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ABSTRACT Malaria strongly predisposes to bacteremia, which is associated with se-
questration of parasitized red blood cells and increased gastrointestinal permeability.
The mechanisms underlying this disruption are poorly understood. Here, we evalu-
ated the expression of factors associated with mast cell activation and malaria-
associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmo-
dium yoelii yoelli 17XNL, and blood and tissues were collected over time to assay for
circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and
Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal per-
meability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and
MCP-1/CCL2 were detected early after P. yoelii yoelii 17XNL infection. This was fol-
lowed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast
cell activation and growth-enhancing activity as well as IgE production. Later in-
creases in circulating IgE, which can induce mast cell degranulation, as well as
Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased in-
testinal permeability. These results suggest that P. yoelii yoelii 17XNL infection in-
duces the production of early cytokines that activate mast cells and drive IgE pro-
duction, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast
cell activation while disrupting the protease/antiprotease balance in the intestine,
contributing to epithelial damage and increased permeability.
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According to the World Health Organization (WHO), there were an estimated 228
million cases of malaria and 405,000 deaths worldwide in 2018. Most cases occur

in sub-Saharan Africa (93%) and are due to infection with Plasmodium falciparum. In
African children diagnosed with severe falciparum malaria, approximately 5% develop
invasive bloodstream infections or bacteremia with a higher case fatality (24.1%)
relative to children with malaria alone (1). While the connection between severe malaria
and bacteremia is clear (2–4), there is growing evidence to suggest that bacteremia is
associated with a broader spectrum of malarial disease than was previously appreci-
ated. Notably, a prospective 2018 study in Ghana revealed an inverse correlation
between the likelihood of nonmalarial coinfections, including bacteremia, with increas-
ing circulating parasitemia, suggesting that undetected bacteremia in asymptomatic,
parasitemic children could pose significant risk of death without intervention (5). Other
studies have reported an association between Gram-negative bacteremia and reduced
malaria parasitemia along with increased susceptibility to severe malarial anemia and
respiratory distress in children (2, 4). In contrast to previous assumptions that bacte-
remia is uncommon in adults with malaria, bacteremia was detected more frequently
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(15%) in hospitalized adults with falciparum malaria from Myanmar than previously
reported; the standard practice of empirical antibiotic treatment in these combined
studies at admission was likely cause and effect with high patient survivorship (6, 7).

The physiology that predisposes to bacteremia in malaria is expected to be largely
the same in both children and adults (6). That is, the sequestration of P. falciparum-
infected red blood cells (RBCs) results in intestinal capillary blockage (8), malabsorption,
and increased gastrointestinal permeability in both acute and chronic infection (9–11).
If we assume this argument is correct, the occurrence of bacteremia across a broad
clinical spectrum of falciparum malaria would suggest that divergent patterns of host
immunity to infection—ranging from severe malaria with a proinflammatory or T helper
type 1 (Th1)-skewed response to a combination of antiparasite and antidisease immu-
nity associated with higher levels of anti-inflammatory or Th2-type cytokines with
increasing age and exposure (12–15)—also include shared host responses across the
clinical spectrum of malaria that precipitate bacteremia. We propose that a potential
common mediator of intestinal permeability across the spectrum of malarial disease is
intestinal mastocytosis.

Previous studies with our mouse malaria models established that mast cell (MC)
activation is functionally involved in increased intestinal permeability and bacteremia.
Specifically, we observed that Plasmodium yoelii-infected mice develop L-arginine
deficiency, which we associated with intestinal mastocytosis, elevated ileal and plasma
histamine, and enhanced intestinal permeability and bacteremia that were reversed
with L-arginine supplementation (16). In addition, we used MC-deficient WBB6F1/J-KitW/
KitW-v mutant mice and wild-type littermate controls to establish that MC deficiency is
associated with significantly reduced malaria-induced gastrointestinal permeability,
improved adherent junction integrity in the ileal epithelium, and reduced enteric
bacterial translocation to the spleen, liver, and blood (17). We also showed that
antihistamine treatment of P. yoelii-infected mice resulted in partial reversal of bacte-
remia compared to infected control mice (18). These observations are consistent with
clinical findings of L-arginine deficiency in falciparum malaria (19, 20), elevated plasma
histamine (21–23), and activation of basophils (24–26), which along with MCs are the
principle sources of histamine release during allergic inflammation.

The physiology of MC activation is complex, involving numerous potential media-
tors that act in response to distinct stimuli over broad time intervals. Notably, MCs
respond to microorganisms through a wide variety of membrane receptors (27, 28), as
well as to cytokines, chemokines, and other inflammatory signals (28). Cytokines and
chemokines typically associated with MC activation include stem cell factor (SCF), the
Th2 cytokines interleukin-3 (IL-3), IL-4, IL-5, IL-6, IL-9, and IL-13, granulocyte-
macrophage colony-stimulating factor (GM-CSF) (17, 29, 30), and regulated on activa-
tion normal T cell expressed and secreted (RANTES CCL5) (31) and eotaxin (CCL11) (32).
The Th2 cytokine IL-10 can induce MC proliferation in combination with SCF and IL-6
(33). Together, IL-4 and IL-10 can inhibit some MC functions while inducing others (34).
The most clinically relevant example of MC activation is associated with type I hyper-
sensitivity, which is mediated by cross-linking of antigen-specific immunoglobulin E
(IgE) immune complexes and high-affinity IgE receptors (Fc�RI) on the MC membrane
surface (27). MCs activated after Fc�RI binding undergo degranulation and release of
inflammatory mediators such as histamine, heparin, proteoglycans, Th1 and Th2 cyto-
kines, and proteases, including some that can directly degrade circulating cytokines
(35) to modulate the recruitment, survival, proliferation, and activation of other leuko-
cytes (36, 37).

Here, we evaluated a timeline of MC activation in a nonlethal malaria model along
with patterns of peripheral leukocytes and circulating pro- and anti-inflammatory
cytokines and chemokines to improve our understanding of bacteremia in the recently
clinically relevant context of nonsevere disease. The C57BL/6J mouse model of infection
with nonlethal P. yoelii yoelii 17XNL resembles protective immunity and tolerance to P.
falciparum, which is defined by both Th1 and Th2 responses. These responses have
been described as contributing to antiparasite immunity (Th1) and antidisease immu-
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nity (Th2), but the roles of Th2 responses during blood-stage infection, other than to
promote IL-4-dependent protective humoral immunity (38) and reduce macrophage
antiparasite responses (39), remain incompletely understood. In the present study, our
observations define a Th2-type allergic response during nonlethal malaria marked by
transient increases in basophils, eosinophils, and neutrophils together with lymphope-
nia, ileal mastocytosis, and elevated levels of Th2 cytokines and chemokines, providing
unique temporal patterns for interpreting MC-dependent, malaria-induced alterations
to the intestinal barrier.

RESULTS
Nonlethal P. yoelii yoelii 17XNL infection was associated with rising bacteremia

within 2 days of detectable parasitemia. To define the temporal association between
malaria-associated bacteremia and MC activation in our model of nonlethal infection,
wild-type C57BL/6J mice were injected intraperitoneally with P. yoelii yoelii 17XNL-
infected red blood cells. Intestinal permeability and MC activation and accumulation
were assessed during early infection to approximately peak parasitemia (10 days
postinfection [p.i.]) (18). All mice injected with infected red blood cells were positive for
infection by 2 days postinoculation (Fig. 1A). Increased bacterial 16S DNA levels in
blood were observed by day 4 p.i. (mean parasitemia at day 4 p.i., 2.0%) and became
significantly different from controls by day 6 p.i. (Fig. 1B).

Gastrointestinal (GI) permeability was determined using in vivo and ex vivo assays in
P. yoelii yoelii 17XNL-infected and control, uninfected mice. Permeability was assessed
in vivo by measuring the plasma concentration of 4-kDa fluorescein isothiocyanate
dextran (FITC-dextran) at 3 h following oral gavage of mice. With increasing intestinal
barrier damage and paracellular permeability, greater densities of FITC-dextran parti-
cles are detected in the plasma. Using this assay, increased intestinal permeability was
observed by day 4 p.i. that became significantly different from uninfected controls by
day 10 p.i. (Fig. 2A). Plasma FITC-dextran levels were significantly but moderately
correlated with circulating bacterial 16S (P � 0.010, r � 0.589; see Fig. S1 in the sup-
plemental material), suggesting that a substantial amount of variation in permeability
was unaccounted for by this assay. As a secondary assay, permeability was measured
ex vivo by transport of 4-kDa FITC-dextran across resected, ligated sections of ileum
from infected and control mice, allowing direct and localized assessment of GI barrier
integrity (40). In this assay, relative permeability is calculated as a function of width and
length of the intestinal segment and FITC-dextran released from the “ileum sac” into
the suspension medium over time. In contrast to the in vivo assay, the ex vivo test
revealed significantly increased ileal permeability by day 8 p.i. that declined by day 10
p.i. (Fig. 2B).

FIG 1 (A and B) Peripheral blood parasitemia following P. yoelii yoelii 17XNL infection (A) and bacterial
16S copies/�l of blood (B) in C57BL/6J mice relative to control, uninfected mice. The error bar (A)
represents the mean � standard deviation (SD). Each dot (B) represents a single mouse. Data (B) were
analyzed with the Kruskal-Wallis test followed by Dunn’s multiple comparison of each time point with the
control group. P values of �0.05 were considered significant. **, P � 0.01; ***, P � 0.001.

Malaria Drives Allergic Mast Cell-Dependent Bacteremia Infection and Immunity

December 2020 Volume 88 Issue 12 e00427-20 iai.asm.org 3

https://iai.asm.org


In the context of rising bacteremia by day 4 p.i. that was significant by day 6 p.i. (Fig.
1B), significantly increased numbers of MCs, identified using naphthol AS-D chloroac-
etate esterase (NASDCE) activity, which specifically detects MC secretory granule chy-
mases, were observed in the ileum by days 4 and 8 p.i. relative to controls (Fig. 3A and
B). MC activation, as interpreted by elevated levels of circulating MC protease 4 (Mcpt4)
and Mcpt1, was significant by days 4 and 8 and by days 6 and 8, respectively (Fig. 3C
and D). Elevated levels of IgE were observed at 8 days p.i. (Fig. 3E). The functional
human chymase homologue Mcpt4 has been associated with increased intestinal
permeability (35, 41, 42), decreased infection-induced intestinal inflammation, and

FIG 2 Intestinal permeability during P. yoelii yoelii 17XNL infection. (A) Intestinal permeability in vivo quantitated
with FITC-dextran in plasma of infected and control, uninfected mice after administration of FITC-dextran by oral
gavage. (B) Ex vivo intestinal permeability determined from FITC-dextran passage across ligated, resected ileum
sacs. Each dot represents a single mouse. Data were analyzed with the Kruskal-Wallis test followed by Dunn’s
multiple comparison of each time point with the control group. P values of �0.05 were considered significant. *,
P � 0.05; **, P � 0.01.

FIG 3 Association of P. yoelii yoelii 17XNL infection with accumulation and activation of ileal mast cells (MCs). (A) Mean numbers of ileal MCs per high-powered
field (HPF) from naphthol AS-D chloroacetate esterase (NASDCE) staining of sections from infected and control, uninfected mice. (B) Representative stained MCs
(pink cells indicated by white arrows) in the ileum of an infected mouse at 8 days p.i. (left) and a control mouse (right). (C) MC protease 4 (Mcpt-4) concentration
in plasma as determined by ELISA. (D) MC protease 1 (Mcpt-1) concentration in plasma as determined by ELISA. (E) IgE concentration in plasma as determined
by ELISA. Data were analyzed with the Kruskal-Wallis test follows by Dunn’s multiple comparison of each time point with the control group. P values of �0.05
were considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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regulation of intestinal cytokine responses (43). Mcpt1 release is significantly upregu-
lated by allergen-dependent IgE cross-linking (44) and, like Mcpt4, has been associated
with increased intestinal permeability (45), suggesting that MC activation at day 4 p.i.
initiates an uptick in circulating bacterial 16S levels that were significantly increased
above control levels by day 6 p.i. (Fig. 1B) by the combined activities of Mcpt1 and
Mcpt4. By day 10 p.i., ileal MC numbers (Fig. 3A) and activation (Fig. 3C and D) were not
different from those of controls, but circulating 16S levels in infected mice remained
significantly higher than those of controls (Fig. 1B).

Patterns of circulating leukocytes during P. yoelii yoelii 17XNL infection are
reminiscent of allergic inflammation and consistent with nonlethal disease. To
determine the profile of immune cells in our nonlethal malaria model in the context of
bacteremia, we quantified circulating basophils, eosinophils, neutrophils, lymphocytes,
and monocytes in P. yoelii yoelii 17XNL-infected and control, uninfected mice. Following
infection, significant increases in basophils and eosinophils were noted by day 4 p.i.
(Fig. 4A and B), the same day that elevated MCs were first observed in the ileum (Fig.
3A), with both basophils and eosinophils declining to control levels by day 8 p.i.
Basophils are rare c-kit receptor-negative, Fc�RI-positive cells that mature in the bone
marrow and that, upon activation, release histamine, lipid mediators, and chemokines,
as well as IL-4 and IL-13 (46, 47). Basophils are key players in Th2 immune responses
(48), which are characterized by activation and recruitment of basophils, MCs, and
eosinophils (49) and the production of IL-4, -5, -6, -9, -10, and -13, which promote
secretion of IgE to sustain MC activation (46, 47, 50).

Interestingly, circulating neutrophils followed a pattern of increase and decline
relative to controls (Fig. 4C) that was similar to basophils and eosinophils. In the context
of IgE-mediated allergy, activated MCs have been reported to induce an increase in
infiltrating neutrophils (51), which respond to local cytokines by presenting antigen to
specific CD4� effector T-cells (52) that release IL-5 to activate eosinophils and increase

FIG 4 Circulating leukocytes in P. yoelii yoelii 17XNL-infected and control, uninfected mice. (A to F) The x axis represents the time points in days after infection,
and the y axis represents the percentages of circulating basophils (A), eosinophils (B), neutrophils (C), lymphocytes (D), and monocytes (E) and monocyte/
lymphocyte ratios (F). Each dot represents a single mouse. Data were analyzed with the Kruskal-Wallis test followed by Dunn’s multiple comparison of each
time point with the control group. P values of �0.05 were considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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the synthesis of IgE (53). Lymphocytes, in contrast, were significantly decreased in
circulation by day 4 p.i. and returned to baseline by day 8 p.i. (Fig. 4D), whereas
monocytes remained at control levels through day 6 p.i. and then declined thereafter
(Fig. 4E). The monocyte to lymphocyte ratio has been used as a marker of infection in
a range of diseases (54–56), including malaria, where positive correlations with para-
sitemia and severe disease have been noted (57, 58). Relative to controls, monocyte to
lymphocyte ratios were significantly increased by day 4 p.i. and then declined by day
6 p.i. with values below baseline at days 8 and 10 p.i. (Fig. 3F), suggesting a transient
increase and then decline in disease severity with increasing parasitemia as expected
for a nonlethal infection. This transition may also reflect a shift from innate to adaptive
immunity, marked for example, by notably increased synthesis of IgE by day 8 p.i. (Fig.
3E). Concurrent transient eosinophilia and lymphopenia, together with elevated levels
of Th2 cytokines, have been described in murine experimental asthma (59), suggesting
that the patterns observed here define a variant Th2-type allergic response that is
associated with early ileal mastocytosis, MC activation, and bacteremia.

Patterns of plasma cytokines and chemokines during P. yoelii yoelii 17XNL
infection are consistent with MC activation and both antiparasite and antidisease
immunity. In the lethal malaria model of Plasmodium berghei infection, Th2-associated
allergic mediators, including histamine, have been associated with increased para-
sitemia (60) and increased severity of cerebral disease during infection (61). Conversely,
we have observed in the nonlethal model of P. yoelii yoelii 17XNL infection that
histamine is associated with decreased parasitemia and with pathology marked by ileal
mastocytosis and intestinal epithelial cell damage that are functionally associated with
enteric bacterial translocation (18). Given that asymptomatic infection and tolerance in
falciparum malaria have been associated with bacteremia (5–7) and based on our
observations of pathology that were reminiscent of allergic inflammation (Fig. 3 and 4),
we examined the patterns of Th1 and Th2 cytokines and chemokines in our model.

In general, patterns of circulating cytokines over time following P. yoelii yoelii 17XNL
infection showed evidence of dual activation and cross talk between Th1 and Th2
responses, with the earliest increases (day 4 p.i.) in IL-6, IL-18, and interferon-� (IFN-�)
(Fig. 5A to C) along with IL-4 and IL-10 (Fig. 6A, B), which corresponded to the first peak
of intestinal mastocytosis (Fig. 3A). The early appearance of IL-4, in the absence of IL-13,
highlights important differences in these two cytokines that share a signaling receptor
subunit IL-4 receptor-� (62). Specifically, IL-4 has been identified as the first cytokine to
be produced by MCs and is responsible for promoting MC IL-13 production (63). In
addition, IL-4 functions as a key amplifier of Th2 immunity (64). In mouse malaria,
increased levels of IL-10 have been associated with development of nontyphoidal
Salmonella (NTS) bacteremia, suggesting that IL-10 suppresses mucosal inflammatory
responses to invasive NTS (65). Increased levels of IL-18 likely balance the amplification
of Th2 immunity. A primary function of IL-18 is to induce the synthesis of IFN-� (Fig. 5C),
an outcome that is absent in some acute allergic conditions (66). Here, IL-18-dependent
Th1 immunity and the likely engagement of IFN-� in blood-stage parasite killing (67)
appear to be sustained for the duration of rising P. yoelii yoelii 17XNL parasitemia.
However, IL-18 can also participate directly in the proliferation and recruitment of MCs
and basophils observed by day 4 p.i. (Fig. 3A and 4A), it contributes to the synthesis of
IL-4 and IL-13 in a variety of innate immune cells, including NK cells, MCs, and basophils,
and in the presence of allergen, it can increase the synthesis of IgE (68). Collectively,
IL-6, IL-18, IFN-�, and IL-10 levels rose with parasitemia, while significant increases in
IL-4 were biphasic, with a second peak occurring at day 10 p.i.

The significant increase by day 4 p.i. and rising levels of monocyte chemoattractant
protein-1 (MCP-1) (CCL2) (Fig. 7A) and macrophage inflammatory protein-1� (MIP-1�)
(CCL3) (Fig. 7B) with parasitemia are notable in that MIP-1� is required for physiolog-
ically relevant levels of MC activation in vivo (69), and MIP-1� (70) and MCP-1 (71), along
with RANTES (Fig. 7C), can induce histamine release by basophils (72). MCP-1 synthesis
is also induced by MC activation (73) and is involved in activating the migration of
monocytes (74), but this response is naturally antagonized by eotaxin (75), levels of
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which were sustained through day 4 p.i. but then decreased by day 6 p.i. (Fig. 7D).
Interestingly, MIP-1� (CCL3) and MIP-1� (CCL4) (Fig. 7B and E) levels increased through
day 6/8 p.i. and then declined, while levels of RANTES gradually increased through day
4 p.i. (Fig. 7C), patterns that recall differences between severe falciparum malaria (high
levels of MIP-1�/� and significantly lower baseline levels of RANTES) and mild falci-
parum malaria (lower levels of MIP-1�/� and significantly higher baseline levels of
RANTES) in children (76).

By day 6 p.i., IL-12p40 (Fig. 5D) and IL-9 (Fig. 6C) levels were significantly elevated
above those of controls and continued to rise through day 10 p.i. Increasing levels of
IL-10 and IL-12p40, an antagonist of IL-12, likely blunt the Th1 response, perhaps
explaining IFN-� levels that increased with parasitemia (Fig. 5C) in the absence of any
changes in levels of tumor necrosis factor-� (TNF-�) (Fig. 5E), IL-1� (Fig. 5F), or IL-17
(Fig. 5G) during infection. In our model as in other studies (77), IL-12p40 was produced
in large excess (�30- to 40-fold) over levels of IL-12p70, which were increased by days
8 and 10 p.i. but nonsignificantly (Fig. 5H). In the context of pathogen infection,
IL-12p40 has also been observed to regulate macrophage recruitment, a positive role
in the host response to infection, while also inhibiting overactive Th1 responses (78).
Intriguingly, IL-12p40-deficient mice have shown increased susceptibility to P. berghei

FIG 5 Proinflammatory cytokines in plasma of P. yoelii yoelii 17XNL-infected and control mice. (A to I) The x axis represents the time points in days after infection,
and the y axis represents the plasma concentrations of IL-6 (A), IL-18 (B), IFN-� (C), IL-12p40 (D), TNF-� (E), IL-1� (F), IL-17 (G), IL-12p70 (H), and IL-2 (I). Each
dot represents a single mouse. Data were analyzed with the Kruskal-Wallis test followed by Dunn’s multiple comparison of each time point with the control
group. P values of �0.05 were considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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ANKA cerebral disease, suggesting in our model, a course of nonlethal disease that
results from combined antiparasite and antidisease immunity.

By days 8 to 10 p.i., significant increases in IL-2 (Fig. 5I), IL-3, IL-5, and IL-13 (Fig. 6D
to F) were detected, timing that corresponded to significant synthesis of IgE (Fig. 3E)
and, therefore, a shift to acquired immunity. This shift is driven primarily by IL-5, which
also acts in concert with IL-4, IL-9, IL-13, and eotaxin, all expressed coordinately at this
time, to orchestrate and enhance allergic inflammation (53). In both P. yoelii yoelii
17XNL infection and in falciparum malaria, IL-2 is necessary for the expansion of
CD25Foxp3 CD4� T cells (T regulatory cells, or Tregs) (79, 80) and for activating natural
killer (NK) cells, which function in the lysis of infected erythrocytes (79–81). High levels
of MC activation and IgE synthesis at day 8 p.i. (Fig. 2A, D) suggest that activated
MC-derived IL-2 contributes to Treg expansion (82), which also ultimately contributes
to the resolution of both mouse and human allergic inflammation. IL-3 is generated by
both CD4� T cells and MCs and is a key mediator of murine MC recruitment (83),
differentiation, and mediator release, including histamine, IL-4, IL-6, and IL-13 (84–86),
suggesting a mechanism for sustained MC activation. The significant increase in
keratinocyte chemoattractant (KC) at 8 days p.i. (Fig. 7F) is consistent with the function
of this chemokine. In particular, levels of neutrophil-derived KC are highly correlated
with intestinal barrier damage (87), which peaks at 8 days p.i. based on circulating 16S
levels (Fig. 1B) and intestinal permeability (Fig. 2B) and is suggestive of a coordinated
host response with IL-6 to restore mucosal barrier integrity (88). In previous studies, we
observed that infection with P. yoelii blunted the mouse intestinal neutrophilic re-
sponse to invasive NTS (65). In our current model, which lacks the independent and
confounding pathology of invasive NTS, our observations provide a more comprehen-
sive analysis of this malaria-associated barrier defect that enables translocation of
enteric bacteria. Collectively, these cytokine and chemokine changes slow the devel-
opment of malarial immunopathology, but the primary expansion of Tregs can also

FIG 6 Anti-inflammatory cytokines in plasma of P. yoelii yoelii 17XNL-infected and control, uninfected mice. (A to F) The x axis represents the time points in
days after infection, and the y axis represents the plasma concentrations of IL-4 (A), IL-10 (B), IL-9 (C), IL-3 (D), IL-5 (E), and IL-13 (F). Each dot represents a single
mouse. Data were analyzed with the Kruskal-Wallis test followed by Dunn’s multiple comparison of each time point with the control group. P values of �0.05
were considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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delay the control of parasitemia (80) during MC-enhanced degradation of the intestinal
barrier and associated bacteremia.

DISCUSSION

In this study, we evaluated a timeline of MC activation along with an array of
circulating Th1/Th2 mediators to improve our understanding of nonlethal malaria-
associated bacteremia and the disruption of intestinal barrier function. In earlier studies,
we showed functional associations among ileal mastocytosis, elevated circulating and
ileal histamine, enhanced intestinal permeability, and bacteremia in infected mice (16,
18). Here, we characterized early and persistent malaria-induced bacteremia (circulating
16S copies) marked by a Th2-type allergic response and transient increases in basophils,
eosinophils, and neutrophils together with lymphopenia, ileal mastocytosis, and ele-
vated circulating levels of MC proteases, Th2 cytokines, and chemokines (Fig. 8). While
we have attempted here to interpret changes in the intestinal barrier based, in part, on
patterns of circulating immune cells, cytokines, and chemokines, we recognize that
these agents are, most importantly, local mediators and that local activities may not be
temporally concordant with observed systemic patterns. Nonetheless, these patterns
provide for a more comprehensive interpretation of the development of malaria-
associated intestinal barrier disruption in the context of nonlethal malaria and are
necessary for directing the next steps in our studies of activated, tissue-resident cells
and local mediators.

It has been widely accepted that malaria predisposes individuals to bacteremia (3).
Gastrointestinal symptoms (89), as well as pathological changes (including detachment
of epithelia and shortening of villi and the colon) (90), have been observed during
malaria. In severe malaria, infected red blood cells sequester in the gastrointestinal tract
(8), causing increased intestinal permeability, rupture, and leakage of infected eryth-

FIG 7 Chemokines in plasma of P. yoelii yoelii 17XNL-infected and control, uninfected mice. (A to F) The x axis represents the time points in days after infection,
and the y axis represents the plasma concentrations of MCP-1 (A), MIP-1� (B), RANTES (C), eotaxin (D), MIP-1� (E), and KC (F). Each dot represents a single mouse.
Data were analyzed with the Kruskal-Wallis test followed by Dunn’s multiple comparison of each time point with the control group. P values of �0.05 were
considered significant. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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rocytes into the lumen and dysbiosis of the intestinal microbiota, which may contribute
to disease severity (90). Bacteremia and intestinal permeability, however, have been
observed across all clinical spectra of malaria in both children and adults (1, 3, 5–7). In
all scenarios, bacteremia has been frequently associated with reduced parasite densities
compared with individuals with malaria only (2, 5). These observations support the
relevance of P. yoelii yoelii 17XNL infection as a model for the less-well-understood
clinical scenario of bacteremia in asymptomatic malaria.

In our model, circulating bacterial 16S DNA copies in blood were increased by 4 days
p.i. and were significantly different from controls by 6 days p.i. (Fig. 1B); intestinal
permeability to FITC-dextran was significantly increased relative to controls by 8 and 10
days p.i. (Fig. 2A and B). We used two methods to assess the structural permeability of
the intestinal barrier, including an in vivo method reflective of the entire GI tract and an
ex vivo method that was specific to resected ileum. Data from these assays were not
concordant with each other or with bacteremia. Temporal and regional differences in
the permeability of individual intestinal sections could explain these differences. In
particular, permeability in the ileum could be higher and more dynamic and exhibit
more rapid responses than other intestinal sections (91, 92). These differences could be
related to variations in gene expression of tight junction proteins and inflammatory
cytokines across intestinal sections (91). Regardless of these differences, barrier perme-
ability that allowed significant passage of FITC-dextran was detected by days 8 to 10
p.i., which in the context of bacteremia and MC activation that precedes and overlaps
with these time points, suggests that intestinal barrier disruption occurred at earlier
times p.i. but was undetectable with these assays. We are continuing to explore other

FIG 8 Model for malaria-induced intestinal permeability and bacteremia. Nonlethal malaria (P. yoelii yoelii 17XNL) induces transient
increases in basophils, eosinophils, and neutrophils together with lymphopenia and synthesis of IL-4, resulting in rapid MC recruitment
to the ileum, functionally increased intestinal permeability, and significant elevation of bacterial 16S copies in the blood. These
responses are concurrent with a marked Th2-type allergic response and increased MC mediators in circulation.
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assays that can more closely associate temporal changes in ileal permeability with
bacteremia.

The gastrointestinal mucosa forms a selective barrier that allows the transport of
nutrients while protecting the host from potentially harmful pathogens through im-
mune and nonimmune mechanisms. In this context, MCs play a central role in regu-
lating epithelial function and integrity and in modulating both innate and adaptive
mucosal immunity (93). MCs produce both proinflammatory and anti-inflammatory
cytokines and are an important source of chemokines. As a result, MCs can regulate
both Th1 and Th2 responses, depending on the pathogen-associated signal that
induces MC activation (94). However, in the intestinal mucosa, MC mediators can also
directly affect epithelial integrity, leading to enhanced mucosal permeability and
passage of luminal antigens and/or microorganisms across the intestinal epithelium
(93).

In addition to its role in regulating MC function, IL-4 has been shown to increase
epithelial permeability in various cell types through the induction of pore-forming
claudin-2 and apoptotic pathways (95, 96) as well as decreased levels of ZO-1 and
occludin (97). IL-13 and IL-6 have also been associated with upregulation of claudin-2
(98–101), which alters cell permeability, lowers transepithelial resistance (TER), and
confers increased Na� conductance (102–104). However, the effects of IL-6 on epithe-
lial permeability remain controversial (105). In our model, both IL-4 and IL-6 were
increased in circulation at day 4 p.i. (Fig. 4A and 5A), at the initiation of rising 16S copy
numbers in blood (Fig. 1B), suggesting that these cytokines induce early disruption of
the intestinal barrier that was enhanced at day 8 p.i. by other mediators, including IL-13,
IFN-�, MC proteases, and histamine.

Among the cytokines measured in our model, TNF-� is among the most studied
cytokines that affect intestinal barrier dysfunction. In particular, TNF-� plays a critical
role in inflammatory bowel disease, where it can synergize with IFN-� to regulate
multiple tight-junction (TJ) proteins, including myosin light chain kinase, occludin, and
ZO-1, as well as claudin-1 and claudin-2 (106–109), which are also regulated by IL-17.
Interestingly, neither TNF-� nor IL-17 were changed in response to infection in our
model. In accord with our observations, decreased TNF-� in children with malaria and
bacteremia relative to children with malaria alone has been observed previously (2). In
our model, TNF-� levels may be affected by elevated levels of Mcpt1 and Mcpt4, since
both chymases not only degrade proteins of the basement membrane and extracellular
matrix (110, 111), but they can also degrade cytokines such as TNF-� (35) and IL-33 (41).
The lack of IL-1� and TNF-�, both typically elevated in malarial disease (112, 113), may
also be due to downregulation by IL-10 (Fig. 6B), which increases with rising para-
sitemia (Fig. 1A). In addition to these effects, IL-10 can provide a protective role against
TJ barrier disturbance, since IL-10 deficiency has been associated with increased
intestinal permeability (114, 115) and mislocalization of ZO-1 and claudin-1 away from
TJs, perhaps by the action of increased proinflammatory TNF-�, IL-1, and IL-6 (116). The
administration of IL-10 can also prevent IFN-�-induced barrier dysfunction (117), but
the effects of IL-10 can vary based on context. For example, IL-10 can enhance
IgE-mediated MC-dependent barrier dysfunction during food allergy (118).

MC proteases have known roles in intestinal permeability and have been studied
through the generation of mouse strains deficient in the chymases Mcpt1, Mcpt2,
Mcpt4, and Mcpt5 (119). Mcpt1 was the first chymase described to be involved in
expulsion of Trichinella spiralis from the intestine of infected mice (120). The regulation
of gut barrier function, including permeability and epithelial migration, by the human
chymase homologue Mcpt4, was subsequently reported (42). In general, it has
been shown that the activation of protease-activated receptor 2 (PAR-2) by human
chymase induces metalloprotease-2 (MMP-2) expression that is associated with re-
duced claudin-5 and epithelial barrier dysfunction (121). In our model, both Mcpt1 and
Mcpt4 were observed in circulation in parasite-infected mice, but Mcpt4 increased first
(days 4 and 8 p.i.; Fig. 3C), while Mcpt1 (Fig. 3D) was detected with the second peak of
ileal MCs (day 8 p.i.; Fig. 3A), suggesting that these chymases are induced by different
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mechanisms and play different roles in gut regulation. Indeed, it has been shown that
Mcpt1 and Mcpt4 have different preferences in their sequence target peptides (122).

In conclusion, P. yoelii yoelii 17XNL infection induces increased intestinal permea-
bility and significant elevation of bacterial 16S copies in the blood preceded by MC
proliferation in the ileum, a marked Th2-type allergic response, and increased MC
mediators in circulation, suggesting that activated MCs and/or their products may
promote and regulate not only the intestinal cytokine responses but also patterns of
host immunity to malaria infection. Thus, our mouse model provides an experimental
setting for the study intestinal immune responses and intestinal barrier function during
nonlethal malaria-associated bacteremia. Studies are ongoing to confirm the contribu-
tion of activated MC factors to the coordination of Th1 and Th2 immunity as well as
changes to the integrity of the intestinal barrier and patterns of bacteremia in malaria.

MATERIALS AND METHODS
Mice. Female, 8-week-old C57BL/6J mice (000664) were obtained from Jackson Laboratory and

housed in ventilated microisolator caging and provided food and water ad libitum. All procedures were
approved by the Institutional Animal Care and Use Committee of the University of Idaho.

Mouse infection and monitoring. Mice were injected with 150 �l of P. yoelii yoelii 17XNL-infected
red blood cells (1 � 106 parasites) (n � 90) or uninfected red blood cells (n � 26) at day 0 by intraperi-
toneal (i.p.) administration. Daily parasitemia was recorded from thin blood films stained with Giemsa
beginning on day 2 p.i. Mice were monitored daily for weight loss and reduced activity. Blood samples
were collected by cardiac puncture for complete blood counts (CBCs) and determination of bacterial 16S
DNA copies. Plasma samples were collected for analysis of IgE, cytokines, chemokines, and Mcpt1 and
Mcpt4; these samples were frozen at �80°C until analysis. Ileum tissue was collected and saved in
formalin for immunohistochemistry studies.

CBCs. Whole blood was collected via cardiac puncture in EDTA tubes at the time of necropsy. These
samples were mixed gently and shipped overnight to the Comparative Pathology Lab at the University
of California, Davis. Samples were analyzed within 24 h with a Hemavet 950FS automated hematology
system.

Creation of 16S bacterial DNA plasmid standard. To create a standard curve for quantification by
qPCR, genomic DNA was isolated from Escherichia coli using a DNeasy blood and tissue kit (Qiagen)
according to the manufacturer’s protocol. Genomic DNA was then amplified using primers for eubacterial
16S ribosomal DNA (forward 5=-ACTCCTACGGGAGGCAGCAGT-3=, reverse 5=-ATTACCGCGGCTGCTGGC-3=.
The 197-bp product was cloned using the TOPO-TA cloning kit (Invitrogen) following the manufacturer’s
protocol. After transformation and overnight growth on agar plates, colonies were selected and grown
in LB broth (Thermo Fischer). Plasmid DNA was isolated using the QIAprep Spin miniprep kit (Qiagen),
and the insert was confirmed by restriction digest and Sanger sequencing. The plasmid was diluted to
109 copies/�l, and a 10-fold dilution series (109 copies/�l to 101 copies/�l) was created and used as a
standard curve. The calculated limit of detection of this assay is 10 copies/�l, determined as the lowest
concentration at which no more than 5% failed reactions occur (123).

Extraction of DNA from blood for 16S quantitative PCR (qPCR). Whole blood was collected in
EDTA tubes via cardiac puncture at the time of necropsy, flash frozen in liquid nitrogen, and stored at
�80°C. Total DNA was isolated using DNeasy blood and tissue kits (Qiagen) according to the manufac-
turer’s protocol.

DNA. DNA was diluted to 4 ng/�l, and reaction mixtures of 12 �l containing 6 �l Maxima SYBR
green/ROX qPCR master mix (2�) (Bio-Rad), 0.5 �l of the forward and reverse 16S primer at 10 �M, 2.5 �l
of water, and 2 �l of DNA (normalized to 4 ng/�l) were analyzed in triplicate to confirm uniform
amplification using the following cycling conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C
for 15 s and 60°C for 1 min.

In vivo intestinal permeability. Mice were fasted for 4 h before oral gavage with 50 mg/100 g body
weight of 4-kDa fluorescein isothiocyanate dextran (FITC) in sterile phosphate-buffered saline (PBS). After
3 h, blood was collected and plasma was separated and diluted with PBS (pH 7.4, 1:2 vol/vol). Standard
curves were obtained by serial dilution of FITC-dextran in normal mouse plasma diluted with PBS
(1:2 vol/vol). Plasma fluorescence was analyzed using a microplate reader (Molecular Devices LLC, San
Jose, CA) at excitation/emission wavelengths of 490/520 nm.

Ex vivo intestinal sac assay. Intestinal permeability was assessed as described in Mateer et al. (40)
with slight modifications. Mice were fasted for 4 h prior to euthanasia. At necropsy, ileal segments were
isolated and gently flushed with 1� PBS to remove any remaining contents. The distal end was ligated
with a nylon suture and filled with 1 mg/ml of 4-kDa FITC-dextran (Sigma-Aldrich) dissolved in phenol-
free Dulbecco’s modified Eagle medium (DMEM) (Thermo Fisher). The proximal end of the segment was
ligated and placed into a 50-ml conical tube with 20 ml of 37°C DMEM and incubated in a 37°C water
bath for 120 min. Samples of medium were removed at 0, 30, 60, 90, and 120 min, and the amount of
translocated FITC-dextran was quantified using a fluorescent plate reader. Apparent permeability was
calculated as described in Mateer et al. (40).

Cytokines and chemokines in plasma samples. Concentrations of plasma cytokines (IL-1�, IL-3,
IL-4, IL-10, IL-6, IL-2, IL-9, IL-12p70, IL-12p40, IL-13, IFN-�, TNF-�, MCP-1, MIP-1�, MIP-1�, RANTES, eotaxin,
and KC) were determined using a Bio-Plex Pro Luminex assay. Briefly, 25 �l of serum was incubated with
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fluorescently labeled capture antibody-coated beads in a 96-well filter-bottomed plate on a plate shaker
overnight at 4°C. After incubation, the sample-bead mix was removed, and the plate was washed twice
using a vacuum manifold. Biotinylated detection antibodies were then added and incubated for 1 h at
room temperature with shaking. The reaction mixture was detected by the addition of streptavidin-
phycoerythrin and incubated on a plate shaker at room temperature for 30 min. Following a repeat of
the washing step, beads were resuspended in sheath fluid for 5 min on the plate shaker. Plates were read
on a Bio-Plex 200 system (Bio-Rad Laboratories, Hercules, CA, USA) and analyzed using Bio-Plex Manager
software (Bio-Rad Laboratories) with a five-parameter model used to calculate final concentrations and
values (expressed in pg/ml). Reference samples were run on each plate to determine assay consistency,
and all samples were run in blinded experimental groups.

ELISAs. Levels of circulating IgE (eBioscience; Thermo Fisher Scientific, Inc.), Mcpt1 (eBioscience),
Mcpt4 (Aviva Systems Biology), and IL-18 (BMS618-3; eBioscience) were determined in plasma samples
using commercial enzyme-linked immunosorbent assay (ELISA) kits according to the manufacturer’s
instructions and a microplate reader (Molecular Devices LLC, San Jose, CA).

Ileum histochemistry. Ileum samples collected at necropsy were formalin-fixed and embedded in
paraffin. From these tissue blocks, 5-�m sections were cut, deparaffinized in xylene, rehydrated in graded
solutions of alcohol, and subjected to enzyme histochemical staining to identify naphthol AS-D chloro-
acetate esterase (NASDCE) activity (ref. 91C-1KT; Sigma-Aldrich), which detects chymases in MC secretory
granules (124). For each mouse examined, MCs were enumerated in 30 to 50 high-power fields (HPF).

Statistical analysis. Bacterial 16S DNA copies per �l of blood, number of MCs per HPF in ileum
tissue, IgE, and cytokine concentration in plasma were compared between different time point groups
using the Kruskal-Wallis test followed by Dunn’s multiple-comparison test of each time point with the
control group. P values of �0.05 were considered significant.

Ethics statement. All experiments were performed with the approval of the Institutional Animal Care
and Use Committee of the University of Idaho (protocol number 2017-20).
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