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BACKGROUND: Acute respiratory failure occurs frequently in hospital-
ized patients and often begins outside the ICU, associated with increased 
length of stay, cost, and mortality. Delays in decompensation recognition 
are associated with worse outcomes.

OBJECTIVES: The objective of this study is to predict acute respiratory 
failure requiring any advanced respiratory support (including noninvasive 
ventilation). With the advent of the coronavirus disease pandemic, concern 
regarding acute respiratory failure has increased.

DERIVATION COHORT: All admission encounters from January 2014 to 
June 2017 from three hospitals in the Emory Healthcare network (82,699).

VALIDATION COHORT: External validation cohort: all admission encoun-
ters from January 2014 to June 2017 from a fourth hospital in the Emory 
Healthcare network (40,143). Temporal validation cohort: all admission 
encounters from February to April 2020 from four hospitals in the Emory 
Healthcare network coronavirus disease tested (2,564) and coronavirus 
disease positive (389).

PREDICTION MODEL: All admission encounters had vital signs, labo-
ratory, and demographic data extracted. Exclusion criteria included inva-
sive mechanical ventilation started within the operating room or advanced 
respiratory support within the first 8 hours of admission. Encounters 
were discretized into hour intervals from 8 hours after admission to dis-
charge or advanced respiratory support initiation and binary labeled for 
advanced respiratory support. Prediction of Acute Respiratory Failure 
requiring advanced respiratory support in Advance of Interventions and 
Treatment, our eXtreme Gradient Boosting-based algorithm, was com-
pared against Modified Early Warning Score.

RESULTS: Prediction of Acute Respiratory Failure requiring advanced 
respiratory support in Advance of Interventions and Treatment had sig-
nificantly better discrimination than Modified Early Warning Score (area 
under the receiver operating characteristic curve 0.85 vs 0.57 [test], 
0.84 vs 0.61 [external validation]). Prediction of Acute Respiratory Failure 
requiring advanced respiratory support in Advance of Interventions and 
Treatment maintained a positive predictive value (0.31–0.21) similar to 
that of Modified Early Warning Score greater than 4 (0.29–0.25) while 
identifying 6.62 (validation) to 9.58 (test) times more true positives. 
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Furthermore, Prediction of Acute Respiratory 
Failure requiring advanced respiratory support in 
Advance of Interventions and Treatment performed 
more effectively in temporal validation (area under 
the receiver operating characteristic curve 0.86 
[coronavirus disease tested], 0.93 [coronavirus di-
sease positive]), while achieving identifying 4.25–
4.51× more true positives.

CONCLUSIONS: Prediction of Acute Respiratory 
Failure requiring advanced respiratory support in 
Advance of Interventions and Treatment is more 
effective than Modified Early Warning Score in 
predicting respiratory failure requiring advanced 
respiratory support at external validation and in co-
ronavirus disease 2019 patients. Silent prospective 
validation necessary before local deployment.

KEY WORDS: acute respiratory failure; data 
mining; early warning scores; electronic health 
records; machine learning; prediction

Acute respiratory failure (ARF)—a disorder 
characterized by functional lung impair-
ment resulting in hypoxemia, hypercapnia, or 

both—occurs frequently in hospitalized patients and 
often begins outside of the ICU, increasing length of 
stay, cost, and mortality (1–3). Delays in decompen-
sation recognition increase the cost of care and lead to 
worse outcomes (4, 5). ARF is a common cause of crit-
ical illness. This is especially true in the pandemic in 
the coronavirus disease 2019 (COVID-19) era, where 
ARF is the cardinal sign of critical illness in COVID-
19 patients. Fifteen to 20 percent of COVID-19 cases 
are hospitalized, with 3–5% requiring critical care (6–8). 
Once requiring mechanical ventilation (MV), initial 
studies suggested mortalities as high as 30–97%, far 
higher than other diseases like H1N1 (6–9).

Most current early warning systems, including 
Modified Early Warning Score (MEWS) and National 
Early Warning Score, focus on predicting ICU admis-
sion, cardiac arrest, or death (10–15). While cardiac 
arrest and death may be late signs of morbidity and 
mortality, ICU admission can often be provider de-
pendent, institution dependent, and/or situation de-
pendent (e.g., if an ICU is full) (16). Furthermore, the 
decision specifically to initiate invasive MV (IMV) is 
provider dependent—however, there are many forms 
of advanced respiratory support (AdvRS) a patient 
with ARF can use, from IMV to less invasive variants 

of noninvasive ventilation (NIV) and heated humidi-
fied high-flow (HHHF) nasal cannula (e.g., Airvo, 
Fisher Paykel, Irvine, CA,  Optiflow, Fisher Paykel, 
Irvine, CA). Even if a patient has care limitation orders 
prohibiting intubation, they may be placed on NIV 
or HHHF. Consequently, the decision for initiation 
of AdvRS can be seen as a combination of underlying 
patient physiology and provider practice. For the pur-
pose of this article, any type of AdvRS—including NIV, 
HHHF, and IMV—that consists of an oxygen source 
and another device) is often seen as an indicator of 
increased patient acuity and is a common cause of ICU 
admission. AdvRS can be viewed as a marker of ARF 
and a more direct endpoint of respiratory decompen-
sation than IMV or ICU admission.

Prior studies, such as Dziadzko et al (17), have 
explored the prediction of prolonged IMV (IMV > 
48 hr), looking 48 hours in the future. While this is a 
useful endpoint in care delivery, 48 hours as a threshold 
for monitoring patients on the floor seems to have less 
utility. Therefore, we decided to create an algorithm to 
predict respiratory decompensation within a provider’s 
shift.

The objective of this study is to predict ARF, de-
fined as the need for either invasive or noninvasive 
AdvRS, and analyze and validate the performance of 
our algorithm, Prediction of Acute Respiratory Failure 
requiring advanced respiratory support in Advance of 
Interventions and Treatment (PARFAIT), on its pre-
diction. We also validate PARFAIT on temporally sep-
arate data on patients tested for COVID-19, as COVID 
was an unexpected respiratory pandemic with unfore-
seen effects on patient care practice. Notably, Emory 
Healthcare had provided institutional guidance that 
early intubation was preferred, HHHF allowed, and 
NIV to be avoided in ARF in COVID+ patients—a sig-
nificant departure from previous practice.

METHODS

Protocol design was performed in accordance with the 
Development and Reporting of Prediction Models by 
Leisman et al (18), REporting of studies Conducted 
using Observational Routinely-collected health Data 
(19), and transparent reporting of a multivariable pre-
diction model for individual prognosis or diagnosis 
(20) guidelines as a retrospective cross-sectional study. 
This study was approved by the Emory University 
Institutional Review Board (No. 33069).
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DATA COLLECTION

All adult (> 18 yr old) admission encounters (including 
obstetrical patients, psychiatric patients, and incarcer-
ated patients but excluding children) from January 
2014 to June 2017 and February 2020 to April 2020 
from four university-affiliated hospitals in and around 
Atlanta, GA, had vital signs, laboratory values, oxygen 
therapy, and demographics extracted. Exclusion cri-
teria included IMV within an operating room (OR) 
during a single hospital admission and meeting AdvRS 
criteria within the first 8 hours of admission.

Only data that were routinely collected for clinical 
care were included. Seventy variable types were pro-
vided to the prediction model: two demographics, 
eight vitals, 46 laboratories, and 14 oxygen therapy 
variables. Twenty-seven oxygen therapy variables per-
tinent to AdvRS outcomes were solely used for gen-
eration and validation of the AdvRS outcome and 
explicitly not provided to the model for either train-
ing or testing. These variables are demonstrated in 
Supplemental Table 1 (http://links.lww.com/CCX/
A593). A site-specific data dictionary was created for 
each hospital to unify data elements. For each variable 
at each site, data were first statistically cleaned by ex-
cluding any outliers beyond 5 sds from the mean. All 
data were extracted from the clinical data warehouse 
at Emory Healthcare, which used data from Cerner 
Powerchart  (Cerner, North Kansas City, MI). Data 
were linked by encounter identification number across 
all data sources.

Encounters were windowed into hourly windows 
from 8 hours after admission to discharge or on intu-
bation. Death was used to mark the end of a hospi-
talization; all patients, if deceased, were included until 
death. Each hourly interval was labeled with binary 
labels indicating any form of MV in the 8-hour event 
horizon. If a variable had multiple values within an 
hourly window, the median value was chosen. Models 
were provided as single values for each variable during 
each hourly window.

COVID-19 COHORT IDENTIFICATION

From February 2020 to April 2020 cohort, all patients 
had received a COVID test. Patients were deemed 
COVID-19+ if they had at least one COVID+ test 
result. All COVID tests were polymerase chain reac-
tion (PCR) tests (ABI 7000–7500; Roche cobas 6800; 

Roche Molecular Systems, Branchburg, NJ). Patients 
were deemed COVID-19– if they never had a positive 
test result. This method excludes patients who were 
COVID– by PCR but clinically treated as if they were 
COVID+, in addition to patients who only tested posi-
tive at an external institution but tested negative in the 
healthcare system. As the model was trained before 
COVID, the model does not accept COVID input, and 
therefore, COVID test results were used solely to select 
patients in the healthcare system.

LABELING

We define an event horizon as the duration of time 
before the onset of an event—for example, an 8-hour 
event horizon asks whether an event of interest will 
occur 8 hours or less from the current window.

The positive label for AdvRS included continuous 
NIV, HHHF (e.g., Airvo, Fisher Paykel, Optiflow, Fisher 
Paykel), and IMV. “Traditional” nasal cannula (1–6 L 
oxygen flow) and “moderate flow” nasal cannula (6–
15 L oxygen flow) was not considered to be a positive 
AdvRS label. Nocturnal NIV, as charted by respiratory 
therapy, was not considered to be an AdvRS outcome. 
If an encounter was labeled positive for any reason, 
the encounter was terminated at that point, regardless 
of further AdvRS outcomes, as any further transition 
between AdvRS endpoints would still require ICU ad-
mission. For example, if a patient was put on NIV and 
was later intubated, the encounter data would be ter-
minated at the initiation of NIV and the patient’s intu-
bation would never have been “seen” by the algorithm.

MISSING DATA

Missing data were imputed from normal ranges (if 
not previously performed for the current admission). 
Missingness rates are described in electronic medical 
record (EMR) data density, which is characterized in 
Supplemental Figure 2 (http://links.lww.com/CCX/
A593).

MODELING IMPLEMENTATION

Patient data from three hospitals from January 2014 
to June 2017 were then split into five-fold cross val-
idation sets by encounter (“training data,” “testing 
data”). Complete encounters were assigned to folds; 
no encounter was split across folds. Given the class 
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imbalance, each training set was then randomly 
undersampled to give an even case-control split. 
Patient data from a fourth hospital from January 2014 
to June 2017 was used as external validation (“ex-
ternal validation data”). Finally, data from patients 
who were tested for COVID (including patients with 
both positive and negative results) from all four hos-
pitals from February 2020 to April 2020 were then 
used as temporal validation (“COVID-tested vali-
dation data”), with COVID+ patients further strat-
ified for further analysis (“COVID+ validation 
data”). Models were not retrained for both valida-
tions for fair assessment. This diagram is noted in 
Supplemental Figure 4 (http://links.lww.com/CCX/
A593). Data were segmented for the 8 hours prior to 
an event. For patients never needing AdvRS, a simu-
lated event time was randomly selected from 8 hours 
after admission to discharge.

We reduce this prediction problem to a regression 
task—predicting the probability that a patient will de-
velop our endpoint of AdvRS. PARFAIT uses eXtreme 
Gradient Boosting, which is a supervised learning 
method that uses gradient boosting with improved 
regularization to control for overfitting, thus improv-
ing performance (21). It constructs an ensemble 
method (which combines the hypothesis of many 
“weak” prediction algorithms) of regression trees that 
are individually adjusted to create a “strong” classifier. 
Our algorithm computes a prediction score for every 
hourly window. Eight sequential hourly predictions 
are combined with a majority vote, and the prediction 
is evaluated per encounter. A window was positive 
with a PARFAIT score greater than 0.50.

MEWS was implemented in accordance with the 
MEWS guidelines (10). Commonly used thresh-
olds include scores greater than 3–5, so those were 
tested in this study. These values were recomputed 
for each 1-hour time window, as demonstrated in 
(Supplemental Fig. 3, http://links.lww.com/CCX/
A593).

OUTCOMES

A composite qualifying event was defined as initia-
tion of NIV, HHHF, or IMV for any duration of time. 
An encounter was terminated at the onset of the 
qualifying event. NIV for the purpose of nocturnal 
NIV in obstructive sleep apnea as documented in the 

EMR was excluded from the outcome. Predictions 
were generated for all hourly windows. The 8 hourly 
windows preceding an event were combined using a 
majority vote, with the final prediction evaluated per 
encounter. Control events were evaluated by generat-
ing a random event time from 8 hours after admission 
through the hour before discharge and performing 
the same evaluation. Equivocal results (so, four pre-
dicting+ and four predicting–) were deemed incor-
rect (e.g., false positive or false negative), regardless 
of ground truth label (Supplemental Fig. 1, http://
links.lww.com/CCX/A593).

Inhospital death, if it occurred, was used to mark 
the end of a hospitalization.

MODEL COMPARISONS

Models were compared using area under the re-
ceiver operating characteristic curve (AUROC), 
area under the precision-recall curve (AUPRC), 
sensitivity (also known as recall), specificity, posi-
tive predictive value (PPV, also known as precision), 
and negative predictive value (NPV). Prediction 
scores for these calculations were derived using the 
median of the majority class predictions in each of 
the hourly windows in the 8-hour event horizon 
prior to the event. Of note, this also implies that the 
MEWS scores, due to different thresholds changing 
voting in the event horizon, will have slightly vary-
ing values based on threshold. AUROCs on MEWS 
were calculated using the median MEWS score of 
the majority vote.

CALIBRATION METHODS

As many machine learning models may be discrimina-
tive but have poor calibration, a calibration adjustment 
model was trained from each fold of the training data 
by linear regression (22). All subsequent predictions 
(in validation sets) for both MEWS and PARFAIT were 
adjusted by these calibration models generated from 
the training data. No calibration regression models 
were readjusted.

Calibration was assessed through a calibration 
plot with predicted probability on the x-axis and 
the observed proportions on the y-axis (23, 24). The 
plot is characterized by an intercept and calibration 
slope, which should be approximately 0 and 1 for 
good calibration. Scaled Brier scores are included in  

http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
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http://links.lww.com/CCX/A593
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http://links.lww.com/CCX/A593
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TABLE 1. 
Patient Demographics and Data Characteristics

Characteristics
Hospitals  

1–3

External  
Validation  
Hospital 4

Temporal  
Validation  

COVID-Tested  
Any Result

Temporal  
Validation  
COVID+

Count, n 82,699 40,143 2,564 389

Cases, n (%) 7,524 (9.1) 2,578 (6.4) 426 (16.6) 104 (26.7)

Gender, n (%)
  Male 39,021 (47.2) 18,116 (45.1) 822 (32.1) 181 (46.5)
Ethnicity, n (%)
  Hispanic or Latino 2,762 (3.3) 488 (1.2) 52 (2) 8 (2.1)
  Non-Hispanic or Latino 73,444 (88.8) 37,360 (93.1) 1,482 (57.8) 285 (73.3)
  Not recorded 6,493 (7.9) 2,295 (5.7) 1,030 (40.2) 96 (24.7)
Race, n (%)
  African American 24,683 (29.8) 32,302 (80.5) 957 (37.3) 243 (62.5)
  Asian 2,521 (3) 237 (0.6) 50 (2) 5 (1.3)
  Caucasian 51,821 (62.7) 6,918 (17.2) 576 (22.5) 56 (14.4)
  American Indian or Alaskan Native 382 (0.5) 48 (0.1) 4 (0.2) 0 (0)
  Native Hawaiian or other  

Pacific Islander
156 (0.2) 37 (0.1) 1 (0) 0 (0)

  Other 3,136 (3.8) 601 (1.5) 976 (38.1) 85 (21.9)
Age at visit 62.75 ± 18.82 58.32 ± 18.26 61.36 ± 17.81 59.82 ± 16.24
Outcomes
  In-hospital mortality, n (%) 1,339 (1.6) 516 (1.3) 88 (3.4) 43 (11.1)
  Hospice, n (%) 3,445 (4.2) 1,469 (3.7) 62 (2.4) 2 (0.5)
  Length of stay, hospital (d) 4.91 ± 5.72 4.90 ± 6.41 6.83 ± 8.14 8.89 ± 9.38
  Temperature 36.71 ± 0.32 36.61 ± 0.41 36.87 ± 0.35 37.08 ± 0.35
  Temperature (highest) 37.30 ± 0.56 37.28 ± 0.57 37.70 ± 0.87 38.33 ± 1.01
  SBP 126.98 ± 16.44 131.58 ± 19.00 126.43 ± 14.96 126.32 ± 13.71
  SBP (lowest) 105.74 ± 15.80 109.67 ± 17.19 100.91 ± 19.48 97.78 ± 21.15
  DBP 69.90 ± 10.12 72.54 ± 10.09 72.99 ± 8.98 73.41 ± 9.36
  DBP (lowest) 56.20 ± 12.60 60.63 ± 11.24 57.17 ± 14.15 56.19 ± 15.46
  HR 80.42 ± 12.49 82.73 ± 12.95 84.48 ± 12.09 86.04 ± 11.41
  HR (highest) 98.73 ± 15.86 99.11 ± 15.97 106.43 ± 19.21 110.16 ± 20.53
  o2 saturation 96.97 ± 1.59 96.67 ± 1.64 96.48 ± 1.97 95.70 ± 2.18
  o2 saturation (lowest) 93.81 ± 2.74 98.82 ± 1.44 89.63 ± 13.05 85.22 ± 17.68
  Respiratory rate 18.30 ± 1.47 18.72 ± 1.49 18.85 ± 2.26 20.15 ± 2.95
  Respiratory rate (highest) 20.90 ± 3.91 21.27 ± 3.84 25.43 ± 19.71 29.31 ± 19.09
  Lactate 1.05 ± 0.32 1.07 ± 0.37 1.25 ± 1.01 1.42 ± 1.20
  Lactate (highest) 1.13 ± 0.75 1.17 ± 0.84 1.81 ± 3.01 2.34 ± 3.67
Oxygen therapy, n (%)
  Room air 81,464 (98.5) 39,626 (98.7) 1,465 (57.1) 314 (80.7)
  Nasal cannula/simple mask (1–6 L) 43,630 (52.8) 19,337 (48.2) 988 (38.5) 267 (68.6)
  Moderate flow (6–15 L) 3,877 (4.7) 861 (2.1) 162 (6.3) 65 (16.7)
  Nocturnal NIV 4,547 (5.5) 2,235 (5.6) 92 (3.6) 3 (0.8)
  NIV 3,838 (4.6) 2,574 (6.4) 126 (4.9) 3 (0.8)
  Heated humidified high-flow 1,164 (1.4) 391 (1) 234 (9.1) 87 (22.4)
  Intubation 4,953 (6) 1,142 (2.8) 385 (15) 98 (25.2)
  Intubation > 48 hr 1,225 (1.5) 576 (1.4) 270 (10.5) 80 (20.6)

COVID = coronavirus disease, DBP = diastolic blood pressure, HR = heart rate, NIV = noninvasive ventilation, SBP = systolic blood pressure.
Oxygen therapy was calculated as the number of encounters with that oxygen therapy method at any time during their hospitalization. 
Numeric data (e.g. age at visit, temperature) presented as mean ± sd.
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Supplemental Table 4 (http://links.lww.com/CCX/
A593), with equations and methodology from 
Steyerberg et al (24) further explained in Supplemental 
Methods (http://links.lww.com/CCX/A593).

RESULTS

Clinical data from January 2014 to June 2017 was 
extracted from 122,842 encounters, which were ex-
panded into 13,281,322 1-hour windows, with 10,102 
cases and 112,740 controls. Patient characteristics are 
described by dataset in Table 1 and by flow diagram in 
Figure 1.

Cases and Mortality by Dataset

The training dataset from three hospitals had 75,175 
encounters with 7,524 AdvRS cases (9.1%) and 1,332 
deaths (1.62%). The external validation dataset from 
a separate fourth hospital included 40,143 encounters 
with 2,578 AdvRS cases (6.4%) and 516 deaths (1.29%). 
The COVID-tested dataset comprised 2,564 encounters 
from all four hospitals, with 290 AdvRS cases (11.3%) 
and 88 deaths (3.4%). Finally, the COVID+ dataset is 
a subset of the COVID-tested dataset, containing 389 
COVID+ encounters with 91 AdvRS cases (23.4%) and 
43 deaths (11.1%).

Figure 1. Flow diagram. AdvRS = advanced respiratory support, IMV = invasive mechanical ventilation, OR = operating room.
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Effect of AdvRS on Mortality

The presence of AdvRS was associated with higher 
mortality in the training dataset (819 [10.9%] vs 520 
[0.69%]), the external validation dataset (345 [13.4%] 
vs 171 [0.5%]), the COVID-tested validation dataset 
(70 [13.0%] vs 18 [0.89%]), and the COVID+ valida-
tion dataset (38 [29.9%] vs 5 [1.9%]).

Effect of AdvRS on Hospice Usage

The presence of AdvRS was associated with higher 
hospice utilization in the training dataset (682 
[9.1%] vs 2,763 [3.68%]), the external validation 
dataset (341 [13.2%] vs 1,128 [3.0%]), and the 
COVID-tested validation dataset (26 [4.8%] vs 36 
[1.8%]). Hospice usage was significantly reduced in 
the COVID+ dataset.

Effect of COVID on Clinical Practice

Both COVID-tested and COVID+ validation datas-
ets demonstrate longer lengths of stays than either the 
training or the external validation dataset (6.83 vs 4.91 d;  
p < 0.001). As expected from a policy in favor of 
early intubation in COVID+ patients, there is a much 
higher rate of intubation (385/2,564 [15%] COVID-
tested, 98/389 [25.2%] COVID+ vs training dataset 
4,953/82,699 [6%]).

PARFAIT MODEL RESULTS

Receiver operating characteristic and precision-
recall curves are shown by dataset in Figure 2. Model 
prediction confusion matrices are demonstrated in 
Supplemental Table 2 (http://links.lww.com/CCX/
A593) and prediction performance is demonstrated 
in Supplemental Table 3 (http://links.lww.com/
CCX/A593) in the context of varying prevalence in 
the training, testing, and validation datasets.

PARFAIT Discrimination in Training, Testing, and 
External Validation Datasets

PARFAIT had significantly better discrimination than 
MEWS in all datasets as demonstrated by the AUROC 
(e.g., test dataset PARFAIT AUROC 0.85 vs MEWS 
AUROC 0.57; DeLong test p < 0.001). The PARFAIT 
misclassification rate was 0.16 on the training dataset 

and 0.17 on the test dataset. In contrast, the MEWS 
models with thresholds 3–5 resulted in a misclassifica-
tion rate of 0.46–0.48 on the training dataset and 0.09–
0.15 in the test dataset. Since MEWS was more specific 
than sensitive, the misclassification rate in MEWS is 
lower in the test data due to a higher percentage of 
negative cases.

PARFAIT Sensitivity and PPV in Training, 
Testing, and External Validation Datasets

At comparable PPVs, PARFAIT (test dataset: 0.31, external 
validation dataset 0.21) is most similar to MEWS greater 
than 4 (test dataset: 0.29, external validation: 0.25) while 
still identifying 6.62-fold (external validation) to 9.58-fold 
(test) more cases needing AdvRS. As MEWS thresholds 
increase, stricter criteria lead to lower sensitivity but higher 
PPV. PPV performance varies significantly between train-
ing and test datasets due to the random undersampling 
used to create the training set.

PARFAIT Discrimination, Sensitivity, and PPV in 
COVID-Testing Validation Dataset

In the COVID-testing validation dataset, PARFAIT’s 
AUROC (0.86) continues to outperform MEWS’ rel-
atively stable AUROCs of (0.66–0.66). Although 
PARFAIT’s PPV (0.36) is lower than that of MEWS 
(0.42–0.67), PARFAIT’s significant improvement in 
sensitivity (0.84) over MEWS (0.07–0.24) allows it to 
detect 4.5-fold more cases needing AdvRS.

PARFAIT Discrimination, Sensitivity, and PPV in 
COVID+ Validation Dataset

The COVID+ validation dataset reinforces the trend 
toward stronger performance in populations with 
higher rates of AdvRS, where PARFAIT’s AUROC 
increases to 0.93 (0.92–0.95) in comparison to MEWS 
(MEWS > 3, 0.73; MEWS > 5, 0.71) with PARFAIT 
PPV 0.60 similar to MEWS (0.54–0.76) while identify-
ing 4.25–6.86-fold more true positives due to its higher 
sensitivity (0.94 vs MEWS 0.09–0.29).

PARFAIT Calibration

PARFAIT and MEWS adjusted calibration curves are 
demonstrated in Figure 3, with regressions of the 
adjusted calibration plot tabulated in Supplemental 

http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
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Table 3 (http://links.lww.com/
CCX/A593). Scaled Brier scores 
are shown in Supplemental Table 4 
(http://links.lww.com/CCX/A593).

DISCUSSION

We developed and validated an EMR-
based risk stratification tool that 
identifies patients needing AdvRS 
(NIV, HHHF, IMV) up to 3 hours 
prior to a patient being placed on 
support. Five-fold cross-validation 
and external validation showed that 
PARFAIT outperformed MEWS at 
three common thresholds, with a 
higher PPV, sensitivity, AUROC, and 
AUPRC. Finally, we demonstrate 
PARFAIT’s robustness within the 
healthcare system by demonstrating 
strong performance in temporal val-
idation, even in an unforeseen respi-
ratory pandemic.

Some groups are investigating the 
utility of predictions for prolonged 
IMV. Gong et al (25) predicts IMV 
greater than 48 hours or death 48 
hours into the future using random 
forests, a machine learning tech-
nique, with AUROCs 0.77–0.80, false 
positive rate 0.08–0.17, and PPV 
0.13–0.21 (17). However, prolonged 
IMV is a late endpoint—to reduce 
the effect of practice variation—and 
includes a composite endpoint of 
prolonged IMV and all-cause mor-
tality. All-cause mortality can lead 
to a less focused endpoint, reducing 
PPV. Parreco et al (26) predicts the 
need for IMV greater than 168 hours 
or tracheostomy for patients re-
ceiving IMV in the ICU using gra-
dient boosted trees. However, this 
focuses on ICU patients already re-
ceiving IMV but does not consider 
predictions on floor patients. Martín-
González et al (27) uses multiple ma-
chine learning methods to predict 
NIV success or failure, but this work 

Figure 2. Prediction characterization for PARFAIT and MEWS. Area under the receiver 
operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) 
plots for PARFAIT versus MEWS (A) average train, (B) average test, (C) average external 
hospital validation, (D) average temporal validation for coronavirus disease 2019 (C19)+ 
patients, and (E) average temporal validation for any patient receiving a C19 test, regardless 
of result. Light bands indicate 1 sd above and below curves. Dotted plots indicate individual 
curves. FPR = false positive rate, MEWS = Modified Early Warning Score, PARFAIT = 
Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of 
Interventions and Treatment, TPR = true positive rate.

http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
http://links.lww.com/CCX/A593
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Figure 3. Calibration plots for each dataset, separated by method. COVID = coronavirus disease, MEWS = Modified Early Warning 
Score, PARFAIT = Prediction of Acute Respiratory Failure requiring advanced respiratory support in Advance of Interventions and 
Treatment.
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is focused on ICU patients without a clear prediction 
of when the event will occur.

Most early warning scores predict ICU admission, 
cardiac arrest, or inhospital death—all of which are ei-
ther late signs of dysfunction or have significant var-
iation. Accurate Prediction of Prolonged Ventilation 
by Gong et al (25) predicts the need for IMV over 48 
hours with a 48-hour event horizon. This provides a 
specific, more severe endpoint—3.08% in our dataset 
for IMV greater than 48 hours as compared with 8.4% 
for AdvRS. We chose a 3-hour event horizon as it pro-
vides an actionable time within a provider’s shift (gen-
erally 12 hr) for care escalation, such as earlier diuresis 
or antibiotics. Since AdvRS also includes NIV and 
HHHF, it identifies patients earlier in their trajectory 
of decompensation and may mean an earlier interven-
tion to further mitigate the risk of IMV. Furthermore, 
AdvRS offers more direct comparison of a patient’s 
underlying oxygen requirements—provider behavior 
may mean that a patient may receive HHHF or NIV 
over IMV, so a pure endpoint of IMV would miss these 
patients.

PARFAIT performs substantially better in the 
COVID-19-tested cohort—and especially the COVID-
19+ cohort, with an impressive AUROC of 0.93 and a 
sensitivity of 0.94 compared with MEWS greater than 
3–5’s AUROC 0.73–0.71 and a sensitivity of 0.29–0.09. 
Part of this performance increase is likely due to an in-
crease in prevalence of AdvRS endpoints in the COVID-
19 cohort. Furthermore, PARFAIT’s false negative rate 
of 0.064—admittedly, in a cohort of 389 COVID-19+ 
patients—in conjunction with NPV 0.971 suggests that 
both positive and negative predictions may be clinically 
useful in stratifying patients—potentially permitting 
hospitals to anticipate resource need.

Despite the evaluated performance of PARFAIT, 
there are some limitations in this study. To avoid con-
flating this prediction with mortality, this study does 
not explicitly consider mortality as a predicted end-
point and misses ARF in a cardiopulmonary arrest 
that results in death before AdvRS is used. This model 
does capture patients with cardiopulmonary arrest that 
results in receiving AdvRS. We do not exclude patients 
on comfort care or do not resuscitate/do not intubate 
code status, which would alter clinician practice in 
intubating patients—but may result in patients going 
on NIV or HHHF, which would still be captured. As 
these data were cross-sectionally extracted from the 

EMR, the sampling bias represents the underlying pop-
ulation that is served by Emory Healthcare. Clinicians 
may order arterial blood gas (ABG)s in response to 
suspected decompensation, so ABG values can also be 
subject to availability bias. Additionally, given the ex-
clusion of any patient encounters who received IMV 
in the OR, there is a lower surgical case representation, 
but this is an important exclusion since we want to pre-
dict unexpected respiratory decompensation. Finally, 
we are unable to robustly determine socioeconomic 
status, chronic medical conditions, and home oxygen 
requirements.

PARFAIT currently evaluates patients without 
knowledge of underlying comorbidities or home ox-
ygen use. Further development to contextualize data 
by incorporating this knowledge could improve pre-
dictive accuracy. Model validation could be improved 
by further extra-system and prospective validation. 
Through temporal and external validations, we demon-
strate PARFAIT’s generalizability in providing robust 
predictions, even in unforeseen respiratory pandemics 
like COVID with changed practice patterns.

When implemented, PARFAIT generates predic-
tions on an hourly basis, using votes of the past 8 
hours. It is important to note that the current statis-
tics are patient-level statistics, which may overesti-
mate performance in the hourly predictions. With this 
work, PARFAIT is currently in its preliminary retro-
spective phase, requiring further real-time simula-
tion and characterization prior to deployment. Next 
development steps involve creating real-time links to 
the EMR and silent evaluation to further characterize 
the performance of PARFAIT’s hourly predictions. 
This evaluation should be carried out on both hourly 
metrics and patient level metrics to reflect on both the 
accuracy of identifying patients at risk of decompensa-
tion and the calibration of both event occurrence rate 
and time.

CONCLUSIONS

The PARFAIT risk stratification tool identifies patients 
at risk of developing ARF requiring AdvRS within a 
3-hour event horizon. It performs better than MEWS 
with a higher PPV. PARFAIT demonstrates generaliz-
ability within the healthcare system both via external 
(external hospital, same healthcare system) and tem-
poral validation, even in the face of an unpredicted 
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pandemic. Additional studies will be needed to deter-
mine whether automated prediction scores will result 
in improved clinical outcomes.
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