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ABSTRACT
Objective  To examine the likelihood of head acceleration 
events (HAEs) as a function of previously identified risk 
factors: match time, player status (starter or substitute) 
and pitch location in elite-level men’s and women’s rugby 
union matches.
Methods  Instrumented mouthguard data were collected 
from 179 and 107 players in the men’s and women’s 
games and synchronised to video-coded match footage. 
Head peak resultant linear acceleration (PLA) and peak 
resultant angular acceleration were extracted from each 
HAE. Field location was determined for HAEs linked to a 
tackle, carry or ruck. HAE incidence was calculated per 
player hour across PLA recording thresholds with 95% CIs 
estimated. Propensity was calculated as the percentage 
of contact events that caused HAEs across PLA recording 
thresholds, with a 95% CI estimated. Significance was 
assessed by non-overlapping 95% CIs.
Results  29 099 and 6277 HAEs were collected from 
1214 and 577 player-matches in the men’s and women’s 
games. No significant differences in match quarter HAE 
incidence or propensity were found. Substitutes had 
higher HAE incidence than starters at lower PLA recording 
thresholds for men but similar HAE propensity. HAEs were 
more likely to occur in field locations with high contact 
event occurrence.
Conclusion  Strategies to reduce HAE incidence need 
not consider match time or status as a substitute or starter 
as HAE rates are similar throughout matches, without 
differences in propensity between starters and substitutes. 
HAE incidence is proportional to contact frequency, and 
strategies that reduce either frequency or propensity for 
contact to cause head contact may be explored.

INTRODUCTION
Participation in contact sports such as rugby 
union carries a risk of concussion and head 
impacts.1–3 Emerging evidence about the 
potential medium and long-term health 
consequences of both concussions and non-
concussive impacts necessitates interventions 
aimed at reducing both the frequency and 

magnitude of these events.4–6 Head acceler-
ation events (HAEs) can result from either 
direct head contact or body contact and thus 
provide a means to quantify and describe 
direct and indirect head loading.1 While 
the consequences of specific frequency and 
magnitudes of HAEs on long-term brain 
health remain unknown, a precautionary 
approach to reducing HAE exposure is recom-
mended.1 Accordingly, developing strategies 
to reduce both population and individual-
level HAE exposure, thereby potentially 
mitigating concussion and long-term risk, is 
of paramount importance.7–9

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Head acceleration events (HAEs) mitigation strate-
gies are a priority for rugby union to optimise player 
welfare.

	⇒ Instrumented mouthguards show promise as an ac-
curate method for on-field HAE measurement.

WHAT THIS STUDY ADDS
	⇒ HAEs occurred in on-field regions where contact 
event occurrence was the highest.

	⇒ Substitutes had a higher HAE incidence than starters 
over certain PLA recording thresholds for men.

	⇒ No significant differences in match quarter HAE inci-
dence or propensity were found.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Mitigating HAEs will involve reducing exposure to 
contact events since these are primarily responsible 
for HAEs.

	⇒ Potential mitigation strategies should aim to reduce 
exposure to specific incidents or the likelihood of 
HAEs in specific circumstances, particularly where 
propensity is elevated.

	⇒ HAE exposure should be monitored for starters and 
substitutes, particularly forwards, who experience a 
higher incidence of HAEs than backs.
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Instrumented mouthguards (iMG) can quantify head 
linear and rotational kinematics during on-field HAEs 
by providing coupling with the skull through the upper 
dentition.10 Head kinematics (linear acceleration, 
angular acceleration and angular velocity) are associated 
with concussion injury risk and HAEs.1 11 12 The primary 
contributor to brain deformation appears to be rota-
tional head kinematics and various biomechanical brain 
injury mechanisms may exist, including those involving 
repetitive HAEs.1

To develop effective interventions to reduce HAE inci-
dence, it is necessary first to understand the circumstances 
under which HAEs occur. This identifies risk factors 
for HAEs, allowing mitigation strategies to be explored 
to reduce overall HAE incidence, either by reducing 
exposure to the events more likely to cause HAEs or by 
reducing the likelihood that a circumstance will cause an 
HAE. For this reason, an approach that explores both 
propensity (the likelihood that a given circumstance or 
behaviour causes an HAE) and incidence (overall HAEs 
per player hour, a function of propensity and exposure) 
is necessary. In the present study, the HAE incidence 
and propensity for three factors previously identified as 
risk factors for injury in the sport were determined. The 
study aimed to compare HAE incidence and propensity 
for starter/substitute players and match quarter and 
to examine the field location of tackle, carry and ruck 
HAEs within elite-level men’s and women’s rugby union 
matches throughout a season.

METHODS
Study design and participants
A prospective observational cohort study was undertaken 
with 179 (118 forwards, 60 backs) and 107 (60 forwards, 
47 backs) participants from the men’s and women’s 
games, respectively. Participants were recruited from 
elite-level Premiership and Premier 15s clubs, respec-
tively, during the 2022/2023 season, representing the 
highest club rugby levels in England. Data were collected 
from domestic league, cup and European cup competi-
tions for men and domestic league and cup competitions 
for women. All participants underwent three-dimensional 
dental scans and received a custom-fit iMG (Prevent 
Biometrics, Minneapolis, Minnesota, USA). The iMGs 
were equipped with an accelerometer and gyroscope, 
sampled at 3200 Hz with a measurement range of ±200 g 
and ±35 rad/s, respectively. Each iMG was also equipped 
with an embedded infrared proximity sensor to assess the 
coupling of the iMG to the upper dentition during an 
HAE. The validity of the Prevent Biometrics (Prevent) 
iMG has been demonstrated in previous studies both 
on-field and within laboratory settings.13–16

HAEs were identified when a linear acceleration trigger 
threshold of 8 g measured at the mouthguard was exceeded 
on a single axis of the iMG accelerometer.17 HAE kinematics 
were captured at 10 ms pretrigger and 40 ms post-trigger. 
Impacts were transformed and recorded at the head centre 
of gravity (CG) following SAE J211 recommendations.18 A 

recording threshold of 400 rad/s2 and 5 g at the head CG 
was used to capture and include HAEs from contact events 
only (positive predictive value >0.99).17 A trigger threshold 
of 8 g can record HAEs below 8 g at the head CG.17 19 Peak 
resultant linear acceleration (PLA) at the head CG and 
peak resultant angular acceleration (PAA) were extracted 
from each HAE.

The level of noise/artefact in the kinematic signal was 
classified into three classes (0, 1 or 2) by an in-house 
Prevent algorithm. Class 0 is determined to contain 
minimal noise within the recorded accelerometer/gyro-
scope signals, class 1 for moderate noise or class 2 for 
severe noise. To further process the signals from the 
accelerometer/gyroscope, prevent applies a fourth-order 
(2×2 pole) zero phase, low-pass Butterworth filter to each 
signal with a cut-off frequency (−6 dB)20 of 200, 100 and 
50 Hz for class 0, 1 and 2 HAE, respectively, similar to 
previous studies.16 21–23

Contact event identification
In-game video timestamps of contact events (specifically 
tackles, carries and rucks) were captured from commer-
cially available match data (StatsPerform, Chicago, 
Illinois, USA) using broadcast-quality game footage. 
These events were linked to HAEs to minimise the occur-
rence of ‘false positives’, where an HAE occurs without 
any head impact during the above-identified contact 
event types. StatsPerform defined carry match events as 
‘a player touching the ball has deemed to make a carry if they 
have made an obvious attempt to engage the opposition with the 
ball in hand’, a tackle as ‘a player has attempted to halt the 
progress or dispossess an opponent in possession of the ball’ and 
a ruck as ‘a player enters a breakdown after it has been set’. 
Due to the difficulties in visually identifying players and 
linking these to HAEs, mauls were excluded from this 
analysis. Additionally, scrum events were excluded from 
this analysis due to a small sample size of linked HAEs 
(n=195). A bespoke MATLAB script was used to link the 
iMG HAE timestamps to in-game timestamps for tackle, 
carry and ruck contact events. Five randomly selected 
matches were used whereby HAEs (n=1210) were manu-
ally video analysed to test the accuracy of the MATLAB 
script. The MATLAB script correctly linked 88% of HAEs 
to the StatsPerform contact events compared with the 
manual video analysis approach.

Field location
Each contact event was assigned to a field location, identi-
fied using a combination of on-field markings as reference 
points (eg, 22 m lines, 10 m from halfway, try line), and 
following typical game analysis practices, where game 
analysts code activities based on their vertical field location 
such that attack and defence can readily be distinguished 
from mid-field play. The horizontal (location relative to the 
sidelines) location is identified to characterise the width 
of the play. This results in functional regions on the field 
and enables contact events to be described as a function of 
width and nature of attack vs defence.
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Statistical analysis
29 099 and 6277 HAEs were recorded from 1214 and 
577 individual player matches from men’s and women’s 
games, respectively. Incidence was calculated as the total 
number of HAEs per player hour. All HAEs captured 
during the match period were used for incidence calcu-
lations. The player’s playing time was obtained from 

StatsPerform. Subsequently, mean incidence values were 
calculated across different PLA recording thresholds for 
playing quarters, starters and substitutes with 95% CIs 
estimated using a bootstrapping procedure.17

Propensity values (with 95% CI) were calculated by 
dividing the number of tackle, carry and ruck contact 
events that resulted in an HAE (Men n=18 978, women 

Figure 1  Head acceleration event incidence for (A, B) match quarter, (C, D) starters and substitutes and (E, F) starters and 
substitutes by player position for men and women across peak linear acceleration recording thresholds. The shaded region 
indicates 95% CI, and n represents the number of players available for calculation based on compliance requirements (see the 
‘Methods’ section). Online supplemental figure 1 presents the results with a peak angular acceleration recording threshold.

https://dx.doi.org/10.1136/bmjsem-2024-001954
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n=3665) by the total number of events the player was 
involved in while wearing an iMG.17 A single contact 
event may result in multiple HAEs due to multiple colli-
sions during the event. In these instances, propensity was 
calculated using the HAE with the greatest magnitude. 
Only contact events that corresponded with an on-the-
teeth period (based on the iMG proximity sensor) for 
the instrumented player were used in propensity calcu-
lations, and only player matches where the instrumented 
player wore their iMG for a minimum of 90% of their 
contact events were used in the incidence calculations.17

For statistical comparison of HAEs, a ratio between two 
HAE propensities was calculated to allow comparisons 

of HAE risk by match time and in starters vs substitutes. 
Propensity ratios were explored in three magnitude 
bands for PLA and PAA thresholds: low magnitude (PLA 
<10 g and PAA <1.0 krad/s2), medium magnitude (PLA 
>10 g and <30 g and PAA >1.0krad/s2 and <2.0krad/s2) 
and high magnitude (PLA >30 g and PAA >2.0 krad/s2).17 
Significance was determined based on 95% CI not over-
lapping across recording thresholds.

RESULTS
Match time
There was no significant difference in HAE incidence 
between match quarters for men (figure  1A). Overall, 

Figure 2  Head acceleration event propensity for tackles, carries and rucks, broken down by match quarters across peak 
linear acceleration recording thresholds. The shaded region indicates 95% CI. n represents the number of players available for 
calculation. Online supplemental figure 2 presents the results with a peak angular acceleration recording threshold.

https://dx.doi.org/10.1136/bmjsem-2024-001954
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there were 27.7 HAEs per player hour above 10 g in 
quarter 4 compared with 23.3, 22.4 and 22.6 in quarters 
1, 2 and 3, respectively (figure 1A). HAE incidence was 
similar across quarters in the women’s game (9.8, 10.8, 
9.4 and 10.1 HAEs per player hour above 10 g in quarters 
1, 2, 3 and 4, respectively, figure 1B). The propensity of 
contact events to result in HAEs was also unchanged over 
time (figure 2, table 1).

Starters and substitutes
In men, 86.6% (48 942 min) of the total playing time 
(56 498 min) was from starters, with 13.4% (7556 min) 
from substitutes. In women, starters accounted for 86.8% 
and substitutes 13.2% of the total 23 153 min.

When considered as a single group, substitutes have a 
higher HAE incidence than starters in men’s rugby (24.6 
vs 17.8 HAEs per hour, figure 1C). In women, no substi-
tute versus starter difference was found (figure  1D). 
When considered by the positional subgroup, substitute 
forwards had a higher lower magnitude HAE (<10 g) 
incidence than starter forwards (27.8 vs 20.9 for subs vs 

starters, respectively, figure  1E). At the same time, no 
differences were found between starter and substitute 
backs. No differences in incidence were found between 
positional groups in the women’s game (figure 1F).

There were no statistical differences in HAE propen-
sity for the three contact event types between starters and 
substitutes (table 1), nor when broken down by position 
group (figure 3).

Field location
Tackler HAE propensity was highest in the defending half 
of the field for men and women (figures 4 and 5). Carry 
HAEs, conversely, were more likely when attacking in the 
opposition half. For both tackle and carry HAEs, there 
was a slight over-representation of the attacking left side 
of the midline (figures 4 and 5). Overall, HAEs occurred 
in on-field regions with high contact event occurrence 
(figures 4 and 5). For higher magnitude events (>30 g), 
HAE propensity for tackles and carries was highest 
between the 5 m line and the try-line in both the men’s 
and women’s games (figures 4 and 5). A breakdown of 

Table 1  Propensity ratios of tackles, carries and rucks to result in a maximum-magnitude HAE within low, medium and high 
HAE magnitude bands as a function of match quarters and starter versus substitutes

Men Women

Low
<10 g

Medium
10 g <30 g

High
>30 g

Low
<10 g

Medium
10 g<30 g

High
>30 g

Tackles Q1 vs Q2 1.01 0.96 1.10 1.01 0.98 0.95

Q1 vs Q3 1.00 0.97 1.09 1.00 1.02 0.90

Q1 vs Q4 1.02 0.96 1.05 1.01 0.97 0.91

Q2 vs Q3 0.99 1.02 0.99 0.90 1.05 0.95

Q2 vs Q4 1.00 1.00 0.95 1.00 0.99 0.96

Q3 vs Q4 1.01 0.99 0.96 1.02 0.94 1.02

Carries Q1 vs Q2 0.99 1.00 1.02 1.00 0.99 0.96

Q1 vs Q3 1.00 1.01 0.99 1.00 1.00 1.10

Q1 vs Q4 0.99 1.02 0.92 1.10 0.97 0.97

Q2 vs Q3 1.00 1.00 0.97 0.99 1.01 1.14

Q2 vs Q4 1.00 1.02 0.90 1.01 0.97 1.01

Q3 vs Q4 1.00 1.02 0.93 1.01 0.96 0.88

Rucks Q1 vs Q2 1.00 1.00 1.06 1.00 1.03 0.92

Q1 vs Q3 0.98 1.05 1.11 1.00 1.05 0.91

Q1 vs Q4 0.99 1.03 0.99 1.00 1.00 0.89

Q2 vs Q3 0.99 1.04 1.05 1.00 1.02 0.99

Q2 vs Q4 0.99 1.03 0.94 1.00 0.97 0.96

Q3 vs Q4 1.00 0.99 0.90 1.01 0.95 0.97

Tackles Starter vs Substitute 1.05 0.96 0.85 1.03 0.89 0.91

Carries Starter vs Substitute 0.98 1.00 1.08 1.06 0.81 1.88

Rucks Starter vs Substitute 1.01 1.00 0.83 1.02 0.85 1.43

Ratios are calculated based on the text labels at each interval presented in figure 2. Q1–4 represent match quarters, with Q1 and Q2 
representing the first half, with Q3 and Q4 representing the second half. If no HAEs were recorded during a contact event, the maximum HAE 
was deemed to be within the low band (<10 g). No significant differences were found across the propensity ratios.
HAE, Head Acceleration Event.
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the number of events and HAE propensity in each region 
can be found in online supplemental tables 1 and 2 for 
the men’s and women’s games, respectively.

DISCUSSION
This study explored how previously researched risk 
factors for injury—field location, time of match and 
starters versus substitutes—influence both the incidence 
and propensity of HAEs during contact events and match 
play in rugby union to provide insight into the timing and 
circumstances of HAEs to inform potential interventions 

that reduce the number of head accelerations players will 
experience in the game.

Accordingly, the first important finding is that HAE 
incidence and propensity are not affected by the time in 
the match. No changes were found for the HAE propen-
sity across a spectrum of PLA magnitudes for tackles, 
carries or rucks as the game progressed and nor was HAE 
incidence affected by the match quarter, suggesting that 
both exposure to contact events and the likelihood that 
those contact events will cause HAEs at any magnitude is 
not affected by match time. This has implications for how 

Figure 3  Head acceleration event propensity for tackles, carries and rucks broken down by starters, substitutes and player 
position across peak linear acceleration recording thresholds. The shaded region indicates 95% CI. n represents the number of 
players available for calculation. Online supplemental figure 3 presents the results with a peak angular acceleration recording 
threshold.

https://dx.doi.org/10.1136/bmjsem-2024-001954
https://dx.doi.org/10.1136/bmjsem-2024-001954
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fatigue and changes in match activities over time affect 
HAE risk and outcomes. Previous studies have shown 
that fatigue is a risk factor for injuries,24–27 though not for 
HIA removals.28 We find no such relationship, though, 
as discussed subsequently, the interaction of accumu-
lated playing time’s effects on fatigue and substitutions 
makes this interpretation complex. It is, of course, not as 
simple as suggesting that players in Q4 are more fatigued 
than in Q1 since the introduction of substitutes means 
that a proportion of players in Q4 are playing their first 
20 min.29

The second important finding is that substitutes have 
the same propensity for HAEs during contact events as 
starters but have a significantly higher HAE incidence. 
This is intriguing since propensity findings (figure  3) 
suggest that the per-contact-event-risk is similar between 
starters and substitutes regardless of playing position, 
implying that a substitute’s tackle, carry or ruck involve-
ment is as likely to cause an HAE as a starter’s. The higher 
HAE incidence in substitutes must thus be attributable to 
greater exposure of substitutes to contact events per unit 
time on the field. We interpret our combination of find-
ings to show that substitutes have higher rates of HAEs 
because of greater contact frequency, not greater contact 
risk. This is explained by the positional bias in substitu-
tions, where five or six of the eight available substitutes are 
usually forwards, whereas starters are split 8/7 between 
forwards and backs.29 This accounts for our finding that 

the HAE incidence in forward substitutes, specifically in 
the men’s game, is considerably higher than for starters, 
compared with the relatively smaller difference found 
between starter and substitute backs (figure 3).

Our comparison of starters and substitutes does not 
enable a direct evaluation of the effects of relative fatigue 
(in starters) compared with relative freshness (in substi-
tutes). The dataset, for starters, comprises all their contact 
events, regardless of match time. Second, we compare 
the HAE propensity in starters and substitutes, but not 
whether these roles cause HAEs in other players. To tease 
out the possible influence of freshness on HAE risk, eval-
uating the HAE propensity in both the tackler and ball 
carrier is necessary as a function of whether each is a 
starter or substitute. In future, research should evaluate 
HAE propensity in the first 10 min of play, irrespective 
of starter versus substitute roles and compare this to the 
HAE propensity in players who have played for more than 
60 min, for instance. Future research should also explore 
the possible integration of other game metrics, such as 
GPS, to understand further how substitutions affect game 
involvements, with resultant implications for HAE risk.

The final important finding is that HAE propensity is 
closely linked to players’ activities at the time of contact 
and the location on the field where those activities occur. 
HAE propensity is highest during tackles when players 
are defending their try line and during carries when 
attacking the opposition try line (online supplemental 

Figure 4  Field location for tackle (A–C), carry (D–F) and ruck (G–I) contact events, head acceleration events (HAE) and HAEs 
>30 g for the men’s game. The colour of the density plot indicates the number of events that occurred in that region. The more 
red the colour, the more HAEs or contact events occurred in that region.

https://dx.doi.org/10.1136/bmjsem-2024-001954
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tables 1 and 2). This is likely a function of the increased 
intensity of those tackles and carries to prevent or score 
a try, which may impact the technique used by players 
in each situation. This would increase the likelihood of 
significant HAEs, compared with tackles and carries in 
the midfield, where ‘winning the collision’ is not as influ-
ential. We have not, however, assessed technique in the 
identified higher-risk situations, but our finding suggests 
that future research might explore this possibility.

Collectively, the three findings invite consideration 
of potential mitigation strategies that seek to either (a) 
reduce the exposure to specific incidents or circum-
stances identified as causing more HAEs or (b) reduce 
the likelihood of HAEs in specific circumstances, partic-
ularly where propensity is noted to be elevated. Either 
would reduce overall HAE incidence and exposure. Given 
that no influence of match time on contact event HAE 
incidence or propensity was found, there is no specific 
mitigation that would reduce HAE numbers at the level 
of match time. Our finding that substitutes have the same 
propensity as starters regardless of playing position does 
not support the implementation of strategies that may 
reduce HAE exposure by limiting the number of substi-
tutes unless it can be shown that substitutes change the 
frequency of exposure to HAE-inducing contact events.

The final finding that the propensity is greatest for 
tackler defence and ball carrier attacking situations at 
the try line is also difficult to mitigate without materially 

affecting how the game is played. As noted, this is likely 
explained by the urgency and the resultant intensity of 
the tackles and carries made in these areas since they are 
point-scoring (or preventing) opportunities. To reduce 
these propensities without neutralising the contest would 
be difficult. One approach may be to limit the number 
of such occurrences, possibly by considering the intro-
duction of time or phase limits for teams in possession 
in these areas of the field. This would reduce overall 
HAE numbers through an exposure reduction rather 
than propensity reduction. It would, however, represent 
a significant law change for the sport. Alternatively, the 
possibility that safe technique is compromised in these 
situations should be explored, as this may invite coaching 
interventions to reduce HAE risk by reducing propensity 
while these situations occur at the same frequency.

More generally, mitigation of HAEs will involve 
reducing exposure to contact events since these are 
primarily responsible for HAEs.7 17 30 31 Fatigue remains a 
potential source of increased HAE risk. Still, the present 
analysis does not allow the nuance of that potential risk to 
be explored in a way that may inform whether changes to 
substitution numbers would increase or decrease overall 
HAE numbers.

Limitations
One of the main limitations of this study was player 
compliance with wearing iMG. Where 762 players 

Figure 5  Field location for tackle (A–C), carry (D–F) and ruck (G–I) contact events, head acceleration events (HAE) and HAEs 
>30 g for the women’s game. The colour of the density plot indicates the number of events that occurred in that region. The 
more red the colour, the more HAEs or contact events occurred in that region.

https://dx.doi.org/10.1136/bmjsem-2024-001954
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consented to participate in this study, only 286 provided 
data that could be examined. This may create a poten-
tial bias in the study results as the players who wore the 
iMG and are included in the presented dataset may not 
represent all players in the cohort. The current study 
may not fully represent the various playing styles and 
conditions at all rugby levels worldwide. Match HAE 
characteristics may differ in other rugby cohorts, partic-
ularly amateur and youth level.

This study focused on high-level player and match 
characteristics. It did not look at the effect of tackle, 
carry, ruck technique or other more detailed charac-
teristics of the contact events on HAEs. Technique is 
understood to be a significant risk factor for injuries, 
including concussions, and thus likely plays a role in HAE 
incidence.9 32 Further research needs to look at the effect 
of the technique on HAE incidence. Understanding the 
effect of the technique on HAE incidence may allow 
for the enhancement of technical coaching strategies/
cues and/or influence possible law changes in the sport 
to reduce HAEs and, as a result, potential injury risk. 
Another limitation is the relatively sparse use of iMGs by 
players in the same match, which prevents exploration 
of the interactions between players involved in contact 
situations. In future, when more players are wearing iMG 
devices, it will be possible to study and compare HAE 
outcomes for different role players, characteristics and 
behaviours. Finally, prevent uses in-house algorithms 
for data processing and filtering. A fully transparent 
and common signal processing approach, such as the 
HEADSport filter method,20 would benefit future study 
comparisons, particularly if other iMG systems are used.

CONCLUSION
Season-long, competition-wide implementation of iMGs 
was undertaken to explore how risk factors for injury—
time of match, starters versus substitutes and field 
position—influence both incidence and propensity of 
HAEs during contact events and match play within elite-
level rugby union. HAE incidence and propensity were 
not affected by match time. Substitutes were found to 
have a similar propensity yet a higher incidence when 
compared with starters, likely because the substitute 
group comprises relatively more forwards who engage 
in contact activities. Finally, HAE propensity was greatest 
for attacking (carries) and defending (tackle) situations 
at the try line. Potential mitigation strategies, therefore, 
should look to reduce exposure to specific incidents or 
the likelihood of HAEs in specific circumstances, particu-
larly where propensity is elevated.
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