophysical 

signaling
•   Effortless culture maintenance and improved 

standardization
•  Wider range of applications

•  Laborious and complicated culture preparation
•  Restricted capacity for multidimensional analyses
•  Low transplantation potential
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induced brain damage.88–94 Brain tumor organoids were used 
as models to test novel immunotherapies and to screen small 
compounds in treating some infamous brain cancers, such as 
glioblastoma.95–97 Note that several premature spinal orga-
noid models were also developed to model motor neuron 
diseases such as spinal muscular atrophy and amyotrophic 
lateral sclerosis.98 Interestingly, human spinal cord organoids 
containing dorsal spinal cord interneurons and sensory neu-
rons have been placed on multiple-electrode array chips to 
monitor electrophysiological activity in response to nocicep-
tive modulators as a means to further understand nociceptive 
circuitry in the context of pain therapy.99 Moreover, several 
transplantation studies of cerebral organoids into rodent 
models have also been tested as preclinical applications, for 
example as a means for restoring learning and memory func-
tion in traumatic brain injury and ischemic stroke (Table 
1).3,32 The results of these studies showed improvements in 
neurogenesis stemming from both the native rodent and the 
transplanted organoids, as well as enhanced axonal regenera-
tion, neuron survival, and synaptic reconstruction.32 CNS 
organoid technology provides a great potential to improving 
in vitro CNS disease modeling and offers a new platform for 
translating bench-side research to therapeutic screenings. 
Such studies were conducted in both academia and industry 
settings. Human iPSC derived CNS organoids, combined 
with machine learning and multi-dimensional phenotypic 
analyses, were adopted in drug screening studies for 

schizophrenia, autistic spectrum disorders and epilepsy. A 
promising molecular profile including novel pathways that 
are relevant to the disease mechanisms was generated to 
instruct possible therapeutic interventions.100 A study to 
screen therapeutic targets for Zika virus-induced microceph-
aly was carried out by the collaborative effort from Harvard 
University and Novartis. Using human cerebral organoids as 
models, a CRISPR-based strategy was applied to deplete 
various putative receptors for uncovering entry elements that 
are essential to Zika viral infection.101 There is particular 
value in using human organoids, instead of rodent animals, 
for these studies since a subpopulation of intermediate pro-
genitor cells that are highly relevant to Zika infection in 
developing human brains is missing in rodent brains.102

Despite advances in CNS organoid modeling strategies, 
there are still several limitations and technical challenges that 
hinder CNS organoids from accurately modeling the entire 
complexity of the CNS. A lack of essential cell types, includ-
ing microglia and sufficient myelinating oligodendrocytes, 
limit the study of many CNS diseases such as autoimmune 
encephalitis, which is implicated by neuroinflammation-
trigged neuronal death in the brain.103 Additionally, a lack of 
vasculature components not only diminishes the structural 
complexity of CNS organoids, but restricts their culture dura-
tion, expansion, and maturation, partially due to the insidious 
development of cellular necrotic cores within the organoids. 
Compensatory strategies that use bioreactor devices and 

Figure 3. CNS Organoids can be patterned to recapitulate various regions of the brain and spinal cord. hiPSCs and hESCs of different 
origins can be aggregated to form embryoid bodies, which through the addition of various factors and inhibitors, can be pattern into 
neuroectodermal-committed organoids. Using unique patterning factors, organoids can be further differentiated toward different 
regions of the brain or spinal cord. These organoids are useful for modeling neurological and neurodegenerative diseases and can be 
applied in drug screening studies. They also show potential for use in human transplantation after brain or spinal cord injury.
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orbital shakers have shown some relieving benefits but have 
not done enough to completely overcome these hurdles. To 
date, even under the most optimized culture conditions, the 
size and scale of CNS organoids remains only a fraction of 
that seen in the human brain. One of the biggest concerns in 
applying human CNS organoids to model neurodegenerative 
diseases is their limited maturity. While strategies such as 
prolonged cultivation (>8 months) to accelerate the matura-
tion and aging process in human cortical organoids have been 
validated through the analysis of key developmental mile-
stones, including modifications in histone deacetylase com-
plex and NMDA receptor signaling, such approaches are not 
without other significant challenges and complications, and 
are particularly sensitive to the aforementioned issues of 
necrosis.104 Vascularizing organoids is an intriguing method 
to both accelerate the maturation of neuroglial components 
and improve long-term cell survival. One study has shown 
that the overexpression of ETS variant 2 (ETV2) in hESCs 
resulted in their differentiation to the endothelial phenotype 
and formed vascular-like structures in cultures. Coupling 
ETV2-hESCs with untransduced hESCs in a 20:80 ratio led 
to the formation of vascularized organoids, as cells organized 
into a physiologically relevant manner and created the begin-
nings of the blood brain barrier (BBB).105 While still subject 
to optimization, these approaches to improving organoid 
maturation hold extensive value in allowing organoids to be 
used for modeling aging and neurodegenerative diseases.

Excitingly, recent advances in human CNS organoid tech-
nology have led to breakthrough findings in the field. For the 
first time, brain organoids with choroid plexus-like struc-
tures were developed with active human cerebrospinal fluid 
production.64 Neuromuscular organoids developed in 2020 
have successfully generated self-organizing populations of 
neurons and skeletal muscle and have demonstrated muscle 
contraction and neural activity, allowing for the capture of 
key features of myasthenia gravis and potentially providing 
the foundation for the study of other neuromuscular dis-
eases.106 Human brain organoids may potentially be utilized 
for the study of consciousness, as pioneering investigations 
have shown that network oscillation recordings done in dor-
sal forebrain organoids resemble electroencephalography 
patterns seen in preterm babies.107,108 Ultimately, CNS orga-
noids have demonstrated their potential as a highly flexible 
system to be used in a wide array of study designs and appli-
cations and will continue to prove their tremendous value for 
disease modeling and cell therapies.

CNS Assembloids: Assembled and 
integrated organoids with improved 
cellular complexity and network 
connections

Although the field has made great strides with the use of 
neurosphere and CNS organoid technologies, a more com-
plex model which captures intricate cell-cell interactions 

and circuitry connections is needed for in-depth study of 
disease. The rise of assembloid technology has made such 
requests possible. Assembloids can be described as assem-
bled organoids or other 3D cellular structures with distinct 
regional identities and multiple cell types, which can be 
derived from different lineage origins. CNS assembloids 
usually involve the integration of various hPSC-derived 
cellular components that add a level of complexity to 
human mini brain models. They merge different CNS-
relevant cell types, fuse region-specific CNS organoids, or 
create models that blend both CNS cells and organoids, 
most notably through the addition of non-neuroectodermal 
cells, such as microglia or endothelial cells.109 In turn, 
these models provide insight into the overall spatial com-
munication and network connectivity that occurs within 
the human brain and the rest of the nervous system.45 In 
addition, analysis of the anatomical and functional compo-
nents of assembloids in both normal and disease models 
can give a comprehensive understanding of scenarios in 
which CNS development goes awry as well as inspire 
novel treatment approaches.76,110

Assembloid technology has been used to create models 
of bodily systems that involve close interaction with the 
CNS. Such strategies were initially applied to generate the 
human visual system in vitro. Human visual system devel-
opment involves the coordination of a series of spatial and 
temporal organizational events, including the elongation of 
axons from retinal ganglion cells (RGCs) to their postsynap-
tic targets in the brain.111 In the human body, most RGCs 
directly project their axons into the thalamus in the brain. 
Thus, to study this interface within the visual system, hPSC-
derived retinal organoids were engineered and organized 
into an assembloid model with cortical and thalamic orga-
noids derived from the same hPSCs.112 In a manner similar 
to behavior of RGC axons observed during visual system 
development, RGCs within retinal organoids responded to 
environmental cues by growing longer and extending deeper 
into neighboring thalamic organoids. More interestingly, 
astrocytes originating from the thalamic organoids were 
identified to retrogradely migrate into tdTomato-labeled 
retinal organoids in a manner that reflected the in vivo cell 
migration during the development of the human visual sys-
tem.112 Additionally, GFP positive axons from the thalamic 
organoids were seen to project into the cortical organoids to 
complete the retinal-thalamic-cortical assembloid struc-
ture.112 This early proof-of-concept study showed enormous 
promise in applying human CNS assembloids to systematic 
studies of cell-cell and region-region interactions during 
human brain development. In addition to their applications 
in studying human brain development, human CNS assem-
bloids have also been used to investigate neurological dis-
eases caused by defective neural circuits. A complex 
assembloid model was developed to probe Phelan-
McDermid syndrome, a disorder related to cortico-striatal 
deficits and characterized by global developmental delay 
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and severe intellectual impairment.66,113 To accomplish this, 
lateral ganglionic eminence (LGE) and cortical organoids 
were generated from hPSCs. Subsequently, LGE organoids 
were derived into striatal organoids by introduction of 
activin A, IWP-2, and SR11237 molecules. These striatal 
organoids were then combined with cortical organoids to 
form cortico-striatal assembloids. Neurons arising in the 
cortical organoids formed synapses with those in striatal 
organoids, a finding consistent with the behavior of cor-
tico-striatal circuits studied in vivo.66,114 However, cor-
tico-striatal assembloids derived from patients with 
Phelan-McDermid syndrome showed deficits in neural 
circuit formation, as well as improper calcium signal-
ing.66,114 To date, several assembloid models have been 
developed for investigating CNS diseases (Table 1). These 
models give researchers the unique ability to explore 
interneuron migration and axon projection, two main phe-
notypic defects seen in both neurodevelopmental and neu-
ropsychiatric disorders.59,66,76,110,111,114

Recent efforts have been made to study long-range 
axonal connectivity by “upgrading” assembloids into more 
advanced structures, often named circuitoids, which are 
generated through the integration of modular assembloids. 
One breakthrough in circuitoid technology was the genera-
tion of cortico-spinal-muscle circuitry for analysis of the 
motor pathway.76 Hindbrain/cervical spinal cord organoids 
(hSpOs) were initially fused with human forebrain cortical 
organoids (hFCOs) to create cortico-spinal assembloids. 
Voltage clamp recordings of hFCO-hSpO assembloid slices 
showed the establishment of synaptic connections between 
the two regions. Using an extracellular matrix-coated sili-
cone well, hFCO-hSpO assembloids were coupled with 

human skeletal myoblasts (hSkMs) to create hFCO-hSpO-
hSkM circuitoids. These circuitoids in turn established 
interconnectivity resulting in the modulation of muscle 
activity (Figure 4).76 Previously, such studies could only be 
performed on motor circuit components that were gener-
ated separately in a 3D fashion or through co-culturing with 
2D cells.41,44,115–118 This approach depicted a significant 
advance beyond prior models by allowing 3D assembly of 
the motor circuit. Looking forward, this system and others 
like it might be used to develop an in vitro model of spinal 
cord injury and to evaluate approaches to promote regen-
eration. Furthermore, assembloids have been used in trans-
plantation based studies to address glioblastoma, motor 
deficits, Alzheimer’s disease, and Parkinson’s disease 
(Table 1).68,70,119 The results of these studies highlighted 
that assembloids could integrate with host physiology to 
modulate muscle contractions, accept native vasculature, 
and recapitulate tumor-like structures.68,70,119

Although currently developed assembloids come close 
to imitating the human CNS, most models still do not 
accurately represent its complexity. Presently, most engi-
neered assembloids combine only a few region-specific 
organoids with very restricted cell types.84,120 Ideally, a 
complete assembloid would be a single coherent and inter-
connected structure that requires the differentiation and 
integration of organoids with more complete region identi-
ties. The incorporation of all relevant cell types, including 
myelin-forming oligodendrocytes, microglia, ependymal 
cells, etc., could allow researchers to better understand the 
cell-cell interactions that are implicated in CNS develop-
ment and disease.5,121,122 In models where multiple cell lin-
eages are involved, methods to promote visualization of 

Figure 4. CNS Assembloids allow for the study of region-region circuitry. hiPSCs can be aggregated into embryoid bodies, which 
can then be differentiated into CNS organoids representative of different brain and spinal cord regions. Organoids can then be 
co-cultured with other hiPSC-derived cell types to form multicellular assembloids. Organoids with various region identities can 
also be fused through co-culture to produce assembloids modeling region-region connections. Assembloids can be utilized to study 
region-region circuitry when modeled as circuitoids. These structures can be used for transplantation studies, disease modeling, 
understanding CNS development, and studying network connectivity.
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cell movement and functionality are essential. Thus, the 
development of cell type-specific reporters for the live-
imaging of these cells has become increasingly impor-
tant.5,122 These limitations leave room for improvement in 
expanding the assembloid model to capture the entire 
scope of the human brain. Fortunately, as seen by recent 
advances in the field, scientists are making every effort to 
optimize assembloid technology. In order to mimic the 
precise organization of the CNS, some have succeeded in 
incorporating distinct signaling centers within their assem-
bloid models.123–125 These signaling centers polarize the 
assembloids by engineering the cells to secrete (SHH) pro-
tein for establishing an SHH gradient.123 Such methods 
introduce a sense of spatial organization to the overall sys-
tem by taking the assembloid components that are initially 
combined at random and coordinating them by providing a 
positional identity. In order to keep each of these compo-
nents alive and growing, some groups have also begun 
improving the scalability of the assembloid model. 
Although several researchers have successfully main-
tained assembloid cultures for several months after assem-
bly, limitations in long-term cell viability make it difficult 
to conduct studies at more mature stages.5 The automatiza-
tion of cell culture maintenance is starting to overcome 
this problem by allowing for the exploration of CNS dis-
eases that occur later in life or those that involve long-term 
degeneration.126 Ultimately, assembloid technology has 
provided an in vitro or ex vivo alternative for the use of 
animal models in human CNS disease modeling and has 
already showed significant improvement from initial 3D 
cell culture methods.

Organ-on-a-chip: Utilizing 
microfluidics for CNS modeling

Key engineering-based modalities, namely the use of 
microfluidic chips and organ-on-a-chip (OoC) systems, 
have the potential to bring 3D mini brain cellular structures 
to life. In the context of building the “next generation 
human mini brain and spinal cord platform,” microfluidic 
chips are typically polydimethylsiloxane-based (PDMS) 
systems designed for the purpose of tuning critical physio-
logical parameters including fluid flow, cell-cell mechani-
cal interaction, and cell to cell biochemical signaling.127 
PDMS chips are low in material cost and highly accessible, 
enabling a wide range of experiments to be performed and 
the creation of more physiologically-relevant models.128

One of the main drawbacks with static culturing meth-
ods is their inability to provide sufficient air and nutrient 
exchange for the robust metabolism of growing 3D cellu-
lar structures. While orbital shakers and spinning bioreac-
tors are common solutions for introducing fluid flow in 
cultured 3D CNS structures, they do not provide a con-
trolled method for regulating the equilibrium between 
fresh and spent medium, a factor that may influence the 

real time health of the mini brain. Microfluidic chambers, 
specifically the use of micropumps, provide the ability to 
control flow, allowing fresh medium to be pulsed into the 
3D microenvironment in a manner much more resemblant 
to the human vascular system. While this micropump tech-
nology has demonstrated its ability to influence and couple 
with cardiac microtissue, OoC systems on the other hand 
have been utilized to introduce vasculature into CNS mod-
els.129 One study utilizing OoC systems looked at the 
effects of brain microvascular endothelial cells (BMEC) 
on neurogenesis, specifically by leveraging small medium 
volumes and dual-channel constructs to create vascular-
ized CNS constructs.130 Another study used chips housing 
porous polycarbonate membranes to separate two channels 
filled with endothelial cells and astrocytes, and effectively 
recreated the permeability and sheer stress properties seen 
at the BBB.131 Integrating micropump technology with 
vascular network forming endothelial cells may one day 
enable nutrients to be pulsed through vascularized 3D mini 
brains and spinal cords, an approach that may finally 
address the issue of progressive necrosis in long-term cul-
tured 3D CNS structures (Figure 5). Other studies have 
taken different OoC approaches to improve the nutrient 
accessibility and reproducibility of in vitro 3D culture. 
One proof of concept study used tubular OoC devices to 
generate organoids on hollow mesh scaffolds and found 
improved nutrient diffusion, decreased sample heteroge-
neity and increased neural progenitor populations.132 
Another OoC study used an open-chamber design to opti-
mize the placement and seeding of a cerebral organoid in 
the center of a chamber, enabling easy access for down-
stream analyses and more controllability through single 
organoid studies.133 The high customizability of OoC sys-
tems offers solutions to improve organoid health and long-
term survivability, two of the major limitations implicated 
in 3D CNS culture.

Microfluidic chips also provide unique opportunities 
for understanding how mechanical forces influence human 
brain development and activity when combined with mini 
brain technologies. By controlling the geometry and con-
fines of the culture environment, one can design experi-
ments analyzing the mechanical forces influencing cortical 
folding during neurodevelopment, which have been impli-
cated in several neurological disorders.134 One study used 
an OoC system coupled with a hydrogel filling to culture 
human brain organoids and study compressive forces on 
nuclei and how they influence cortical wrinkling.135 
Furthermore, the adaptability of microfluidic technology 
allows for microsensors to be embedded into OoC sys-
tems, providing revolutionary access to the culture envi-
ronment. Several studies have demonstrated the integration 
of micro-electrode arrays into OoC systems as a means for 
measuring the real-time electrical activity of neuronal 
samples.136,137 Systems integrating sensors measuring 
mechanical forces, nucleotide variations, and small 
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molecule release have also been reported.138–140 In turn, 
one can begin to realize the utility for a microchip with 
dynamic force control, particularly in the context of study-
ing traumatic brain injury. Approaches to modeling trau-
matic brain injury in human mini brain models often 
include needle-stick injury, sheer injury via a moving 
plate, or even high intensity focused ultrasound (HIFU) 
induced mechanical injury, all of which have their own 
caveats.86,141 Microfluidic chip technology may be the 
solution that laboratories need to expand such study of 
traumatic brain injury, especially given the multidimen-
sionality of the injury and how it relates to other neurode-
generative disorders such as Alzheimer’s disease and 
frontotemporal dementia. Ultimately, OoC systems and 
microfluidic technology open the door to new approaches 
in uncovering the environmental factors implicated in both 
normal and neuropathological processes. Despite their 

fixed constructs and currently limited transplantation 
potential, their full potential in the field of 3D CNS mod-
eling is yet to be realized.

Biomaterials: Key supporting 
elements to in vitro 3D CNS 
environment

The advancement of biomaterial technology has proven to 
be monumental in improving the feasibility of human mini 
brain and spinal cord models to be used as reliable in vitro 
and ex vivo models. Spearheaded by Matrigel, a commer-
cially available mouse-derived mixture rich in ECM pro-
teins, many types of hydrogels provide the ability to tune 
specific mechanical and biochemical properties of the extra-
cellular matrix, which is important for modulating behav-
iors like neural process development, synapse formation, 

Figure 5. Customizable microfluidic chips provide mini brain models with a variety of physiologically critical stimuli. (A) Side 
view of microfluidic chip system with inlet and outlet points. (B) Enlarged side view of microfluidic 3D environment with detailed 
manipulations. The ability to control the flow of culture medium as well as continuously remove spent medium and toxins allows 
for better sample survivability and maturation. Engineered stimulus-reactive biomaterials enhanced with peptides may be designed 
for specific biochemical signaling purposes and may be coupled with other microfluidic components to create more physiologically 
relevant extracellular environments. Under flow conditions, vascularized mini brains may be able to recreate the intricate 
circulatory system responsible for the nourishment of the brain. A variety of biosensors may be integrated into microfluidic systems 
to provide real time feedback of culture conditions and can be coupled with actuators that can make real-time changes to critical 
parameters.
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and cell migration.142 While culturing neurospheres, orga-
noids, and assembloids embedded in Matrigel has been and 
continues to be a popular approach, there are several draw-
backs to Matrigel, particularly its animal origin and relative 
heterogeneity, that limit it from being deeply translational in 
the study of 3D CNS structures. Synthetic hydrogels on the 
other hand, can be consistently reproduced and provide a 
base for manipulating parameters relevant to the application 
they are involved in. Dynamic covalent chemistry (DCC), 
which relies on the reversible formation and breakage of 
covalent bonds, has emerged as a powerful tool for control-
ling the crosslinking and subsequent viscoelastic properties 
of a hydrogel. The potential application of DCC in in vitro 
modeling technology includes precise coordination of cell 
differentiation, migration, and maturation within the 3D 
environment.143,144 One study utilizing DCC to link DNA 
strands to polyacrylamide hydrogels showed that hydrogel 
stiffness contributes to neural sprouting.119 Given that the 
mechanical properties of the brain change throughout devel-
opment, hydrogels may be utilized to promote more com-
plex organoid and assembloid spatial organization, as the 
stiffness and stress-relaxation characteristics of hydrogels 
housing 3D mini brains can be tuned in real-time to match 
developmental parameters seen in the developing brain.145 
For example, one study used photo-responsive crosslinkers 
to temporally and spatially tune the stiffness of a hydrogel, 
in turn demonstrating the ability to optically control cell 
migration.146 Precision control of local hydrogel properties 
may be useful in directing the migration of microglia or 
endothelial cells, which can be seeded into assembloid-con-
taining hydrogel scaffolds to replicate the infiltration of 
those non-neuronal cells into the CNS during embryonic 
development.147 Moreover, hyaluronic acid (HA) incorpo-
rated hydrogels have been shown to improve the stability of 
hydrogels in 3D cultures. It should be noted that HA hydro-
gels are particularly important in neural based applications 
given the high HA composition in the human brain ECM, as 
it presents a great promise in their application for advancing 
mini brain and spinal cord technology.75,148 One study inves-
tigating how migration is affected in certain neurodevelop-
mental disorders, such as Rett Syndrome, showed that 
methacrylate modified HA hydrogels improved neural 
migration in neurosphere cultures.149 Another study identi-
fied the utility of HA in promoting axon regeneration and 
angiogenesis, as severed axons at the site of spinal cord 
injury in mice were found to extend into transplanted 
HA-composed hydrogels.150 HA hydrogels containing stem-
cell derived axon bundles are already being tested for clini-
cal applications to restore damaged pathways in patients 
with Parkinson’s disease.151 Expanding this type of approach 
to include semi-mature organoid structures may be able to 
address a wider range of conditions with larger implicated 
injury sites. In addition, the covalent integration of peptides 
and other signaling molecules into these “designer hydro-
gels” opens a new avenue for manipulating culture 

conditions and further exploring brain properties (Figure 5). 
The peptide Arg-Gly-Asp (RGD), for example, is com-
monly used to increase cell adhesion, a property important 
for cell migration and injury recovery.152 One study utilized 
polyethylene glycol (PEG) hydrogels supplemented with 
RGD-derivative peptides to produce 3D neural constructs of 
neural, mesenchymal, and microglial cells, and showed this 
approach was able to consistently reproduce CNS constructs 
of similar RNA-seq profiles.153 Similarly, amphipathic β-
sheet forming peptides such as EAK16, RADA16, and 
IKVAV have been developed to improve mammalian cell 
adhesion while also remaining incredibly stable over a vari-
ety of temperatures, pHs, or enzymatic ranges.154 One study 
showed that the laminin-mimetic IKVAV sequence was able 
to promote bone marrow-derived mesenchymal stem cell 
differentiation into the neuroectodermal lineage after just 
one week, a finding particularly important in improving the 
generation and throughput of neurosphere cultures.155 These 
biodegradable scaffolds go beyond improving the in vitro 
culture systems and have already shown potential in treating 
Alzheimer’s disease and Parkinson’s disease from a neuro-
regenerative approach. Given their synthetic origin, peptide-
modified scaffolds are great candidates for 
organoid-transplantation solutions and future work hopes to 
explore their utility in these approaches.156 Ultimately, the 
continued integration of innovative peptides with hydrogels 
into 3D CNS cultures will enhance both in vitro modeling 
capabilities as well as inspire novel therapeutic solutions for 
neurodegeneration and CNS injury.

The real potential of biomaterials begins to reveal itself in 
“smart hydrogels,” which can perhaps integrate nanotechnol-
ogy to increase their real time influence on 3D culture. The 
integration of biochemical sensors and actuators into these 
hydrogels may allow them to change their properties in 
response to culture conditions in real time (Figure 5). 
Stimulus-reactive hydrogels have been implemented in a 
wide variety of biomedical applications and have so far been 
designed to use temperature, pH, compressive, light, electric 
field, magnetic, ultrasound, antigenic, ionic, and enzymatic 
stimuli to induce desired behaviors in certain systems.157 
While their utility in 3D CNS culture has yet to be fully real-
ized, they hold significant promise in improving culture con-
ditions by providing researchers with a wider range of levers 
to pull in the customization of their models. For example, 
several studies have captured the influence of electric fields 
on nervous tissue development, particularly in terms of cell 
differentiation, proliferation, and axon growth.158,159 In turn, 
studies utilizing conductive nanomaterials, such as polypyr-
role, polyaniline, and polythiophene, have demonstrated their 
ability to respond to electrical stimulation in the form of 
direct, biphasic, alternating, and pulse currents to modulate 
local cell migration, gene expression, maturation, and process 
extension of neural progenitors and mature neurons.158,160–162 
Precise electrical stimulation for enhancing the development 
and maturation of a 3D CNS model may decrease the need to 
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add large cocktails of bioactive compounds and growth fac-
tors, which often have off-target effects that confound study 
results. The design and implementation of smart hydrogels 
may in turn provide us with a level of control previously 
unimaginable in engineering complex but orderly 3D mini 
brains and spinal cords. This level of precision is exactly what 
the human mini brain and spinal cord field needs to prove 
translational in the study of human neurodevelopment and 
many kinds of neurodegenerative disorders.

Conclusion and perspective

In vitro and ex vivo human 3D CNS models have great 
potential in meeting Neuroscience’s growing need for 
more advanced CNS modeling platforms. Neurospheres, 
CNS Organoids, CNS assembloids, OoC systems, and 
their combinations are several modeling strategies that 
allow for great flexibility and ingenuity in mechanistic 
study for CNS development and disorders, as well as fos-
tering translational solutions to treat neurological disor-
ders. Despite the great promise of contemporary engineered 
human 3D CNS technology, there are still issues in its vari-
ability, maturity, and reproducibility that need to be over-
come before its large-scale application in translational 
biomedical research (see their pros and cons in Table 2). 
Efforts to reduce the variability of generating these 3D 
structures, especially for organoids and assembloids, 
involve defining the type and number of the originating 
cells, standardizing the reagents and procedures of the 
development process, and adjusting the timing for the pat-
terning and maturation strategy. In particular, reduced 
variability has been achieved through using more commit-
ted cell sources and optimized time-windows for pattern-
ing.163,164 Ideally, automated systems with liquid and plate 
handling should also relieve some of the concerns in cul-
ture variability by standardizing medium changes, embry-
oid body formation, and nutrient distribution in culture. 
Well-defined and standardized biocompatible materials 
combined with 3D printing technology have shown to 
improve the reproducibility of using organoids and assem-
bloids as disease models.165–167 Strikingly, integration of 
endothelium in these engineered 3D CNS tissues not only 
escalated the complexity of these structures, but advanced 
their maturity (our unpublished data).168,169 Innovative 
prolonged culture protocols, as well as those to accelerate 
the cell growth and differentiation also showed promise in 
promoting maturation.62,170 Slice cultures derived from 
organoids provide an air-liquid interface allowing 
improved oxygen penetration into the core structure, 
which also facilitates neuronal differentiation, axonal 
growth and synaptic formation.171,172 Tubular organoids 
and other OoC systems have also been able to address 
some of the shortcomings of 3D in vitro culture.132 
Additionally, supporting materials, including bioreactors, 
microfluidic chips, biomaterials, etc. have proven to be 
critical in optimizing these methods for laboratory and 

clinical use. Current research highlights using human mini 
brains and spinal cords to underline the rapid development 
of 3D human CNS models in the bioengineering and neu-
roscience fields and aspires to stimulate further innova-
tions and advances in overcoming some remaining hurdles 
that limit their applications.
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