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A Commentary on

Lactate-Induced Glucose Output Is Unchanged by Metformin at a Therapeutic

Concentration—AMass Spectrometry Imaging Study of the Perfused Rat Liver

by Calza, G., Nyberg, E., Makinen, M., Soliymani, R., Cascone, A., Lindholm, D., et al. (2018). Front.
Pharmacol. 9:141. doi: 10.3389/fphar.2018.00141

Calza et al. (2018) challenge a widely accepted view (Petersen et al., 2017) that mitochondrial
glycerophosphate dehydrogenase (mGPD, EC 1.1.5.3), a component of the glycerolphosphate
shuttle (GPS), is the primary molecular target (Madiraju et al., 2014) for the antidiabetic drug
metformin to lower plasma glucose in type 2 diabetic patients. The initial report was followed by
a detailed preclinical investigation in which the hypothesis that the cellular redox state (i.e., the
cellular [NADH]/[NAD+] ratio) increased by metformin’s selective mGPD inhibition, explained
decreased liver gluconeogenesis from lactate and glycerol whereas pyruvate or alanine as precursors
were not affected (Madiraju et al., 2018). Already in 1969, Krebs et al. (1969) concluded from
their experiments with the ethanol-perfused rat liver that the decrease of the [free NAD+]/[free
NADH] ratio was responsible for the inhibition of gluconeogenesis from lactate and glycerol
whereas pyruvate-driven formation of glucose was completely unaffected. Thus, the evidence for
a precursor-selective inhibition of gluconeogenesis by the cellular redox ratio was presented 50
years ago and confirmed for metformin (Madiraju et al., 2014, 2018). The crucial main point
is that the claimed primary molecular target for the drug responsible for the ratio change is
mGPD. Alternative opinions (e.g., Hunter et al., 2018) to explain reduced liver gluconeogenesis
by metformin will not be discussed herein.

The main observations by Madiraju et al. (2014) were that metformin i.v. injections into
fasting healthy rats with doses of 20 and 50 mg/kg led, within 30 min, to lowering of fasting
plasma glucose (FPG) and endogenous glucose production (EGP), as measured by labeled
glucose. Increased ratios in plasma and liver for [lactate]/[pyruvate] as well as decreased ratios
of [β-hydroxybutyrate]/[acetoacetate] were seen. Similar observations were made upon chronic
i.p. metformin dosing. Thus, acute or chronic metformin inhibits EGP, which is accompanied
by changes in plasma and liver with increased [lactate]/[pyruvate] ratios as a proxy for the
cytosolic [NADH]/[NAD+] redox state. These results in the preclinical models are contrary
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to the evidence from numerous studies in healthy non-
diabetic humans, namely that neither acute nor chronic
metformin lowers FPG (Sulaiman and Johnson, 1977; Bonora
et al., 1984; Nestler et al., 1994; Sambol et al., 1996; Chung
et al., 2018; Gormsen et al., 2018) and even increases EGP
(Christensen et al., 2015; Konopka et al., 2016).

In order to explain the changed redox ratios the authors
investigated the two main shuttles which can transfer cytosolic
NADH to mitochondria, namely the malate-aspartate shuttle
(MAS) and the GPS. They came to the conclusion that one
component of the latter, mGPD, is responsible and a direct
molecular target for metformin.

In the context of metformin’s actions on mitochondria it is
important to note that MAS, in contrast to GPS, can run in
the reverse mode (Vancura et al., 2018) if NADH oxidation
is impaired by inhibition of the electron transport chain and
cytosolic redox ratios are thereby increased. GPS is a much
simpler and faster system and consists of two enzymes: the
cytosolic glycerol 3-phosphate dehydrogenase (cGPD, EC 1.1.1.8)
with NAD+/NADH as co-factor [a Km value around 30 µM for
glycerophosphate (GP)] and mGPD with FAD as co-factor. The
mGPD has a high Km for GP (2 to 8 mM), is an important
reactive oxygen species (ROS) producer (Orr et al., 2012), is
stimulated by calcium and catalyzes the “one-way street” reaction
from GP to dihydroxyacetone phosphate. Madiraju et al. (2014)
reported liver mitochondrial respiration in the presence and
absence of 50 µM metformin by addition of pyruvate, malate,
and glutamate, followed by rotenone. GP was then added and
a 40% inhibition of the GP-stimulated oxygen consumption
rate (OCR) was noticed. In figure 2 of their extended data
dose responses of OCR with metformin present (between 0.078
and 20 mM) on complex I OCR are shown. There was no
inhibition up to 1.25 mM. After addition of rotenone, succinate
was added and a significant stimulation (about 40%) for all
metformin concentrations was reported. As a crucial step of
evidence, the authors investigated the activity of metformin on
the kinetics of different preparations of mGPD, including an
immunopurified recombinant human mGPD, rat mitochondrial
lysates, immunoprecipitated purified rat mGPD and the distantly
related purified Pediococcus sp. α-glycerophosphate oxidase. In
all instances, a non-competitive inhibition was observed with
Ki values of about 50 µM. The authors also performed in
silico molecular docking simulations with a modified version
of the crystal structure of α-glycerophosphate oxidase from
Streptococcus sp. and suggested that metformin interacted with
the FAD binding site.

To summarize: First, the observed acute inhibition of FPG in
healthy rats by metformin in the preclinical model was puzzling
as there was no parallel in any of the human studies. Second,
we were wondering about the significant (40%) stimulation

of succinate-driven OCR by metformin that has never been
reported before. Third, high throughput screening for mGPD
inhibitors with several thousands of chemicals yieldedmembrane
permeable, high-affinity blockers such as iGP (STK017597,
Vitas-M) but not metformin or related structures (Orr et al.,
2014). Fourth, mGPD was not among the 41 computationally
predicted biomolecular metformin targets (Cuyas et al., 2018).
Consequently, we were searching for confirmations of the most
important argument for the hypothesis that mGPD is a primary,
direct molecular target of metformin but to our dismay, we
did not find any. Instead, we discovered convincing proof that
metformin does not inhibit mGPD. The first report by one of
the laboratories with decades of experience with mGPD did
not find any metformin inhibition up to 10 mM but, as a
positive control, micromolar inhibition by iGP (Pecinova et al.,
2017). The second report is a detailed study on the effects
of metformin on the OCR of saponin-permeabilized ACR 549
cancer cells exposed to metformin. With complex I substrates,
addition of metformin (1 mM) completely blocked OCR. With
GP as substrate, metformin did not inhibit at all (Gui et al.,
2016). The third article (Al-Oanzi et al., 2017) investigated
concentrations of the immediate intracellular precursor of free
glucose in plasma, namely glucose-6-phosphate (G6P) and
fructose-2,6-bisphosphate (F26P) in isolated rat hepatocytes.
When comparingmetformin to iGP, the authors found that in the
presence of an inhibitor of G6Pase, metformin (0.1 to 0.5 mM)
dose-dependently decreased G6P but iGP had no effect even
at 40 µM. Metformin also reduced levels of F26P as proxy for
fructose-6-phosphate in agreement with the report by Hunter
et al. (2018).

Thus, the data by Calza et al. (2018) and the evidence
presented above seriously challenge the “primary, simple, and
elegant” (Ferrannini, 2014) metformin target.

AUTHOR’S NOTE

After submission of the manuscript two publications
came to our attention, which support the notion that
mGPD must be removed from the list of direct molecular
metformin targets. Alshawi and Agius (2018) report
that metformin (0.1-5 mM) does not inhibit mGPD in
permeabilized rodent hepatocytes. Li et al. (2018) discovered
that cytochrome C reduction, used as the activity reporter
for mGPD in one of the assays by Madiraju et al. (2014),
is inhibited by metformin in a concentration-dependent
(0.2-2.5 mM) manner.
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