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Reference-based deconvolution methods use reference libraries of cell-specific DNA
methylation (DNAm) measurements as a means toward deconvoluting cell proportions
in heterogeneous biospecimens (e.g., whole-blood). As the accuracy of such methods
depends highly on the CpG loci comprising the reference library, recent research efforts
have focused on the selection of libraries to optimize deconvolution accuracy. While
existing approaches for library selection work extremely well, the best performing
approaches require a training data set consisting of both DNAm profiles over a
heterogeneous cell population and gold-standard measurements of cell composition
(e.g., flow cytometry) in the same samples. Here, we present a framework for
reference library selection without a training dataset (RESET) and benchmark it against
the Legacy method (minfi:pickCompProbes), where libraries are constructed based on a
pre-specified number of cell-specific differentially methylated loci (DML). RESET uses a
modified version of the Dispersion Separability Criteria (DSC) for comparing different
libraries and has four main steps: 1) identify a candidate set of cell-specific DMLs, 2)
randomly sample DMLs from the candidate set, 3) compute the Modified DSC of the
selected DMLs, and 4) update the selection probabilities of DMLs based on their
contribution to the Modified DSC. Steps 2–4 are repeated many times and the library
with the largest Modified DSC is selected for subsequent reference-based deconvolution.
We evaluated RESET using several publicly available datasets consisting of whole-blood
DNAm measurements with corresponding measurements of cell composition. We
computed the RMSE and R2 between the predicted cell proportions and their
measured values. RESET outperformed the Legacy approach in selecting libraries that
improve the accuracy of deconvolution estimates. Additionally, reference libraries
constructed using RESET resulted in cellular composition estimates that explained
more variation in DNAm as compared to the Legacy approach when evaluated in the
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context of epigenome-wide association studies (EWAS) of several publicly available data
sets. This finding has implications for the statistical power of EWAS. RESET combats
potential challenges associated with existing approaches for reference library assembly
and thus, may serve as a viable strategy for library construction in the absence of a training
data set.

Keywords: reference-based deconvolution, IDOL, cell heterogeneity, cell proportion estimation, DNA methylation,
EWAS

INTRODUCTION

Epigenome-wide association studies (EWAS) explore epigenetic
variation, specifically in DNA methylation (DNAm). These
studies provide insight into how environmental factors can
influence disease, as well as indirectly inform potential novel
therapeutics to treat human diseases (Rakyan et al., 2011; Michels
et al., 2013; Flanagan, 2015). A well-recognized challenge in the
statistical analysis and interpretation of EWAS, particularly
EWAS that involve DNAm profiling of heterogeneous tissue
types (e.g., whole blood, peripheral blood mononuclear cells,
etc.), arises from the cell specificity of DNA methylation. It
has been well documented that DNAm analyses of
heterogeneous cell populations are prone to a decreased
statistical power for detecting CpG-specific methylation effects
or, worse, confounding and misleading results (Reinius et al.,
2012; Jaffe and Irizarry, 2014; Liang and Cookson, 2014;
Houseman et al., 2015). One obvious way to deal with the
potential for confounding due to cellular heterogeneity is to
adjust downstream statistical models for cellular composition
(e.g., by adding terms to statistical models that reflect the
proportion of each cell type within the heterogeneous sample
used for methylation profiling). When available, cell composition
is measured using complete blood cell counts (CBC) with
differential or flow cytometry in the same biospecimens used
for DNA methylation profiling (Houseman et al., 2015).
However, these measurements are not routinely collected for
most EWAS due to added cost to the study and technical
limitations of these approaches (e.g., both CBC and flow
cytometry require fresh samples and are not feasible for stored
specimens).

To address these issues, methods for DNAm-based cell
mixture deconvolution (CMD) have been developed. CMD
relies on the assumption that methylation signatures for a
heterogeneous sample can be thought of as a weighted
mixture of the unique methylation signature of each cell type
making up the sample (Houseman et al., 2012; Newman et al.,
2015; Houseman et al., 2016; Koestler et al., 2016; Teschendorff
et al., 2017; Titus et al., 2017; Decamps et al., 2020; Scherer et al.,
2020). Thus, CMD makes use of the cell-specificity of DNAm to
estimate the cell proportions in samples with heterogeneous cell
composition. CMD includes both reference-free and reference-
based approaches. Reference-free deconvolution obtains cell
type-specific proportions when DNAm profiles in purified cell
types are not available (Houseman et al., 2016; Decamps et al.,
2020; Scherer et al., 2020). While broadly applicable across a
range of different tissue types, a major limitation of reference-free

deconvolution methods is that they are incapable of resolving the
specific identity of the individual cell types for which
deconvolution estimates are obtained. For this reason and
because the identities of individual cell types are often of
interest themselves (Koestler et al., 2017; Wiencke et al., 2017;
Grieshober et al., 2018; Grieshober et al., 2021), reference-based
deconvolution methods are often preferred over reference-free
approaches when cell-specific methylation signatures are
available for the cell types expected to be present in the tissue
source being used for DNAm assessment. Reference-based
methods use reference signatures of DNAm for the underlying
cell types that make up a sample (reference libraries) (Houseman
et al., 2012; Newman et al., 2015; Koestler et al., 2016;
Teschendorff et al., 2017). Several reference-based methods for
deconvoluting DNAm data have been proposed in recent years,
including support vector regression (CIBERSORT), robust partial
correlation (EpiDish), and constrained projection/quadratic
programming (Houseman et al., 2012; Newman et al., 2015;
Teschendorff et al., 2017). While the specific statistical method
used for CMD has some impact on the accuracy of cell proportion
estimates, the major factor underlying the performance of these
methods is the reference library, or collection of cell-specific
differentially methylated loci (DML), used as the basis for
deconvolution (Koestler et al., 2016; Teschendorff et al., 2017;
Titus et al., 2017). Reference libraries that result in accurate
deconvolution estimates are comprised of cell-specific
methylation biomarkers that exhibit distinct patterns of
methylation across cell types.

To date, there have been several approaches for constructing
reference libraries for DNAm-based CMD. The first approach
assembles libraries using the Jp ≪ J CpGs that have the largest
F-statistic computed from fitting a series ANOVA models
independently to each CpG based on DNA methylation data
of purified isolated cell types (Houseman et al., 2012; Koestler
et al., 2016). For a given CpG, the ANOVA-based approach tests
the null hypothesis that the mean beta value is the same across all
K cell types versus the alternative hypothesis that the mean beta
differs between at least two of the K cell types. Reference libraries
assembled using this approach are limited in that they tend to be
comprised of CpGs that distinguish some cell types well (e.g.,
neutrophils and lymphocyte subtypes, in the context of white
blood cell types) but not cell types that share a common lineage
(e.g., CD4T and CD8T) (Koestler et al., 2016). Improvements
were made to the ANOVA approach by instead using the top
hypermethylated and hypomethylated CpGs for each cell type,
hereafter referred to as the Legacy approach. When using the
Legacy approach, CpGs are selected by their t-statistic, computed
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from a series of two-sample t-tests fit independently to each CpG
that test whether the mean beta value of each cell type is the same
as the mean beta value across the K-1 remaining cell types. CpGs
are rank-ordered based on their t-statistic, and those with the
largest and smallest statistics are used to assemble a reference
library for CMD (Aryee et al., 2014; Jaffe and Irizarry, 2014;
Koestler et al., 2016). The Legacy approach is implemented in the
Bioconductor package minfi using the function pickCompProbes
(Aryee et al., 2014). While the Legacy method is an improvement
over the ANOVA approach (Koestler et al., 2016), it is limited
because it requires users to make arbitrary decisions about the
number of hypermethylated and hypomethylated CpGs for each
cell type used in assembling reference libraries. Further, the
assumption of an equal number of DMLs for each cell type in
the creation of reference libraries may hinder the accuracy of
CMD-based estimates of cell proportions. Yet another approach,
proposed by Koestler et al., called IDOL, iteratively searches
CpGs in the construction of reference libraries that maximize
the prediction accuracy of CMD-based estimates of cell
proportions (Koestler et al., 2016). IDOL improves upon both
the ANOVA and Legacy method in prediction performance but
requires a training dataset consisting of whole-blood DNA
methylation data and corresponding cellular composition
measurements (e.g., flow cytometry) (Wiencke et al., 2017).
This is not ideal because, in order to use IDOL, a new
training data set needs to be created every time a reference
signature is added for a new cell type. Further, IDOL also
requires users to choose the size of the reference library in
advance, which introduces arbitrary decisions in choosing a
reference library.

Motivated by the shortcomings of these existing approaches,
we propose an algorithm for reference library selection without
a training dataset (RESET) that does not require users to choose
the size of the reference library in advance, nor does it require a
training data set like IDOL. Our approach is further driven by
the desire to save researchers time and money; since a training
data set does not need to be acquired or updated every time the
reference signature for a new cell type becomes available.
Further, choosing a reference library size in advance is an
arbitrary decision that does not guarantee the quality of a
library. RESET is similar in principle to IDOL but utilizes a
modified version of the Dispersion Separability Criteria (DSC)
as a metric for evaluating and ranking potential reference
libraries for reference-based deconvolution. The Cancer
Genome Atlas originally developed the DSC for detecting
batch effects as a measure of the between vs. within batch
dispersion (Akbani et al., 2020). We hypothesize that higher
values of this metric correspond to better discrimination across
cell types and, as a consequence, better prediction performance
when used for reference-based deconvolution. In what follows,
we first describe our Modified DSC metric and the proposed
RESET framework for identifying reference libraries. We
benchmark the performance of RESET compared to the
Legacy method using three publicly available data sets across
a range of different parameter settings. Next, we explore the
impact that different libraries have on the operating
characteristics of EWAS, using both simulations and data

applications involving two publicly available data sets. We
finish with a discussion of our findings, limitations of our
study, and opportunities for future work.

MATERIALS AND METHODS

In what follows, we describe the materials and methods used in
this research. Figure 1 provides a workflow that summarizes the
data sets used and analyses that were performed.

Cell Mixture Deconvolution
Before we introduce our proposedmethod, we first provide a brief
description of cell mixture deconvolution. Let
Y i � [Yi1, Yi2, . . . , YiJp ], where 0≤Yij ≤ 1, be the methylation
beta-values for CpGs j ∈ {1, 2, . . . , Jp} for sample
i ∈ {1, 2, . . . , N}. Assume that for sample i, DNA methylation
is profiled in a heterogeneous tissue type (e.g., whole-blood),
which has K underlying cell types and whose proportions in
sample i are denoted wi � [wi1, wi2, . . . , wiK]. As previously
described in Houseman et al. (2012), the methylation
signature of Yi is assumed to be a weighted mixture of the
DNA methylation signature of each of the K underlying cell
types (Houseman et al., 2012). That is:

E[Yi] � wi μ
T , 0 ≤wik ≤ 1 and∑K

k�1
wik ≤ 1

where μ is a Jp x K matrix of mean methylation beta values. The
rows of μ correspond to the same ordering of the Jp CpGs as in Yi

and the columns of μ are the K distinct cell types. Following the
above equation, the Houseman approach to CMD proceeds by
finding the wi that minimizes the squared-error loss function
between Yi and wi μT ,

argminwi

����Yi − wi μ
T
����2

subject to the above-mentioned constraints on wik. Since μ is
unknown, the sample mean, M, is used and can be estimated
using a reference methylation data set consisting of DNA
methylation data on isolated, purified cell populations
(Houseman et al., 2012; Reinius et al., 2012).

CMD is made possible by leveraging the unique methylation
signature of each cell type, which is reflected in the columns ofM.
However, as previously described, the accuracy of cell proportion
estimates, ŵi, rely heavily on the Jp CpGs are used as the basis of
CMD. Strong reference libraries for CMD are comprised of CpGs
whose methylation signature is distinct across each of the K
cell types.

Modified Dispersion Separability Criteria
To be able to perform CMD with high accuracy when the true
cell proportions are not known, we need a metric that identifies
Jp CpGs that discriminate between cell types well. We believe
that the Dispersion Separability Criteria (DSC) could be one
such metric since it was designed by the Cancer Genome Atlas
(TCGA) to identify batch effects in high-dimensional
molecular data sets (Akbani et al., 2020). Defined as follows,
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DSC � Db

Dw

Db is a measure of dispersion between batches and Dw is a
measure of dispersion within batches.Db can be thought of as the
mean Euclidean distance between batch centroids and the overall
centroid, while Dw can be thought of as the mean Euclidean
distance between samples of a given batch and the centroid for
that batch. More specifically Db and Dw are defined as:

Db �
��������
trace(Sb)

√
Dw � ��������

trace(Sw)
√

where Sb is the between batch scatter matrix and Sw is the within
batch scatter matrix as described previously by Dy and Brodley
(2004) (Dy, 2004). Higher DSC values indicate that there is a
greater dispersion between batches than within batches and
indicate the presence of batch effects. Thus, we hypothesized
that for a given set of CpGs (e.g., library), high values of the DSC
would indicate greater dispersion between cell types and that
libraries with large DSC values correspond to improved
deconvolution accuracy. However, our early exploration of this
metric in selecting reference libraries for deconvolution found
that this DSC and deconvolution accuracy is more complicated.
Some cell types are more alike than others due to shared
lineages. For example, the methylation pattern of CD8T and
CD4T cells is more related than, say, CD8T cells and monocytes
because of their shared lymphoid lineage. The above-mentioned
formulation of the DSC was ill-suited to address such challenges,
and poor deconvolution performance ensued.

To address such challenges, we propose a metric for
assembling reference libraries for CMD that involves a slight
modification of the DSC. We define the Modified DSC as follows:

Modified DSC � Min(Dp
b)

Min(Dp
w)

Dp
b represents a vector of the Euclidean distances between every

pair of cell type centroids and Dp
w is a vector containing the mean

Euclidean distances between samples of a given cell type and the
centroid for that cell type. More precisely:

Dp
b � db1, db2, . . . , d

b[K2]
Dp

w � [dw1, dw2, . . . , dwK]
where (K

2
) reflects the number of cell-type pairs. Although

reference libraries for CMD are typically comprised of hundreds
or thousands of CpGs, Figure 2A provides a simplified,
conceptual illustration of the calculation of the Modified DSC,
assuming three cell types and two CpGs. We chose to utilize the
minimum of these distances after exploring various combinations
of summary statistics (data not shown). The idea is that high
values of the Modified DSC correspond to better discrimination
between cell types since it is based on minimum distances. More
specifically, if the minimum distance between any two cell type
centroids is large and the minimum within-cluster distance is
small, this will yield a large Modified DSC and indicate large
differences between cell types with respect to their DNAm
signature.

FIGURE 1 | Analytical workflow. A workflow for describing the data sets used and analyses that were performed.
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Algorithm for RESET Utilizing the Modified
DSC Metric
The below algorithm was taken from Koestler et al. (2016) and
adjusted to utilize the Modified DSC when a training data set is
not available (Koestler et al., 2016). A further illustration of this
algorithm can be found in Figure 2B.

Step 0: Assembling a candidate reference library:
a. Fit a series of two-sample t-tests to the J CpGs to

compare mean methylation (beta-values) between
each cell type against the mean beta-values across
the remaining K-1 cell types.

b. Identify L
2 CpGs with the largest t-statistics and the L

2
CpGs with the smallest t-statistics for each of the K cell
types. Here L represents the number of cell-specific
DMLs we desire.

c. Create a set of CpGs,Q, identified in (b). Specifically,Q
is comprised of P = LK DMLs and makes up the
candidate search space for the subsequent steps.

It should be noted that the choice of L is completely arbitrary,
and trade-offs must be made depending on how large L is chosen

to be. Large values of L broaden the search space for possible cell-
specific DMLs, but also increase the computational burden in
downstream steps. Small values of L correspond to less
computational burden but risk excluding viable cell-specific
DMLs.

Step 1: Random assembly of reference libraries:
a. At iteration ℓ, Jp CpGs are randomly chosen from Q

with probability πℓ

j, j ∈ {1, . . . , P}. At the first
iteration, ℓ � 0, every CpG among the P candidate
DMLs has an equal probability of being chosen. That
is, ∀ j ∈ {1, . . . , P}, π0

j � 1
P .

b. Let Qℓ ⊂ Q denote the randomly assembled reference
library, comprised of Jp randomly selected CpGs at
iteration ℓ.

Note that Jp, the number of CpGs that make up the libraryQℓ ,
is also randomly selected from a uniform distribution with a
minimum of jmin ≥ k and a maximum of jmax ≤P.

Step 2: Calculation of the Modified DSC using the randomly
assembled library:

FIGURE 2 | Illustration of the Modified DSC Calculation and Workflow. (A) A conceptual illustration of how the Modified DSC is calculated assuming three different
cell types and two CpGs. (A, Left) db1 , db2 and db3 represent the Euclidean distances between pairs of cell-type-specific centroids (denoted as stars). These distances
are elements of the vector, Dp

b, which represents the between-cell type dispersion index. (A, Right) cik , k � 1, 2, . . . ,K and i � 1, 2, . . . , nk , represent the Euclidean
distances between each sample of a given cell type and the centroid (denoted as star) for that cell type where k is an index for cell type, and i is an index for sample.
The average within-cell type distance is represented by dwk , where dwk � 1

nk
∑nk

i�1 cik , and nk represents the number of samples for cell type k. These distances are the
elements of the vector, Dp

w, which represents the within-cell type dispersion index. The modified DSC is then calculated as the ratio of the minimum between-cell type
dispersion and theminimumwithin-cell type dispersion, Min(Dp

b )
Min(Dp

w ) (B)Workflow for RESET algorithm to find the optimal library using the Modified DSCmetric as described in
Algorithm for RESET Utilizing the Modified DSC Metric.
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a. Using the random library Qℓ , calculate the Modified
DSC. We will denote this MDSCℓ .

Step 3: Assessing the contribution of each CpG to the Modified
DSC using leave-one-out procedure:
a. Each of the Jp CpGs that make up Qℓ are iteratively

removed to obtain sets of CpGs, Qℓ−j, which includes
all CpGs in Qℓ , except CpG j.

b. Step 2 is repeated for each reduced library Ql−j so that
we have Jp new Modified DSCs, denoted as
MDSCℓ−1, MDSCℓ−2, . . . , MDSCℓ−Jp .

In subsequent iterations, we seek to retain CpGs whose
inclusion in the reference library results in large values of the
Modified DSC. Calculating MDSCℓ−j gives us a framework for
updating selection probabilities of each CpG in. Qℓ .

Step 4: Updating selection probabilities:
a. For each of the Jp CpGs in the reduced library, Qℓ , we

update the probability of selecting CpG j as follows:

r � MDSCℓ

MDSCℓ−j
πℓ+1
j � πℓ

j r

Thus, the greater the contribution CpG j has on the value of
the Modified DSC, the more influence it has on the probability of
being selected in future iterations. More specifically, if removing
CpG j from Qℓ results in a smaller value of the Modified DSC, r
will be greater than 1 and thus πℓ+1

j will increase. If removing CpG
j from Qℓ results in a larger value of the modified DSC, r will be
less than 1 and thus πℓ+1

j will decrease. How much πℓ

j changes
from iteration to iteration depends on the contribution of CpG j
to the Modified DSC.

b. After the probabilities for the Jp CpGs in the random
library, Qℓ , have been updated, the probabilities of all P
CpGs in Q are then scaled to sum to 1.

Step 5: Continue iteration: Using the updated probabilities,
πℓ+1
j j ∈ {1, . . . , P}, repeat steps 1–4. The final solution

is the library made up of the Jp CpGs, which yielded the
largest value of the Modified DSC.

Datasets
We now describe the DNA methylation array data sets used for
this research. For more information about how the data was
preprocessed and what measures were taken to ensure quality
control, we refer readers to Koestler et al. (2016).

Cell Mixture Reconstruction Experiment
Purified cells taken from normal human subjects were purchased
from AllCells LLC (Emeryville, CA). Namely, granulocytes,
monocytes, CD4T, CD8T, natural killer, and B cells. DNA was
extracted from the purified blood leukocyte subtypes, dsDNAwas
quantified, and then DNA extracted from purified leukocyte
subtypes were mixed in preplanned proportions to reconstruct
two different sets with n = 6 samples in each. One set of samples
was reconstructed to contain similar proportions of the purified

leukocyte subtypes. In contrast, the other was reconstructed to
resemble the proportions in normal human adults’ peripheral
blood. We will refer to these data sets as MethodA and MethodB,
respectively. These DNA samples were bisulfite modified, and
epigenome-wide DNA methylation assessment was done using
the Illumina HumanMethylation450 array platform (Koestler
et al., 2016). These data are publicly available in the Gene
Expression Omnibus (GEO) repository (GEO Accession ID:
GSE77797).

Adult Whole Blood Samples
Another n = 6 whole blood (WB) samples were taken from
healthy adult donors. Immune cell profiling data for these
samples, gathered from flow cytometry, were procured from
AlCells LLC. We will refer to this data set as AdultMixed.
This data set followed the same protocol as above and was
assayed using the Illumina HumanMethylation450 array
platform (Koestler et al., 2016). These data are publicly
available (GEO Accession ID: GSE77797).

Reference DNA Methylomes for Isolated Leukocyte
Subtypes
A publicly available dataset (GEO Accession ID: GSE35069) was
used to identify cell-type-specific DMLs and for the construction
of reference libraries for CMD. This data set is comprised of
epigenome-wide DNA methylation profiles in purified leukocyte
subtypes (the same six leukocytes described above) in n = 6
healthy non-diseased subjects. We will refer to this data set as the
Reference data set. Further details about this data set can be found
elsewhere (Reinius et al., 2012).

Additional DNA Methylation Data Sets
We also used two large publicly available blood-derived DNA
methylation data sets (GEO Accession IDs: GSE42861 and
GSE40279). Together, these two data sets are comprised of
whole-blood DNA methylation data on more than 1,200 adult
subjects. The purpose of these data sets was to better understand
the implications of the method/technique used for assembling
reference libraries for CMD in terms of an EWAS. The Liu dataset
(GEO Accession ID: GSE42861) consists of blood-derived DNA
methylation data on 689 human subjects, of which n = 354 were
rheumatoid arthritis cases, and n = 335 were non-diseased control
patients (Liu et al., 2013). The Hannum data set (GEO Accession
ID: GSE40279) consists of blood-derived DNA methylation on
656 non-diseased patients (Hannum et al., 2013). Epigenome-
wide DNA methylation assessment was done using the Illumina
HumanMethylation450 array platform for both data sets.

Application and Assessment of theModified
DSC Metric
Proof-Of-Principle Example to Illustrate the Modified
DSC Metric
To examine our hypothesis that larger values of the Modified
DSC reflect libraries that better discriminate cell types, we
conducted a proof-of-principle simulation study where we
simulated data under different circumstances and calculated
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the Modified DSC. We simulated 100 features for three different
cell types with six samples of each cell type. We allowed the
percentage of features that exhibit a difference across the cell
types to vary between 0% and 100%. We further allowed for the
magnitude of the difference in the mean feature values to vary
between 1 and 10 for each cell type. Let Yjk, be the value for
feature j, j ∈ {1, 2, . . . , 100} for cell type k, k ∈ {1, 2, 3}. For the
features that were randomly selected to exhibit a difference across
cell types, we randomly chose one cell type to have mean 0, one
cell type to have mean Δ, and one cell type to have mean −Δ,
where Δ reflects the magnitude of the difference between the
mean feature levels. Thus, these features were distributed as
Yi1 ~ Normal(0, 1), Yi2 ~ Normal(Δ , 1),
Yi3 ~ Normal(−Δ , 1). All other features were distributed as
Yik ~ Normal(0, 1) across the three cell types. While DNA
methylation data is not normally distributed, the design
implemented here nevertheless emulates the behavior of cell-
specific methylation and provides a useful framework for
understanding the behavior of the Modified DSC as a function
of the number/fraction of distinct features and the magnitude of
their difference across cell types. After each dataset was simulated,
the Modified DSC was calculated. Finally, a heatmap of simulated
data and a plot of the first two principal components (PC1 vs.
PC2) were generated to visualize the separation of the cell types
for a library with no differences, a library with moderate cell-
specific differences, and a library with large cell-specific
differences.

Training the Algorithm
To examine the performance of RESET, we conducted an
analysis of several publicly available data sets and
benchmarked the accuracy of deconvolution estimates
obtained using RESET against the Legacy approach. To do
this, we first applied our approach using the Reference data set
to identify “optimal” reference libraries for deconvoluting WB
mixtures. As previously described, the reference data set is
comprised of DNA methylation profiles for granulocytes,
monocytes, CD4T, CD8T, natural killer, and B cells in n =
6 subjects. To get a candidate list of CpGs, we first applied the
Legacy approach to the broader reference data set. We
specified L to be 50, giving us the top 50 hyper and
hypomethylated CpGs for each cell type for a total of 1800
CpGs (J � 1800). After this, we ran RESET for 100,000
iterations. The library that yielded the largest value of the
Modified DSC was taken to be the “optimal” reference library
and used for subsequent CMD. A workflow for this analysis
can be found in Figure 2B. We also applied the Legacy
approach, as previously described, to the same reference
data set. To compare the prediction performance across a
range of library sizes, we assumed different values for Jp.
That is, we fixed Jp � 72, 120, 180, 240, 300, 360, 540 for
both RESET and the Legacy method. Further, since the
Legacy approach and IDOL require users to specify the size
of the reference library, we also analyzed prediction
performance for RESET when Jp was treated as random.
Specifically, instead of fixing Jp to be one of the values
above, we let Jp be a random number between 50 (jmin) and

1,500 (jmax). As before, the library that resulted in the largest
value of Modified DSC was taken to be the “optimal” reference
library. It should be noted that, currently, the only other
method for building reference libraries, which does not
require a training data set, is the ANOVA approach. As this
method has been shown to perform poorly compared to the
Legacy approach in Koestler et al. (2016), we only benchmark
RESET against the Legacy approach (Koestler et al., 2016).

Validation of the Identified Reference Libraries
To validate RESET, we applied CMD to three independent
testing sets (MethodA, MethodB, AdultMixed) using the
libraries identified using the RESET algorithm. These data
sets were selected since the underlying leukocyte fractions are
known for each sample. Figure 4A illustrates the differing cell-
type proportions across the three testing data sets.

To assess the performance of our method and the Legacy
approach, we first estimated the proportion of variation of the
known mixture fractions explained by the cell type predictions
(R2). We also assessed our performance by calculating the root
mean squared error (RMSE), which reflects the average
deviation between the true mixture proportions and our
predictions. These metrics were computed for each cell type
individually as well as their averages across all cell types for
each reference library we obtained.

Simulation Study Comparing the FDR
To explore the implications of prediction error in cell
proportion estimates for EWAS, we conducted a simulation
study in which the false discovery rate (FDR) was calculated
for cell composition adjusted EWAS, where cell composition
estimates were based on differing methods/approaches for
library selection. We implemented a study design that is
common to many EWAS, in which the goal is to identify
differently methylated CpGs between two groups of samples
(n � n1 + n2). We conducted this simulation considering a
moderately sized study (n1, n2 � 100) and assuming a large
study (n1, n2 � 500). Further, we introduced varying
dissimilarities in the true, simulated cellular distribution
between the cases and controls.

For this simulation study, we assumed that the methylation
beta-value for CpG j for sample i, that is Yij, follows a beta-

distribution with mean wiμTj and variance
(1−wiμTj )wiμTj

1+ ϕj
Recall that

wi is a vector that represents the true cell proportions for sample i,
μj is a vector of mean methylation beta-values for CpG j across
the K cell types, and ϕj is the unobserved precision parameter for
CpG jwhere ϕj > 0. Often, EWAS fit regression models as follows:

Yij � α0j + α1jXi + ∑K−1

k�1
γkjwik + ϵij,

E[ϵij] � 0 and Var[ϵij] � σ2j

Here, ∑K−1
k�1 γkjwik controls for cell composition across

subjects, Xi ∈ (0, 1) denotes the group subject i belongs to,
and ϵij captures any remaining variation in methylation after
controlling for group and cell proportions. Usually, interest
lies in tests of no difference in DNA methylation between
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groups. That is, testing the null hypothesis that α1j � 0. In
practice wik is unknown and is estimated by ŵik, which is
obtained through CMD (Houseman et al., 2012). However, ŵik

is an estimate, so any hypothesis tests based on the above
regression model can be susceptible to Type 1 and Type 2
errors (Koestler et al., 2016).

To check how cell proportion prediction errors estimated
using the RESET and Legacy libraries affect the FDR of
hypothesis tests (H0: α1j � 0), we first estimated the
uncertainty of cell proportion predictions for each method.
To do this, we squared the RMSEs across the three testing data
sets, across the different library sizes, to get mean squared
prediction errors (MSPEs). We did this for both the Legacy
approach and RESET. We will denote the MSPEs as τ̂2kl, where l
represents the type of library used (either Legacy or RESET),
and k is the index for cell type. To estimate the mean and
precision parameters, we fit Beta regression models to each
CpG. We then conducted our simulation study by randomly
sampling 1,000 CpGs, generating random cell distributions for
the two groups, simulating beta-values for each group,
randomly sampling cell type predictions for each sample,
fitting the above regression model to each of the CpGs, and
calculating the FDR for each method assuming a nominal
p-value cut off of 0.05. More specific details about the
algorithm for this simulation can be found in
Supplementary Material S1. Recall that the methylation
beta-values for the two groups were simulated assuming no
difference in the methylation profile (e.g., under the null
hypothesis α1g � 0). Thus, the only difference between the
two groups lies in the dissimilarity in cell composition. So, any
rejections of the hypothesis of α1g � 0 reflect a Type 1 error.

Data Application and Implications for EWAS
We finally used the Liu and Hannum data sets described
above to understand the implications of the Legacy approach
and the RESET algorithm on cell type prediction for EWAS
(Hannum et al., 2013; Liu et al., 2013). Specifically, an
analysis of these blood-derived DNA methylation data sets
was done to see which method performed better in explaining
variation in DNA methylation. To do this, we started by using
CMD for estimating cell proportions in the two data sets
using the reference libraries identified using the RESET
method, as well as the libraries identified using the Legacy
approach. For each data set, linear regression models were fit
to the J total CpGs independently, modeling beta-values as
the response against the predicted cell proportions. Using the
fitted models, we found the proportion of variation in
methylation explained by the cell mixture proportion
estimates using both methodologies (R2

j , j ∈ {1, 2, . . . , J}).
The difference in R2 between models, adjusted for cell
composition estimates using RESET and the Legacy
approach were then calculated for each of the J CpGs.
That is, Δj � R2

j,RESET − R2
j, Legacy Finally, to answer our

question, we computed the proportion of CpGs where
RESET explained more variation in the methylation
explained as compared to the Legacy approach
(1J∑J

j�1I(Δj > 0)) for each library size.

RESULTS

Proof-Of-Principle Example to Illustrate the
Modified DSC Metric
To rationalize the use of the Modified DSC as a metric for
identifying sets of CpGs which discriminate well between cell
types, we simulated cell-specific methylation data with varying
degrees of differences and calculated the Modified DSC. Recall
that we allowed the percentage of features that exhibit a difference
across the cell types to vary as well as allowing the magnitude of
the difference in mean methylation to vary across cell types. Each
of these differences gave us a new cell-specific methylation data
set. We hypothesized that higher values of the Modified DSC
result in reference libraries that better discriminate the cell types.
Figure 3A shows the results for the 210 different simulated data
sets. As the number of features/CpGs that exhibit a difference
between cell types increases, and the magnitude of this difference
increases, the value of the Modified DSC gets larger. The
minimum Modified DSC value of 0.580 occurred when 0% of
the 100 features were simulated to exhibit a difference across the
three cell types. The maximum DSC value of 15.252 occurred
when 90% of the 100 features were simulated to exhibit a
difference across the cell types with a magnitude of 10, the
largest possible magnitude difference considered in our
simulation study. To further demonstrate the utility of the
Modified DSC for building reference libraries for cell mixture
deconvolution, we looked at heat maps of the simulated data and
plots of the first two principal components (PCs) calculated from
a principal components analysis (PCA) of the simulated data at
various degrees of differences. Figure 3B depicts the data that
were simulated to exhibit no difference in feature/CpG values
across the three cell types. Not surprisingly, the heat map shows
no discernible difference between cell signatures. Further, no
discernable clustering samples by cell type are evident in the plot
of PC1 by PC2. The value of the Modified DSC for this data set is
0.580. Figure 3C depicts the data set where 50% of the features/
CpGs were simulated to exhibit a magnitude difference of 5
between the three cell types. The heat map shows some
differences in the signatures across cell types, and the plot of
PC1 by PC2 shows a clear separation of samples by cell type. The
value of the Modified DSC for this data is 5.443. Finally,
Figure 3D depicts the data that were simulated to exhibit a
difference in 100% of the features/CpGs, with that difference
being 10. The heatmap shows clear cell-type-specific signatures,
and the plot of PC1 by PC2 shows even more separation in the
clusters of cell types (take note of the scale of the x- and y-axis in
the PC-plots between Figures 3C,D).

Validation of the Optimal Reference
Libraries
As mentioned previously, to validate the reference libraries
identified by RESET, we examined CMD prediction
performance by calculating R2 and RMSE using three
independent test sets: Method A, Method B, and Adult
Mixed, and benchmarked the performance of RESET
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against the Legacy approach for building reference libraries. As
noted in Figure 4A, the different testing data sets are made up
of varying proportions of each cell type. The six samples in the
Method A testing set have approximately equal proportions of
each cell type with the mean proportion as follows: CD4T =
11.8%, CD8T = 20.8%, NK = 15%, B = 16%, Monocyte = 19.2%,
Granulocyte = 17.2% (Wiencke et al., 2017). The Method B
samples more closely resemble the immune cell landscape in
human adults with mean proportions as follows: CD4T =
13.2%, CD8T = 6%, NK = 3%, B = 2.7%, Monocyte = 6.2%,
Granulocyte = 69% (Wiencke et al., 2017). Like the Method B
samples, the Adult mixed samples had mean proportions as
follows: CD4T = 17.9%, CD8T = 9.7%, NK = 3.5%, B = 4.9%,
Monocyte = 6.7%, Granulocyte = 57.4% (Wiencke et al., 2017).

Prediction performance for RESET and the Legacy method
was evaluated for several different library sizes
(Jp � 72, 120, 180, 240, 300, 360, 540) using the three
mentioned testing data sets. RESET resulted in categorically
better prediction performance over the Legacy approach. The
left plot of Figure 4B shows the R2 across the six cell types for
each library size. On average RESET only did marginally better
than the Legacy method. However, the median R2 for RESET was
higher than Legacy for all library sizes, except for 540.

Improvements in prediction performance were even more
apparent when looking at the RMSE. The right plot of
Figure 4B shows the RMSE across the six cell types for each
library size. On average, the RMSE was smaller when using our
approach for all library sizes except for 540. Further, median
RMSE was smaller for all library sizes when using RESET.

Cell-type-specific R2 and RMSE values for both RESET and
the Legacy method can be found in Figure 4C. Interestingly, for
CD4T, CD8T, and monocytes the R2 was higher than what was
observed in the Legacy approach across nearly all reference
library sizes considered. The R2 for granulocytes and B cells
was very close to 1 for both our method and the Legacy approach.
However, the R2 was higher for the Legacy approach in NK cells.
Additionally, the RMSE was lower for nearly all reference library
sizes using RESET for CD4T, CD8T, NK, B, and monocytes. The
only cell type that did not have lower RMSE when comparing the
libraries constructed using the Modified DSC approach to the
Legacy method was granulocytes.

In addition to comparing the R2 and RMSE for the fixed
libraries, we also calculated the Modified DSC value across the
RESET land Legacy libraries. The average difference in the
Modified DSC across the fixed libraries for the two methods
was 14.82, indicating that on average, the Modified DSC of

FIGURE 3 | Proof-of-Principle Illustration of the Modified DSC Metric. (A) Heat map showing the value of the Modified DSC under the different data scenarios as
described in section 2.5.1. The y-axis shows the percent of features that were simulated to exhibit a difference in the mean feature(s) value across cell types, and the
x-axis reflects themagnitude of the difference between themean feature(s) values across cell types. Darker red indicates higher values of theModified DSC. (B)Heatmap
and PCA plot for the simulated data where no features exhibited a difference in the mean feature(s) values across cell types. The value of the modified DSC for this
simulated data is also provided. (C) Heat map and PCA plot for the simulated data where 50% of the features exhibited a difference in mean feature(s) values across cell
types with a magnitude of 5 (i.e., Δ � 5). The value of the modified DSC for this simulated data is also provided. (D) Heat map and PCA plot for the simulated data where
100% of the features exhibited a difference in the mean feature(s) values across cell types with a magnitude of 10 (i.e., Δ � 10). The value of the modified DSC for this
simulated data is also provided.
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libraries obtained via RESET is higher than the Legacy
method.

When the reference library size was chosen randomly, RESET
identified a library with 54 CpGs. That is, the library size that
resulted in the largest value of the Modified DSC was comprised
of 54 loci. The prediction performance was evaluated using the
same three previous testing data sets. Even with so few CpGs, this
library still had an average R2 of 0.906 across all six cell types and
an average RMSE of 2.865. CD8T, B, monocyte, and granulocyte
predictions all had an R2 higher than 0.950. The predictions for
NK and CD4T cells had an R2 of 0.723 and 0.825, respectively.
Figure 4D depicts the predicted cell proportions versus the true
cell proportions for each of the six cell types based on this
reference library.

Simulation Study Comparing FDR
The validation results showed that the libraries identified by
RESET were overall only marginally better than those
identified by the Legacy approach; however, prediction
performance is often not an end in itself but rather a means
to an end. Specifically, the cell proportion estimates identified
from these libraries are often used for cell-type adjustment in
downstream statistical analysis. As such, we performed a

simulation to explore the consequences of prediction error
in cell proportion estimates for EWAS (Figure 5A, top two
plots). We conducted a simulation study where methylation
beta values were simulated for two groups, 1,000 CpGs, and
assuming both moderate and large within-group sample size
(n = 100, 500, respectively). Additionally, the cellular
composition varied across groups while the cell types were
simulated to have no difference between groups. When
adjustments for cell composition were made using the true
simulated cell proportions, the FDR was controlled at 5% as
expected. When no adjustments for cell composition were
made, there was large inflation in the FDR, which increased
as a function of increasing cell composition dissimilarity
between groups. When n1 = n2 = 100, the FDR was
controlled at 5% when adjustments for cell composition
were made using both RESET and the Legacy approach.
However, when n1 = n2 = 500, there was slight inflation in
the FDR using the Legacy approach while it remained
controlled at 5% when using RESET. Additionally, the
bottom two plots of Figure 5A show the difference in FDR
from the Legacy approach and our approach. RESET, on
average, resulted in fewer false positives compared to the
Legacy approach across the different simulation conditions.

FIGURE 4 | Results from RESET and Legacy Approach. (A) True cell-type proportions for the three independent data sets used to generate predictions for the
RESET and Legacy approaches. Each data set is comprised of six samples and the same six leucocyte subtypes. (B) Box plots showing the R2 and RMSE across all cell
types for each assumed reference library size (recall Jp � {72, 120, 180, 240, 300, 360, 540}) for RESET compared to the Legacy approach. (C) Table of results
comparing the prediction performance of the RESET algorithm and the Legacy approach for each cell type and across different assumed reference library sizes
(rows of the table). The top table shows the R2 while the bottom table shows the RMSE, calculated by comparing the predicted/estimated versus observed cell
proportions. Yellow highlighted text denotes the conditions where the use of RESET resulted in better prediction performance than the Legacy approach. (D) Cell-
specific scatter plots of the observed (x-axes) versus estimated (y-axes) cell proportions using the reference library yielded the largest value of the Modified DSCwhen the
number of DMLs that comprise the library was allowed to be random. Additionally, the R2 and RMSE for these predictions are provided.
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Data Application and Implications for EWAS
In addition to using the above simulation study, we also made
use of two publicly available data sets to better understand the
consequences of the approach used for reference library
construction in the context of EWAS. All fixed reference
libraries that were previously identified were applied to the
Lui and Hannum data sets (Hannum et al., 2013; Liu et al., 2013)
to see which libraries led to a better explanation in the variation
in DNA methylation (R2). When using the Liu data set, the
proportion of CpGs where RESET explained more variation in
the methylation, as compared to the Legacy approach, was high
for most of the library sizes. These proportions are 0.654, 0.855,
0.892, 0.871, 0.870, 0.882, and 0.774 for the library sizes of 72,
120.180.240, 300, 360, and 540, respectively. When using the
Hannum data set, the proportion of CpGs where RESET

explained more variation in the methylation, as compared to
the Legacy approach, while not as high, was still greater than 0.5
for all libraries. These proportions are 0.537, 0.678, 0.728, 0.678,
0.680, 0.677, and 0.590 for the library sizes of 72, 120.180.240,
300, 360, and 540, respectively. A visualization of the results
when using the reference libraries of size 120 is shown in
Figure 5B. Scatter plots of the cell proportion estimates of
the RESET library of size 120 compared to the estimates of the
Legacy library of size 120 can also be found in Figure 5C (using
the Liu data set) and Figure 5D (Using the Hannum data set).
RESET tended to result in higher predicted proportions for
CD4T and CD8T cells for both data sets while tending toward
lower predicted proportions for B cells and monocytes. Similar
visualizations for results using the other libraries can be found in
Supplementary Material S2.

FIGURE 5 | FDR Simulation Results and Data Application Results for the DML Reference Library of Size 120. (A) Results from the FDR simulation to explore
implications of prediction error in cell proportion estimates for EWAS as described in section 2.5.4. The top panel shows the estimates of the FDR for the two-group
comparison of methylation as a function of the dissimilarity in the distribution of cell-type composition between the two groups. The FDRs were estimated under four
methods/approaches for cell composition adjustment. The bottom panel shows the difference in FDR estimates when cell type estimation was undertaken using
the Legacy library versus the RESET library. Points that lie above the blue dotted line signify that the Legacy library resulted in more false-positive results as compared to
the RESET. The red dotted line shows the mean difference in FDR between the Legacy library and the RESET library. A loess smoother was used to generate these
curves. (B)Distribution of the difference in R2 obtained from the RESET and Legacy libraries of size 120 CpGs applied to the Liu (left panel) and Hannum (right panel) data
sets described in section 2.5.5. (C) Scatter plots of the predicted cell-type proportions using the Legacy library of 120 CpGs (x-axis) and the RESET library of 120 CpGs
(y-axis) as applied to the Liu data set. (D) Scatter plots of the predicted cell-type proportions using the Legacy library of 120 CpGs (x-axis) and the RESET library of 120
CpGs (y-axis) as applied to the Hannum data set.
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DISCUSSION

This manuscript described and evaluated an iterative algorithm
for assembling libraries for reference-based deconvolution in the
absence of a training dataset. The motivation for this research is
three-fold. First, the performance of reference-based
deconvolution depends heavily on the reference library used as
the basis of deconvolution (Koestler et al., 2016; Teschendorff
et al., 2017; Titus et al., 2017). Second, in the absence of a training
data set, current approaches require users to make arbitrary
decisions about the number of DMLs and the library size even
though performance is sensitive to these decisions (Houseman
et al., 2012; Koestler et al., 2016). Third, emergence and interest in
new cell types means that not only will reference libraries need to
be updated but training data sets also. If DNAm along with
measured cell-type proportions for these new cell types are not
available, then IDOL is not possible (Koestler et al., 2016).

Recall that RESET builds DNAm reference libraries by
utilizing the Modified DSC. This metric increases in value as
clusters of cell-type-specific DNAm data get farther apart from
one another andmakes it a useful metric for evaluating the quality
of a reference library. RESET works by randomly selecting a
reference library from a candidate list of CpGs, calculating the
Modified DSC, and then iteratively updating the probability of
selecting a CpG in future iterations depending on its contribution
to the modified DSC. The library which yields the largest value of
the Modified DSC after many iterations is the reference library
used for deconvolution. As previously described, while the Legacy
approach has been previously shown to outperform the ANOVA-
based method for library construction (Koestler et al., 2016), its
primary shortcoming is that the user needs to prespecify both the
total library size and the number of cell-specific DMLs to include
in the library. As shown here (Figure 3) and previously (Koestler
et al., 2016), the accuracy of corresponding deconvolution
estimates is sensitive to these selections, with the R2 of some
cell types varying by nearly 0.10 units across the limited range of
library sizes considered here. This observation is not surprising as
leukocytes share common linages, and thus varying numbers of
DMLs may be needed for different leukocyte subtypes (Koestler
et al., 2016). While the IDOL algorithm is an improvement on
both the ANOVA-based and Legacy approaches, it requires a
training data set consisting of both DNAm data—profiled in
whole blood or some other heterogeneous biospecimen—and
gold standard measurements of cellular composition in the same
biospecimen used for methylation profiling (Koestler et al., 2016).
Although such data presently exist for whole blood (Reinius et al.,
2012; Koestler et al., 2016), they typically only include relative
fractions of the major leukocyte components of whole blood (e.g.,
CD4T, CD8T, B cells, NK cells, monocytes, and granulocytes)
and lack measurements of more exotic cell types (e.g., monocytic
and/or granulocytic myeloid-derived suppressor cells) and cells
with specific activation states (e.g., CD8T naïve, central memory,
and effector memory). In contrast to the ANOVA-based, Legacy,
and IDOL approaches, RESET does not require a training data
set, the number of DMLs for each cell type need not be the same,
and the total number of loci that make up the reference library
does not need to be specifically selected in advance.

While our results showed a modest improvement in the
average R2 and RMSE resulting from the libraries constructed
using RESET compared to the Legacy approach, they showed
considerable improvement in the accuracy for specific cell types
(CD4T, CD8T, and monocytes). For these three cell types, the
libraries identified using RESET had a larger R2 than those
identified by the Legacy approach in all but one library
(Figure 4C). Additionally, the RMSE for CD4T, CD8T, and
monocytes were smaller using RESET libraries in all but two
cases (Figure 4C). Our algorithm seemed to favor choosing small
libraries for the library identified using a random number of loci.
That is, the random-sized reference library with the largest value
of the Modified DSC was comprised of only 54 CpGs. The R2

averaged across all six cell types for this library was 0.906. This
was smaller than the average R2 for most of the Legacy libraries,
but within 0.04 units. Interestingly, the CD8T and monocytes
cell-specific R2 were higher than any of the cell-specific R2 for the
Legacy libraries. Further, the average RMSE for this random
library was 2.865, which was better than all but one of the Legacy
libraries. Also interesting is the performance of this library when
compared to the performance of the library identified by IDOL.
The IDOL library was comprised of 300 loci, had an average R2 of
0.993 across the six cell types, and an average RMSE of 1.15
(Koestler et al., 2016). While, on average, IDOL outperforms our
algorithm, we note that IDOL should be expected to be slightly
better because it utilizes a training data set. The slightly lower
prediction performance of RESET is made up by the fact that our
algorithm does not need a training data set. In addition to the
favorable performance of the randomly sized library, there are
also downstream benefits to having a small reference library for
deconvolution. First is the fact that a small library comprised of
high-quality DMLs may better resolve the cellular landscape and
avoid the inevitable noise that would result from a larger library
comprised of lower quality DMLs; second, the design of custom
methylation arrays with potential clinical use will be simplified
using a small number of precise markers. Finally, having a smaller
reference library would be more technically feasible and less
costly for researchers, given that fewer CpGs would need to be
profiled. Our simulation study results showed that even small
improvements in prediction performance for RESET resulted in
lower FDR compared to the Legacy approach for all differences in
the underlying cellular composition when the sample size of each
group was 500 (Figure 5A). Since EWAS typically entails
statistical testing of hundreds of thousands to millions of
CpGs, the potential consequence is that thousands of CpGs
are incorrectly classified as differentially methylated when the
Legacy versus RESET is used to construct reference libraries for
deconvolution. Finally, in both data applications, cell proportion
estimates obtained by using RESET resulted in an improved
ability to explain variation in whole-blood-derived DNA
methylation signatures. The consequence of this is improved
statistical power for EWAS adjusted for cell-type composition
when cell proportion estimates are obtained using the RESET
versus the Legacy approach.

While our method resulted in improved accuracy of reference-
based deconvolution estimates, lower FDR, and more variability
in CpG-specific methylation explained in the context of EWAS
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adjusted for cell composition, RESET, and this study are not
without limitations. The data sets used to build the reference
libraries and benchmark the performance of our approach against
the Legacy method only consisted of relative fractions of the six
major leukocyte components of whole blood (e.g., CD4T, CD8T,
B cells, NK cells, monocytes, and granulocytes), despite there
being a myriad of other cell types and specific states of cells
present in whole blood. In DNA methylation data, the main
source of variability between isolated cell types is captured in the
first two dimensions of the data. The Legacy approach exploits
this fact using a fixed number of differentially methylated sites
(usually 100 per cell-type) to capture that variability. However, as
the cell lineages diverge, cell specialization drifts the epigenetic
marks in a smaller proportion of CpGs. This translates into cell
states/subtypes that are challenging to discern using surface/
nuclear markers or even functional essays. As such, these
states/subtypes fall closer to each other, rendering the
assumption of a fixed number of sites untenable. Our
algorithm makes no such assumption, and we hypothesize that
our method will further outperform the Legacy approach in these
situations. Additionally, while five independent data sets were
used to evaluate and benchmark the performance of RESET, we
note that data sets containing both DNA methylation data and
gold-standard measurements of cell composition (e.g., flow
cytometry) in the same set of samples are relatively rare,
limiting the number of viable data sets to use in our
comparisons. Further, only seven different fixed reference
library sizes were considered in our evaluation
(Jp � 72, 120, 180, 240, 300, 360, 540). While it is unclear
what the performance of our approach would look like for
larger library sizes, the results presented by Koestler et al.
suggest diminishing returns on performance for libraries with
more than 500 CpGs, motivating our decision to consider
libraries with 540 or fewer CpGs (Koestler et al., 2016). A
potential limitation of the Modified DSC is that this metric
seems to favor smaller library sizes, specifically reference
libraries with less than 100 loci. This could be due to the
phenomenon known as the curse of high dimensionality,
which is an occurrence when calculating Euclidean distances
in high dimensional settings (Mirkes et al., 2020; Sarkar and
Ghosh, 2020). In high dimensions, data can become noisy, so
clusters of data can become more saturated, making the space
between them (distances) harder to uncover. One possible way to
overcome this would be to use the same algorithm but use a
different distance metric (e.g., Manhattan distance) (Mirkes et al.,
2020). It is also worth mentioning that the R2 for NK cells using
RESET was lower across all libraries compared to the Legacy
approach; however, the lowest performance still had an R2 of
0.78. The reasons for this lowered performance could be
explained as the original Reinius dataset used for training the
data had a known technical problem derived from potential
cross-contamination of CD8T cells into their NK reference
(Salas et al., 2018). As such, the reference cannot fully resolve
between NK, CD4T, and CD8T cells and the difficulty that arises
in distinguishing between these cell types. An additional
limitation of RESET is its computational burden compared to
other methods. This issue could be resolved by utilizing a lower-

level programming language or the use of more parallelization of
computations. Moreover, our algorithm also was only performed
on whole-blood DNA methylation data; however, in principle, it
can easily be extended to other solid tissue types where gold-
standard measurements of the cell proportions are not as feasible
to obtain. Finally, while this research utilized data from the
Illumina HumanMethylation450 array, we note that this
method is generalizable to other platforms (whole-genome
bisulfite sequencing, Illumina HumanMethylationEPIC
BeadArray, etc.).

This research was motivated by the need for accounting for
cellular landscape when DNA methylation is analyzed in
heterogeneous tissue, and further, by the need to remove
requirements and arbitrary decisions other methods need in
order to build reference libraries for the purpose of reference-
based cell mixture deconvolution. Future work includes
improving the accuracy of cell proportion estimates in the
absence of a training data set by considering different distance
metrics, building reference libraries for tissue types, and
extending this algorithm to explore performance in samples
with more than six cell types. The utilization of RESET will
allow researchers to save money and remove arbitrary decisions
in the reference library selection process while maintaining
accuracy. RESET introduces a new way of thinking for the
future of reference library selection in the absence of a
training data set and is a useful approach for library
construction for EWAS.
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