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Introduction
Transcriptional profiling has taken root over the last two decades
in the fields of immunology and microbiology with the aim of
defining molecular characteristics underlying the response of a
complex immune system to perturbation by an antigen. Recently,
‘systems biology’ has been applied to vaccine research in an
attempt to define and predict the efficacy of an immunisation in
a specific host [1,2] thus moving modern medicine towards a
personalised approach [3]. The field of vaccinology represents an
interesting opportunity for using systems biology techniques
because of easy accessibility to peripheral blood mononuclear
cells (PBMCs) and certain known correlates of immune/memory
responses. More importantly, it offers the possibility to study
consequences of external perturbation in terms of in vivo changes
in gene expression after immunisation [4,5]. An additional
advantage of transcriptomic analysis is that a large amount of
data (i.e. ‘big data’) or information can be obtained from very
small blood volumes, increasing the significance in sample-limited
settings such as paediatric studies.

In the last few years these technologies have been applied to
infectious diseases, and specifically to HIV, in an attempt to
define molecular profiles associated with different HIV clinical
phenotypes in order to discover new markers of disease
progression or potential therapeutic targets. Recently, molecular
mechanisms underlying the ability of specific groups of
HIV-infected patients to naturally control virus in the absence of
antiretroviral therapy (e.g. elite controllers and long-term
non-progressor patients) have been described [6]. These and
other transcriptional analyses are needed in order to propel the
field towards discovery of immune host characteristics that
differentiate patients remaining asymptomatic after infection and
those rapidly progressing to AIDS [7,8].

Although paediatric HIV infection and mother-to-child
transmission represent a small portion (≈10%) of patients
acquiring HIV globally [9], the study of perinatal HIV infection
represents a unique model in the context of research for a
functional cure. An immature immune system, predominantly
naïve, restricts the ability of the virus to establish reservoirs in
the infant. Furthermore, early treatment initiation following
perinatal infection has provided ‘proof of concept’ for sustained
virological control after therapy interruption and preserved
function of the B cell compartment [10,11]. These findings
highlight a substantial advantage for application of future
‘therapeutic’ immunisation strategies.

The well-known case of the ‘Mississippi baby’, whereby viral
control was achieved for a long period in the absence of highly
active antiretroviral therapy (HAART) [12], is unique, as a similar
therapeutic approach (i.e. very early treatment in newborn period,
within 48 hours after birth) in other HIV-infected infants was
accompanied by a much earlier viral rebound following treatment
interruption [13—16] (Figure 1). What defines the discrepancies
in outcome between patients who receive the same treatment at
the same time and yet differ in their ability to control the virus
remains unknown, and is likely to be multifactorial (Figure 1).
One hypothesis is that molecular characteristics in the host
immune system may underlie the differences in terms of viral
control. To test this possibility, transcriptomic analysis represents
a viable research objective to: (i) define the molecular
mechanisms underlying the ability of the host immune system to
control the virus; (ii) predict the time to rebound in order to
design effective strategies for structured therapy interruption;
and (iii) design therapeutics to target particular gene pathways
involved in virus control.

This review describes the currently available techniques for
measuring gene expression and discusses strategies to integrate
these innovative technologies into HIV cure research with a
specific focus in perinatal HIV infection.
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Abstract

Modern technologies and their increased accessibility have shifted ‘benchtop’ medical research to the larger dimension
of ‘omics. The huge amount of data derived from gene expression and sequencing experiments has propelled physicians,
basic scientists and bioinformaticians towards a common goal to transform ‘big data’ into predictive constructs that are
readily available and will offer clinical utility. Although most of the studies available in the literature have been performed
on healthy subjects and in peripheral blood mononuclear cells (PBMC), which are a heterogenous and extremely variable
pool of cells, scientists are now trying to address mechanistic questions in purified cell subsets in pathological conditions.
In the field of HIV, few attempts have been made to comprehensively evaluate gene-expression profiles of infected patients
with different disease status. With the view of discovering a path towards remission or viral eradication, perinatally HIV-
infected children represent a unique model. In fact the well-defined time of infection and the resulting opportunity to start
early treatment, thereby generating a smaller size of viral reservoir and a more intact immune system, allow for investigation
of therapeutic strategies to defeat the virus. In this scenario, ‘transcriptomic’ or gene expression technologies and
supporting bioinformatics applications need to be strategically integrated to provide novel information about immune
correlates of virus control following treatment interruption. Here we review modern techniques for gene expression analysis
and discuss the best transcriptomic strategies applicable to the field of functional cure in paediatric HIV infection.
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Transcriptome analysis: RNA-Seq, and its
application
Information contained within our deoxyribonucleic acid (DNA) in
the form of genes becomes functional through transcription,
which leads to the formation of active macromolecules, such as
RNA and ultimately proteins. The real-time polymerase chain
reaction (real-time PCR) and the reverse transcriptase-
polymerase chain reaction (RT-PCR) are two techniques that
provide quantitative transcriptional information. Although
extremely accurate and sensitive, yielding transcript from
nanolitre volumes, these techniques are historically limited to
measure one or a few genes per reaction. On the other hand,
technologies that quantify the whole transcriptome have been
developed through hybridisation-based or sequence-based
approaches such as tiling microarray. Hybridisation-based
approaches have now been overshadowed by RNA-Seq where
total cellular RNA is converted to a library of cDNA fragments
attached at each end with an adaptor or ‘barcode’. In a second
step, the fragments are sequenced and the resulting ‘reads’ are
aligned to a reference genome or exome, thereby providing
information on both the transcriptome structure (known and
novel splice variants) and the level of gene expression (number of
reads). Importantly, the ability of this technique to match reads
with a de novo reference genome reveals information about
uncharacterised sequences [17]. Table 1 compares available
transcriptional analysis techniques.

How can so much information regarding molecular networks
orchestrating our systems help in clinical management? How can
transcriptional profiles be used as predictive markers in healthy or
pathological conditions? The comprehensive translational
significance of the huge amount of data generated through
analysis of the transcriptome can only be achieved by pooling
resources between research sites and networks sharing clinical
metadata, ‘omics data and computational analysis [18,19].

In line with this, both the European Union [20] and the National
Institute of Allergy and Infectious Diseases (NIAID-National
Institute of Health) [21] have highlighted in their strategic plans
the role of systems biology as a crucial player in discovery
research regarding pathogen biology, interactions among
pathogens, hosts and the environment. Well-curated and easy-
to-use publicly available ‘omics online databases have been
created, such as the Immunological Genome Project and the
ENCODE project, as well as online platforms and mathematical
tools to define gene pathways or transcriptome modules
[e.g. pathjam.org, genemania.org, Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways enrichment, and Database for
Annotation, Visualization and Integrated Discovery (DAVID)].

In the field of immunology, in the last decade much effort has
been made to give translational value to ‘big data’ derived from
transcriptomic analyses. Furthermore, in the context of
vaccinology, immunological perturbation such as that induced by
vaccination represents an attractive model to provide novel

Table 1. Description of the currently available transcriptional techniques

cDNA sequencing Microarray RNA-seq Fluidigm Flow RNA

Principle Sanger Hybridisation High-throughput Hybridisation with Hybridisation with
sequencing sequencing amplification amplification

Throughput Low Medium Medium High (100+) Medium
(number of samples)

Throughput Low High (20–40K) Very high (millions) Medium (100+) Low (3)
(number of genes)

Dynamic range to quantify Not practical Up to 300-fold >8000-fold Up to 105-fold Up to 1000-fold
gene expression level

Ability to distinguish Yes Limited Yes Limited Not practical
different isoforms

Required amount of RNA High High Low Low Low

Cost per sample $10 $300–600 $600–900 $20–25 $45

Figure 1. Windows of opportunity for transcriptomic research to investigate host immune characteristics of HIV-infected children. Schematic shows hypothetical viral load in patients
after very early ART and treatment interruption
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discovery research data. In particular, influenza vaccination
represents an extremely important and useful model for
‘perturbation’ analysis in both healthy and pathological
conditions [2,22,23].

Transcriptomic analysis in HIV research: where
do we stand?
In HIV research, transcriptomic studies have so far pursued the
following approaches: (i) transcriptional profiling in rare subjects
who are able to control the disease in the absence of treatment
(elite controllers, EC; long-term non-progressors, LTNPs; or
viraemic non-progressors, VNPs) as contrasted with rapid
progressors (RP); (ii) evaluating therapeutic approaches through
the analyses of changes in gene expression in HIV target cells
after in vitro or in vivo infection/immunisation; and (iii) profiling
for genes driving the reversal of latency in latent/replication-
competent HIV-infected cells [24].

Gene expression in different HIV ‘clinical phenotypes’

HIV-infected individuals demonstrate differences in virus
replication and disease progression [25]. Gene expression profiles
from EC have been recently characterised [6,26,27]. Indeed, in
these patients, higher expression of gene pathways involved in
cell survival and antiviral responses may contribute to
spontaneous control of the virus in the absence of ART [28,29].
Another recent research study focused on identifying gene
signatures associated with HIV reservoirs in memory CD4 T cells
using in vitro latency models and cells isolated from EC [6].
Compared to RP, transcriptional profiles of resting T central
memory (TCM ) cells from EC showed a pattern of differentially
expressed genes (DEG) comprising three specific signatures,
namely overexpression of T cell receptor (TCR) and
co-stimulatory signalling pathways, overexpression of the
PRDM-1/Blimp-1 transcriptional repressor, and downmodulation
of type-I IFN-related genes. Among T cell subsets, the
PRDM1/Blimp-1 upregulation was associated with lower levels
of both cellular HIV DNA and HIV mRNA levels [6], implying a T
cell-specific molecular signature that is characteristic of HIV
controller status. These findings suggest that specific gene
signatures have to be investigated on the scale of immune cell
subsets rather than in PBMC. Another important study identified
transcriptional signatures in CD4 T cells that characterised a
pattern of progression to AIDS [29]. Thus, a list of genes involved
in immune exhaustion/dysfunction (CASP1, CD38, LAG3 ) has
been shown to be upregulated in HIV- and SIV-infected RP
humans and macaques. On the other hand, genes that function
to provide negative feedback signals to the loop of activation and
inflammation (SOCS1 and EEF1D) were upregulated in VNP,
clearly showing a direct relationship between the transcriptional
profile of these cells and their ability to control disease
progression.

Based on the evidence that CD8 T cell proliferation is one of the
strongest correlates of protection [30], transcriptional profiles of
proliferating HIV-specific CD8 T cells have been investigated in
both EC and RP. These studies have shown an inverse relationship
between caspase 8 gene (CASP8 ) expression and the ability of
CD8 T cells to proliferate after in vitro stimulation in EC.
Accordingly, an increase in CASP8 activation after in vitro
stimulation was related to lower proliferation rate of HIV-specific
CD8 T cells in chronic progressors [31]. Other studies have
focused on immune exhaustion caused by HCV/HIV co-infection,
comparing transcriptional profiles of CD8 T cells with HIV
monoinfected patients [32]. These studies demonstrated a
prominent decrease in genes regulating interleukin-2 (IL-2) and

interferon-gamma (IFN-γ) pathways in the HIV/HCV co-infected
group compared to the HCV and HIV monoinfected patients. In
support of these results, Sandler et al. described through the
administration of a receptor agonist in SIV macaques that IFN-I
responses are able to slow disease progression and IFN-induced
genes such as OAS2 and MX1 are directly related to the virus
control in the acute phase of the infection [33].

Although these data show a strong association between host
transcript profiles of immune cells and disease progression and
virus control, the molecular mechanisms associated with viral
rebound following treatment interruption remain unknown. Such
studies would be particularly informative in the setting of
paediatric HIV where early treatment with HAART and the
predominantly naïve T cell compartment lower the size of
reservoirs [34].

Gene expression of HIV permissive cells and latency reversal

Transcriptional analysis of HIV-specific and HIV-permissive target
cells have been performed, respectively in B and T cell
compartments, as well as in monocytes, macrophages, dendritic
cells and neurons (reviewed in [35]). It is known that HIV
preferentially infects activated CD4 T cells; however, infection
rates are very low even in this susceptible population [36]. In the
last few years, systems biology has attempted to define the
differences in transcriptional profiles of infected CD4 T cells
compared to exposed, uninfected CD4 T cells in order to
characterise the molecular mechanisms controlling infection and
latency. These studies showed that profiles of HIV permissive cells
overlap with those of highly activated effector T cells, and show
a higher expression of genes involved in apoptosis, lymphocyte
activation, p53 activation, and cytokine–cytokine receptor
interaction [37].

Transcriptional profiles of latently infected cells have also been
studied to find new strategies to ‘kick’ or ‘shock’ the virus towards
active replication or conversely to define unique molecular
characteristics governing latency in these cells in order for them
to be therapeutically targeted. Genome-wide features of latently
infected cell lines have demonstrated a role for genes in the
protein acetylation pathway, such as histone deacetylase (HDAC ),
in establishing and maintaining viral latency [38]. Recent studies
are targeting this pathway with novel therapeutic agents. Indeed,
striking differences in gene expression were found 2 hours after
vorinostat (HDAC inhibitor) administration in HIV-infected
patients [39].

In an effort to discover a ‘phenotypic’ marker to define latently
infected cells, Romerio et al. screened for DEGs encoding
cell-surface markers. Out of 33 DEGs, CD2 exhibited the highest
expression in latently infected compared to uninfected cells [27].
Additionally, resting memory CD4+CD2hi T cells from virally
suppressed patients harboured higher HIV-1 DNA copy numbers
than all other CD4 T cell subsets. These transcriptomic studies
indicate the potential for identifying unique molecules in latently
infected resting memory CD4 T cells that could be targeted
therapeutically.

Gene expression of virus- and vaccine-induced cells

Transcriptional profiles of other non-HIV antigen-specific T cells
(i.e. CMV-specific) have been analysed and several genes
belonging to innate antiviral gene pathways (such as IFIT1, IFIT3,
MX1, TRIM5) were shown to contribute to decreased
susceptibility to HIV infection [40,41]. In order to test the efficacy
of an HIV therapeutic vaccine, several groups are now shifting
their focus towards molecular signatures of vaccine-induced cells,
both in the cytotoxic and memory B cell compartments. Changes
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in gene expression in distinct CD8 T cell subsets have been
described in gene pathways such as T cell migration (SELL, CCR7,
XCL1, CCR5, CXCR3), cytokine responsiveness (IL2RA, IL2RB,
IL7R ) and effector functions (IFNG, TNF, PRF1, FASL, GZMM,
GZMK) following HIV DNA immunisation [42]. In the context of
B cell memory directed to HIV immunisation, Env-specific
switched memory B cells, sorted by flow cytometry using the
same protein used for immunisation, have been isolated and
sequenced in macaques [43]. Although these results need further
confirmation in human studies, the approach to sort out and
investigate the molecular characteristics of vaccine-induced HIV-
specific memory B cells, along with their ‘wild type’ counterparts,
may add significant value in studies aiming to define the efficacy
of therapeutic vaccinations.

Transcriptional research approaches in paediatric
HIV infection
With accumulating data and increasing accessibility of ‘omics
technologies, it is paramount to rationally apply these informative
assays in the field of paediatric HIV infection in order to provide
insight into pathways leading to a permanent remission of HIV
or a cure. To date, only a few studies have been conducted in
perinatally HIV-infected children and new strategies are needed
in order to customise these assays for ‘sample limited’ settings,
such as is the case in paediatric research. A study design aiming
to perform transcriptomic analysis should follow a rationale which
consists of: (i) strategies for selection of genes of interest in order
to use inexpensive techniques requiring small amounts of cDNA;
(ii) selection of cell subsets rather than bulk PBMC in order to
reduce transcriptional ‘noise’ and highlight biological diversity
between subsets; and (iii) in vitro stimulation to challenge the
cells and obtain ‘functional’ transcriptional information about the
cells of interest. These concepts are briefly elaborated below, and
illustrated in Figure 2.

Gene selection and validation

Although RNA-Seq is becoming increasingly cost-effective, most
research groups are still far from being able to conduct population

studies with this technique. As previously mentioned, RNA-Seq
has the unique advantage to sequence known and, more
importantly, unknown transcripts. In line with this, studies
introducing ‘omics into fields such as perinatal HIV infection
should consider first, the exploration of transcriptional profiles in
PBMC and cell subsets in a small number of individuals. As a
second step, gene selection should be performed merging
information derived from RNA-Seq analysis, deconvolution
analysis and publicly available resources. Once genes as well as
gene pathways of interest are defined, a validation phase should
follow in which targeted transcriptional profiles are evaluated with
multiplexed reverse transcriptase PCR (RT-PCR) that allows for
analysis of cDNA from even a single cell (Fluidigm BioMark, San
Francisco, CA, USA). Primer qualification to test for efficiency
and sensitivity should be performed through multiplexed RT-PCR
with two-fold dilutions of control cDNA [44].

Cell subsets, single cells or PBMC ?

Most transcriptomic studies performed so far have been
conducted on healthy subjects and in the heterogeneous pool of
PBMC. This approach, while simpler, limits interpretation since
in PBMC there is dilution of the gene expression in individual cell
subsets or in single cells.

In the field of vaccinology, investigators have addressed this issue
in experiments using PBMC, through complex statistical analysis
that uses gene pathways and blood transcriptional modules in
order to perform deconvolution calculations that normalise gene
expression according to phenotype variability of cell subsets [1]. 

However, the problems with data interpretation from
heterogeneous cell populations (e.g. PBMC) are exacerbated
when analysing patients with peturbation of the immune
phenotype [45]. In Figure 3 we show preliminary Fluidigm
BioMark analysis demonstrating the transcriptional variation in
different cell subsets within the B cell compartment of healthy
and HIV-infected children using principal component analysis.
Segregation amongst B cell subsets is altered in a cohort of
paediatric HIV-infected children compared to uninfected children,
even if virally suppressed (Figure 3b). This must be carefully
considered in case–control human studies investigating diseases
in which immune phenotypes are subverted and gene expression
may need to be adjusted to specific subset frequencies within
PBMC. An approach incorporating a validation phase on
transcripts derived from sorted cells can help the deconvolution
of PBMC transcriptomic data in patients affected by primary or
acquired immune deficiencies.

Until newer technologies are accepted [46], flow-based cell
sorting and magnetic-based cell enrichment represent the
benchmarks of cell isolation. Multiway sorting through
multicolour flow cytometry represents the most convenient way
to sort cells. Although improvement in devices and equipment is
still needed (e.g. multiway sorting in plates is not available;
four-way sorting is the maximum if using tubes), this approach
allows for efficient and simultaneous isolation of cells. Sorting
efficiency before proceeding with transcriptome analysis should
be tested twice: through a purity test post-sorting, and through
PCR of reference genes.

In vitro stimulation: pathways towards efficacy prediction

RNA-Seq as well as RT-PCR are able to create a qualitative and
quantitative snapshot of the RNA being transcribed by genes in
a specific cell-type at a given moment. The possibility of studying
the changes in gene expression in response to a specific stimuli
gives one the opportunity to determine gene expression ‘fitness’
following in vitro stimulation with specific compounds. Several

Figure 2. The flowchart defines an application strategy to investigate transcriptional
profile in paediatric HIV infection research. In the first step, experimental
variables should be selected according to results derived from RNA Seq
analysis (high cost per sample). In the second step, selection of genes,
conditions and cell subsets performed according to RNA-Seq results,
literature and deconvolution analysis, should implement experimental
design for multiplexed RT-PCR (low cost per sample) studies which, in turn,
will select gene signatures of immune functions
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studies, as previously mentioned, have developed in vitro
methods to elicit specific cellular responses such as viral
replication from latently infected cells [27] or to study the in vitro
effect of stimulation by HIV proteins [47]. Importantly, these
results may be compared to in vivo gene expression analysed after
in vivo immunisation with the same compounds, giving the
opportunity to develop in vitro assays that are able to predict and
model in vivo efficacy of therapeutic compounds. However,
selection of the conditions to be used for in vitro experiments can
be extremely complicated since different genes are differentially
coordinated, in terms of magnitude and time, in response to a
specific stimuli [48]. Gene selection should be supported by
kinetic analyses designed according to specific biological queries.
Experimental variables in this phase include not just length of
stimulation, concentration and number of cells, but importantly,
the choice of cellular pools to be used for cultures (e.g.
PBMC/sorted cell subsets, co-cultures, proliferating/activated
cells) (Figure 2).

Data integration

Interpretation of data derived from the aforementioned
approaches needs to be rationally applied to the ‘omic scale. The
statistical programming language R has been developed and
improved in the last 20 years to provide data analysis for gene
expression or sequencing analysis (www.r-project.org). Through
the application of packages this language can be applied to
specific statistic needs, and software such as Bioconductor
(Seattle, WA, USA) for RNA-Seq data or singulaR package
(Biomark, San Francisco, CA, USA) can be used for basic or
advanced statistical analysis [49]. Furthermore, other packages
such as ‘Mixomics’ (QFAB Bioinformatics, St Lucia, Queensland,
Australia) can perform correlation analysis between two datasets,
such as gene expression data and clinical or functional
immunology data, thereby increasing the clinical relevance of the
gene expression analysis [47]. To improve robustness and power
of transcriptomic data, gene set enrichment analyses (GSEA)
have been developed in order to analyse genes within their
functional group or as being part of the same signalling pathway.
In line with this approach, increasing numbers of functional
annotation tools available online free of charge can identify
enriched biological themes —Gene Ontology (geneontology.org),
DAVID (david.abcc.ncifcrf.gov), Pathjam.org, genemania.org —
and functionally related gene groups [50]. Overall, other than

cost, the integration and the analysis of ‘big data’ seems to be the
main limiting factor for clinical utility; therefore physicians, basic
scientists and bioinformatics must collaborate in order to study
gene expression at a wider scale.

Conclusions and future perspectives
Advances in ‘omics have shifted discovery science to a different
dimension. For paediatric research in general, and more
specifically in the field of infectious diseases, we now have the
opportunity to obtain ‘big data’ from very small samples, which
overcomes the biggest limiting factor in studies involving
children. However, even if these technologies are becoming
increasingly accessible, sophisticated and precise, the best
approach requires careful planning. Emerging literature and
publicly available resources, coupled with experience in the field
of HIV infection, provide the opportunity to rationally apply such
technologies in the context of perinatal HIV infection in order to
provide a proficient ‘omics approach to the cause of finding a
functional cure for HIV. The specific immune context of
perinatally HIV-infected children treated early after infection is
unique from the viewpoint of a therapeutic approach aimed at
permanent HIV remission. An immunisation strategy may have a
better chance to be effective in early treated children since their
immune systems are relatively naïve to the virus infection, have
an intact immune B cell compartment and lower size of viral
reservoir. So far, no transcriptional studies or other ‘omics
technologies have been systematically applied to such patients
who may represent an ideal study model for investigating
potential strategies for a functional cure.

Disclosure of potential conflict of interest

This work was made possible by support from the Miami CFAR
(P30AI073961) Laboratory Core, a CFAR pilot award to NC, and
by Children’s Hospital Bambino Gesú, Rome, Italy. The other
authors declare that they have no other relevant conflicts of
interest.

References
1. Li S, Rouphael N, Duraisingham S et al. Molecular signatures of antibody responses

derived from a systems biology study of five human vaccines. Nat Immunol 2014;
15: 195–204.

2. Tsang JS, Schwartzberg PL, Kotliarov Y et al. Global analyses of human immune
variation reveal baseline predictors of postvaccination responses. Cell 2014; 157:
499–513.

Figure 3. Principal component (PC) analysis of B cell subsets in (a) healthy controls and (b) HIV-infected children. Analysis performed with SingulaR: Gene Expression Analysis
Software designed for Fluidigm (BioMark). Gene expression derived from analysis of 500 cells per subset and 96 B cell expressed genes. Cell subsets where sorted using Aria
II Cell Sorter into PCR buffer-containing tubes. Activated Memory: alive, CD19, CD10-, IgD-, CD27+, CD21-; Resting memory: alive, CD19, CD10-, CD27+, CD21+;
Naïve: alive, CD19, CD10-, CD27-, IgD+; Double negative: alive, CD19, CD10-, CD27-, IgD-

–40

–10

0

10

20

–20 0 20 40 PC1 –40

–20

–10

0

10

20

–20 0 20 20 40 PC1

(a) Healthy controls

PC2

Activated memory

Double negative Resting memory

Naïve

(b) HIV-infected children

PC2

Activated memory
Double

negative
Resting
memory

Naïve



158 N Cotugno et al.

PENTA-ID ·  REVIEW                                                                                                     Journal of Virus Eradication 2015; 1: 153—158

3. Boyd SD, Jackson KJ. Predicting Vaccine Responsiveness. Cell Host Microbe 2015;
17: 301–307.

4. Trautmann L, Sekaly RP. Solving vaccine mysteries: a systems biology perspective.
Nat Immunol 2011; 12: 729–731.

5. Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and
malaria. Nature 2011; 473: 463–469.

6. de Masson A, Kirilovsky A, Zoorob R et al. Blimp-1 overexpression is associated
with low HIV-1 reservoir and transcription levels in central memory CD4+ T cells
from elite controllers. AIDS 2014; 28: 1567–1577.

7. Blankson JN, Bailey JR, Thayil S et al. Isolation and characterization of replication-
competent human immunodeficiency virus type 1 from a subset of elite suppressors.
J Virol 2007; 81: 2508–2518.

8. Blankson JN. Control of HIV-1 replication in elite suppressors. Discov Med 2010; 9:
261–266.

9. WHO. Global Update on the Health Sector Response to HIV, 2014. Executive
summary. 2014. Available at: http://apps.who.int/iris/bitstream/10665/128196/
1/WHO_HIV_2014.15_eng.pdf (accessed May 2015).

10. Pensieroso S, Cagigi A, Palma P et al. Timing of HAART defines the integrity of
memory B cells and the longevity of humoral responses in HIV-1 vertically-infected
children. Proc Natl Acad Sci U S A 2009; 106: 7939–7944.

11. Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in
HIV-infected individuals. Immunol Rev 2013; 254: 207–224.

12. Persaud D, Gay H, Ziemniak C et al. Absence of detectable HIV-1 viremia after
treatment cessation in an infant. N Engl J Med 2013; 369: 1828–1835.

13. Giacomet V, Trabattoni D, Zanchetta N et al. No cure of HIV infection in a child
despite early treatment and apparent viral clearance. Lancet 2014; 384: 1320.

14. Butler KM, Gavin P, Coughlan S et al. Rapid viral rebound after 4 years of
suppressive therapy in a seronegative HIV-1 infected infant treated from birth.
Pediatr Infect Dis J 2014; 34: e48–51.

15. Zanchetta M, Anselmi A, Vendrame D et al. Early therapy in HIV-1-infected children:
effect on HIV-1 dynamics and HIV-1-specific immune response. Antivir Ther 2008;
13: 47–55.

16. Brophy J, Chun T-W, Samson L et al. Impact of early initiation of combination
antiretroviral therapy on measures of virus in peripheral blood of vertically
HIV-1-infected children. International AIDS Conference. July 2014. Melbourne,
Australia. Abstract TUAB0206LB.

17. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.
Nat Rev Genet 2009; 10: 57–63.

18. Germain RN, Schwartzberg PL. The human condition: an immunological perspective.
Nat Immunol 2011; 12: 369–372.

19. Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in
immunology: a computational modeling perspective. Annu Rev Immunol 2011; 29:
527–585.

20. Strategic Report for Translational Systems Biology and Bioinformatics in the
European Union. 2012. Available at: http://ec.europa.eu/digital-agenda/en/
news/strategic-report-translational-systems-biology-and-bioinformatics-european-
union (accessed May 2015).

21. NIAID. NIAID Strategic Plan 2013. 2013. Available at: www.niaid.nih.gov/
about/whoWeAre/planningPriorities/Documents/NIAIDStrategicPlan2013.pdf
(accessed May 2015).

22. Nakaya HI, Wrammert J, Lee EK et al. Systems biology of vaccination for seasonal
influenza in humans. Nat Immunol 2011; 12: 786–795.

23. Hoek KL, Samir P, Howard LM et al. A cell-based systems biology assessment of
human blood to monitor immune responses after influenza vaccination. PLoS One
2015; 10: e0118528.

24. Mehla R, Ayyavoo V. Gene array studies in HIV-1 infection. Curr HIV/AIDS Rep
2012; 9: 34–43.

25. Okulicz JF, Marconi VC, Landrum ML et al. Clinical outcomes of elite controllers,
viremic controllers, and long-term nonprogressors in the US Department of Defense
HIV natural history study. J Infect Dis 2009; 200: 1714–1723.

26. Fellay J, Shianna KV, Ge D et al. A whole-genome association study of major
determinants for host control of HIV-1. Science 2007; 317: 944–947.

27. Iglesias-Ussel M, Vandergeeten C, Marchionni L et al. High levels of CD2 expression
identify HIV-1 latently infected resting memory CD4+ T cells in virally suppressed
subjects. J Virol 2013; 87: 9148–9158.

28. Wu JQ, Dwyer DE, Dyer WB et al. Genome-wide analysis of primary CD4+ and CD8+
T cell transcriptomes shows evidence for a network of enriched pathways associated
with HIV disease. Retrovirology 2011; 8: 18.

29. Rotger M, Dalmau J, Rauch A et al. Comparative transcriptomics of extreme
phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and
rhesus macaque. J Clin Invest 2011; 121: 2391–2400.

30. Cortes FH, Passaes CP, Bello G et al. HIV controllers with different viral load cutoff
levels have distinct virologic and immunologic profiles. J Acquir Immune Defic Syndr
2015; 68: 377–385.

31. Gaiha GD, McKim KJ, Woods M et al. Dysfunctional HIV-specific CD8+ T cell
proliferation is associated with increased caspase-8 activity and mediated by
necroptosis. Immunity 2014; 41: 1001–1012.

32. Zhao J, Yi L, Lu J et al. Transcriptomic assay of CD8+ T cells in treatment-naive HIV,
HCV-mono-infected and HIV/HCV-co-infected Chinese. PLoS One 2012; 7:
e45200.

33. Sandler NG, Bosinger SE, Estes JD et al. Type I interferon responses in rhesus
macaques prevent SIV infection and slow disease progression. Nature 2014; 511:
601–605.

34. Ananworanich J, Puthanakit T, Suntarattiwong P et al. Reduced markers of HIV
persistence and restricted HIV-specific immune responses after early antiretroviral
therapy in children. AIDS 2014; 28: 1015–1020.

35. Iglesias-Ussel MD, Romerio F. HIV reservoirs: the new frontier. AIDS Rev 2011; 13:
13–29.

36. Chang ST, Sova P, Peng X et al. Next-generation sequencing reveals
HIV-1-mediated suppression of T cell activation and RNA processing and
regulation of noncoding RNA expression in a CD4+ T cell line. MBio 2011; 2:
e00134–00111.

37. Imbeault M, Giguere K, Ouellet M, Tremblay MJ. Exon level transcriptomic profiling
of HIV-1-infected CD4(+) T cells reveals virus-induced genes and host environment
favorable for viral replication. PLoS Pathog 2012; 8: e1002861.

38. Park J, Lim CH, Ham S et al. Genome-wide analysis of histone modifications in
latently HIV-1 infected T cells. AIDS 2014; 28: 1719–1728.

39. Elliott JH, Wightman F, Solomon A et al. Activation of HIV transcription with
short-course vorinostat in HIV-infected patients on suppressive antiretroviral
therapy. PLoS Pathog 2014; 10: e1004473.

40. Hu H, Nau M, Ehrenberg P et al. Distinct gene-expression profiles associated with
the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood 2013;
121: 1136–1144.

41. Sakuma R, Noser JA, Ohmine S, Ikeda Y. Rhesus monkey TRIM5alpha restricts
HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med
2007; 13: 631–635.

42. Roychoudhuri R, Lefebvre F, Honda M et al. Transcriptional profiles reveal a stepwise
developmental program of memory CD8(+) T cell differentiation. Vaccine 2015; 33:
914–923.

43. Sundling C, Zhang Z, Phad GE et al. Single-cell and deep sequencing of
IgG-switched macaque B cells reveal a diverse Ig repertoire following immunization.
J Immunol 2014; 192: 3637–3644.

44. Dominguez MH, Chattopadhyay PK, Ma S et al. Highly multiplexed quantitation of
gene expression on single cells. J Immunol Methods 2013; 391: 133–145.

45. Kardava L, Moir S, Shah N et al. Abnormal B cell memory subsets dominate
HIV-specific responses in infected individuals. J Clin Invest 2014; 124: 3252–3262.

46. Wyatt Shields IVth C, Reyes CD, Lopez GP. Microfluidic cell sorting: a review of the
advances in the separation of cells from debulking to rare cell isolation. Lab Chip
2015; 15: 1230–1249.

47. Liquet B, Le Cao KA, Hocini H, Thiebaut R. A novel approach for biomarker selection
and the integration of repeated measures experiments from two assays. BMC
Bioinformatics 2012; 13: 325.

48. Chechik G, Koller D. Timing of gene expression responses to environmental changes.
J Comput Biol 2009; 16: 279–290.

49. Huber W, Carey VJ, Gentleman R et al. Orchestrating high-throughput genomic
analysis with Bioconductor. Nat Methods 2015; 12: 115–121.

50. Irizarry RA, Wang C, Zhou Y, Speed TP. Gene set enrichment analysis made simple.
Stat Methods Med Res 2009; 18: 565–575.


