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Abstract: Bone mineralization entails two mineralization phases: primary and secondary mineral-
ization. Primary mineralization is achieved when matrix vesicles are secreted by osteoblasts, and
thereafter, bone mineral density gradually increases during secondary mineralization. Nearby ex-
tracellular phosphate ions (PO4

3−) flow into the vesicles via membrane transporters and enzymes
located on the vesicles’ membranes, while calcium ions (Ca2+), abundant in the tissue fluid, are also
transported into the vesicles. The accumulation of Ca2+ and PO4

3− in the matrix vesicles induces
crystal nucleation and growth. The calcium phosphate crystals grow radially within the vesicle,
penetrate the vesicle’s membrane, and continue to grow outside the vesicle, ultimately forming
mineralized nodules. The mineralized nodules then attach to collagen fibrils, mineralizing them
from the contact sites (i.e., collagen mineralization). Afterward, the bone mineral density gradually
increases during the secondary mineralization process. The mechanisms of this phenomenon remain
unclear, but osteocytes may play a key role; it is assumed that osteocytes enable the transport of Ca2+

and PO4
3− through the canaliculi of the osteocyte network, as well as regulate the mineralization of

the surrounding bone matrix via the Phex/SIBLINGs axis. Thus, bone mineralization is biologically
regulated by osteoblasts and osteocytes.

Keywords: bone mineralization; osteoblast; osteocyte; matrix vesicle; Phex/SIBLING

1. Introduction

Bone is mineralized tissue composed of crystalline calcium phosphates and collagen
fibrils onto which the calcium phosphate crystals are deposited [1–4]. The hardness and
flexibility of bone, which can provide strength against mechanical force, are derived from
calcium phosphates and collagen fibrils, respectively. Osteoblasts secrete a large amount of
collagen fibrils, non-collagenous proteins, and proteoglycans, as well as matrix vesicles,
into the incompletely mineralized superficial layer of the bone matrix known as the osteoid.
A matrix vesicle is a small extracellular vesicle equipped with membrane transporters
and enzymes involved in mineralization, such as tissue nonspecific alkaline phosphatase
(TNAP) [5,6], ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) [7], sodium-
dependent phosphate cotransporter type III (Slc20a1/Pit1 and Slc20a2/Pit2) [8–12], phos-
phoethanolamine phosphohydrolase 1 (PHOSPHO1) [13–15], and ankylosis (ANK) [16,17].
The supply and inflow of calcium ions (Ca2+) and inorganic phosphate ions (PO4

3−) in the
initial process of matrix vesicle-mediated mineralization is achieved by the finely-tuned ac-
tivities of these enzymes and transporters. Hence, matrix vesicle-mediated mineralization is
categorized as the primary mineralization that takes place in the osteoid, which then forms
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a mineralized nodule, also called a calcifying nodule, allowing the collagen mineralization
to eventually spread throughout the bone [18,19]. Moreover, non-collagenous proteins
and proteoglycans in the osteoid regulate mineralization by modulating the aggregation of
collagen fibrils and mineral deposition during primary mineralization [20–23].

After primary mineralization, the bone mineral density becomes slowly and chrono-
logically elevated in a phenomenon called secondary mineralization, which is independent
of osteoblastic bone formation [2]. It is hypothesized that secondary mineralization is
achieved by the physicochemical processes of mineral transport in the osteocytic network
extended throughout the bone [24]. Therefore, the osteocytes and the meshwork of their
cytoplasmic processes appear essential for secondary mineralization involving bone min-
eral transportation [25–28]. Osteocytes with well-organized osteocytic lacunar canalicular
system (OLCS) sense mechanical stress [29], transport bone minerals, and secrete bone
metabolism-regulating molecules [30–34]. It is important that the cytoplasmic processes of
osteocytes connect with those of the bone-forming osteoblasts and the narrow channels
through which osteocytic processes are opened to the osteoid where the matrix vesicle-
mediated mineralization takes place. Therefore, it is postulated that bone minerals, such
as Ca2+ and PO4

3−, are derived from the activities of TNAP/ectonucleotide pyrophos-
phatase/phosphodiesterase 1 (ENPP1) and PHOSPHO1 inside the matrix vesicles and also
from the osteocytic canaliculi that are opened to the osteoid, implicating the interplay of
osteoblasts and osteocytes for adequate maintenance of mineralized bone.

In this review, we will discuss matrix vesicle-mediated mineralization, osteocytic
regulation of bone mineralization, and the possible interplay of osteoblasts and osteocytes
on bone mineralization.

2. Matrix Vesicle-Meditated Mineralization
2.1. Nucleation of Calcium Phosphates in Matrix Vesicles

Bone mineralization initiates inside matrix vesicles, which are small extracellular
vesicles secreted by osteoblasts [18,19,35–37]. Matrix vesicles contain several membrane
transporters and enzymes related to mineralization on their plasma membranes and in their
interior, thus providing an adequate microenvironment for calcium phosphate nucleation
and subsequent growth to eventually form hydroxyapatite crystals [Ca10(PO4)6(OH)2].
Regarding calcium phosphate crystal nucleation, it is generally known that Ca2+ strongly
binds to the negatively charged inner leaflet of the plasma membrane [38]. Plasma mem-
branes consisting of phosphatidylcholine and phosphatidylserine have a substantial capac-
ity for Ca2+ binding, with several types of binding sites proposed [39]. Many researchers
have previously postulated that phosphatidylserine, which is rich in matrix vesicles, has
a particularly high affinity for Ca2+ to produce a stable calcium phosphate-phospholipid
complex with the vesicle’s membrane [40–42]. When observed by transmission electron
microscope (TEM) during the early phases of calcium phosphate nucleation, amorphous
non-crystalline calcium phosphates are found to incipiently form in association with the
inner leaflet of the matrix vesicle membranes [43]. Thereafter, the original amorphous
calcium phosphate structures are converted into mature crystalline structures, i.e., hydrox-
yapatite, allowing the large, assembled mineral crystals inside the matrix vesicles. The
resultant hydroxyapatite crystals grow in all directions inside the vesicle, then penetrate the
plasma membrane, and eventually form mineralized nodules in the later stage (Figure 1).
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Figure 1. TEM observation of matrix vesicles and mineralized nodules. (a) Ultrastructure of 
osteoid underlying mature osteoblasts (Ob). (b) When observed at a higher magnification, there 
seem to be many matrix vesicles (white arrowheads), mineralized nodules (CN), and collagen 
fibrils (Co, arrows). (c) Amorphous non-crystalline phosphates (arrowheads) are observed along 
the inner membrane of matrix vesicles (MV) at the early stage of matrix vesicle-mediated 
mineralization. (d) The grown calcium phosphate crystals are seen inside the matrix vesicles. (e) 
The needle-like mineral crystals get out of the matrix vesicles. Panel (a,b) are cited from Ref. [19], 
and (c–e) are from Ref. [44]. Reprinted with permission from Ref. [19]. 2018, Springer Nature. 
Reprinted with permission from Ref. [44]. 1985, Japanese Association for Oral Biology. Bar, 2 mm 
(a), 1 mm (b), 30 nm (c–e). 

2.2. Distribution of Ca and P in the Vicinity of Matrix Vesicles in the Osteoid  
Electron energy loss spectroscopy, or EELS, enables elemental mapping and can 

detect calcium (Ca) and phosphorus (P) at an ultra-structural level [45]. A previous 
report revealed that Ca and P were highly accumulated inside matrix vesicles; however, 
Ca was evenly and abundantly distributed in the vicinity of the matrix vesicles, while P 
was detected predominantly in organic materials, such as collagen fibrils and cells, but 
not in the matrix vesicle vicinity [45]. Nucleation and growth of calcium phosphate 
crystals require the influx of Ca2+ and PO43− inside the matrix vesicles from the 
extracellular fluid. Taking Ca2+ and PO43- distribution into consideration, a biological 
mechanism governing the local synthesis and supplementation of PO43−, as well as its 
subsequent influx into matrix vesicles, must be necessary. In contrast to PO43− synthesis 
and supplementation, Ca2+ is abundantly present in the tissue fluid, and annexins, which 
are acidic phospholipid-dependent Ca2+-binding proteins, are assumed to serve as the 

Figure 1. TEM observation of matrix vesicles and mineralized nodules. (a) Ultrastructure of osteoid
underlying mature osteoblasts (Ob). (b) When observed at a higher magnification, there seem to be
many matrix vesicles (white arrowheads), mineralized nodules (CN), and collagen fibrils (Co, arrows).
(c) Amorphous non-crystalline phosphates (arrowheads) are observed along the inner membrane
of matrix vesicles (MV) at the early stage of matrix vesicle-mediated mineralization. (d) The grown
calcium phosphate crystals are seen inside the matrix vesicles. (e) The needle-like mineral crystals get
out of the matrix vesicles. Panel (a,b) are cited from Ref. [19], and (c–e) are from Ref. [44]. Reprinted
with permission from Ref. [19]. 2018, Springer Nature. Reprinted with permission from Ref. [44].
1985, Japanese Association for Oral Biology. Bar, 2 mm (a), 1 mm (b), 30 nm (c–e).
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2.2. Distribution of Ca and P in the Vicinity of Matrix Vesicles in the Osteoid

Electron energy loss spectroscopy, or EELS, enables elemental mapping and can detect
calcium (Ca) and phosphorus (P) at an ultra-structural level [45]. A previous report revealed
that Ca and P were highly accumulated inside matrix vesicles; however, Ca was evenly
and abundantly distributed in the vicinity of the matrix vesicles, while P was detected
predominantly in organic materials, such as collagen fibrils and cells, but not in the matrix
vesicle vicinity [45]. Nucleation and growth of calcium phosphate crystals require the influx
of Ca2+ and PO4

3− inside the matrix vesicles from the extracellular fluid. Taking Ca2+ and
PO4

3− distribution into consideration, a biological mechanism governing the local synthesis
and supplementation of PO4

3−, as well as its subsequent influx into matrix vesicles, must be
necessary. In contrast to PO4

3− synthesis and supplementation, Ca2+ is abundantly present
in the tissue fluid, and annexins, which are acidic phospholipid-dependent Ca2+-binding
proteins, are assumed to serve as the Ca2+ channels of the matrix vesicles. Annexin A5 is
the most abundant protein among annexins [46–48], and it appears to display Ca2+ channel
activity in matrix vesicles. Kirsch et al. have previously reported that annexin A5 mediates
Ca2+ influx into matrix vesicles secreted from hypertrophic chondrocytes in the growth
plate, thereby initiating cartilage mineralization [49]. Thus, Ca2+ that is abundantly present
near the matrix vesicles may enter the vesicles via annexin A5. Alternatively, to enable
the influx and accumulation of PO4

3− in the vesicles, the interplay among membrane
transporters and enzymes on the plasma membranes appears to be necessary.

2.3. Local Synthesis of PO4
3− by the Activities of TNAP and ENPP1

One of the most important enzymes enabling mineralization is TNAP, a glycosylphos-
phatidylinositol anchor enzyme associated with the cell membranes of matrix vesicles and
osteoblastic cells. TNAP can hydrolyze various phosphate esters, especially pyrophos-
phates (PPi), and is broadly recognized as a hallmark of osteoblastic cells. However, the
method of PPi supplementation is important. Currently, it is believed that ENPP1 mainly
supplies PPi. ENPP1 is composed of two N-terminal somatomedin B-like domains, a
catalytic domain, and a nuclease-like domain. Crystalline structure analysis of ENPP1
demonstrated that the nucleotides are accommodated in a pocket formed by an insertion
loop in the catalytic domain of ENPP1, implying a preference for an ATP substrate [7].
Therefore, in bone mineralization, the catalytic activity of ENPP1 may generate PPi, pre-
sumably using ATPs in the extracellular fluid. The resultant PPi is then hydrolyzed by
TNAP into PO4

3−. However, PPi is also known to inhibit mineralization by binding to
nascent hydroxyapatite crystals, thereby preventing crystal overgrowth [50–52]. Hence, a
balance between PPi and PO43− is important for normal bone mineralization. TNAP is
not uniformly distributed on the cell membranes of osteoblasts; it was distinctly observed
on the basolateral sides rather than the secretory (osteoidal) domains [37,53]. We recently
demonstrated that ENPP1 was mainly localized in mature osteoblasts and osteocytes, while
TNAP was seen on preosteoblasts and mature osteoblasts [54] (Figure 2). It is interest-
ing that ENPP1, which produces PPi, a mineralization inhibitor, is localized near matrix
vesicles, whereas TNAP is located on preosteoblasts and the basolateral membranes of
mature osteoblasts, which are relatively distant from matrix vesicles (Figure 2). It may be
important that the biological PO43− influx is balanced with the nucleation and growth of
crystalline calcium phosphates inside the matrix vesicles, as well as the inhibition of ectopic
mineralization of calcium phosphates deposited in areas other than the matrix vesicles, e.g.,
collagen fibrils without mediating matrix vesicles.
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Figure 2. Immunolocalization of TNAP and ENPP1. (a) Double detection of TNAP (brown) and 
ENPP1 (red). Note preosteoblasts (pre-ob) and the baso-lateral sides of osteoblasts (ob) show an 
intense reactivity of TNAP (brown), while the cytoplasm of osteoblasts and osteocytes (ocy) 
reveals ENPP1 reactivity (red). (b) A schematic design of the distribution of TNAP (red lines), 
ENPP1 (green color), and PHOSPHO1 (yellow lines). Panel a and b are modified from Ref. [54]. 
Adapted with permission from Ref. [54]. 2021, Elsevier. Bar, 15 mm (a). 
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that Pit1 and Pit2 form heterodimers, sense extracellular PO43− concentrations, and 
increase the expression of matrix Gla protein (MGP) and osteopontin via the 
extracellular signal-regulated kinase (ERK) pathway [55–57]. These reports suggest that 
Pit1 and Pit2 function not only as PO43– transporters (the influx of Pi from extracellular to 
intra-vesicular) but also as Pi sensors and transmit signals of the rapidly accelerated 
fibrosarcoma (Raf)/mitogen-activated protein kinase (MEK)/ERK pathway to synthesize 
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Figure 2. Immunolocalization of TNAP and ENPP1. (a) Double detection of TNAP (brown) and
ENPP1 (red). Note preosteoblasts (pre-ob) and the baso-lateral sides of osteoblasts (ob) show an
intense reactivity of TNAP (brown), while the cytoplasm of osteoblasts and osteocytes (ocy) reveals
ENPP1 reactivity (red). (b) A schematic design of the distribution of TNAP (red lines), ENPP1 (green
color), and PHOSPHO1 (yellow lines). Panel a and b are modified from Ref. [54]. Adapted with
permission from Ref. [54]. 2021, Elsevier. Bar, 15 mm (a).

2.4. Transport of PPi and PO4
3− via ANK and Pit1/Pit2

ANK, encoded by the progressive ankylosis gene (Ank), can serve as a non-enzymatic
PPi channel, allowing PPi to pass through the plasma membrane to the outside of the
cell [16,17]. As shown in our recent reports, the immunoreactivity of ENPP1 was detected
not only in the cell membranes but also in the cytoplasmic region of osteoblasts and
osteocytes, indicating the presence of both extracellular and intracellular PPi in these
cells [54]. It is therefore likely that the ANK-mediated outflow of intracellular PPi may be
involved in the dynamic equilibrium between intra- and extracellular levels of PPi. After
the outflow of PPi to the extracellular region, TNAP hydrolyzes PPi into PO4

3−.
Extracellular PO4

3− may pass through the plasma membrane of the matrix vesicles
by Pit1 and Pit2 mediation. Pit1 and Pit2 are type III sodium-inorganic phosphate (Pi)
co-transporters encoded by Slc20a1 and Slc20a2 [8–12]. Recently, it has been reported that
Pit1 and Pit2 form heterodimers, sense extracellular PO4

3− concentrations, and increase
the expression of matrix Gla protein (MGP) and osteopontin via the extracellular signal-
regulated kinase (ERK) pathway [55–57]. These reports suggest that Pit1 and Pit2 function
not only as PO4

3− transporters (the influx of Pi from extracellular to intra-vesicular) but also
as Pi sensors and transmit signals of the rapidly accelerated fibrosarcoma (Raf)/mitogen-
activated protein kinase (MEK)/ERK pathway to synthesize bone matrix proteins [58,59].
Regarding the matrix vesicles, Pit1 and Pit2 seem to serve as transporters of PO4

3− from
the extracellular fluid to intra-vesicular regions of the matrix vesicles.
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2.5. PHOSPHO1 for PO4
3− Production inside Matrix Vesicles

Alternative to the biological function of ENPP1/TNAP, PHOSPHO1 is an enzyme
highly expressed in mineralizing osteoblasts and hypertrophic chondrocytes [60] (Figure 2).
This enzyme has been implicated in bone and cartilage formation and is thought to func-
tion inside cells and matrix vesicles to generate PO4

3− using phosphocholine and phos-
phoethanolamine, which are components of the lipid bilayers of matrix vesicles [13–15].
Roberts et al. documented that PHOSPHO1 is restricted to mineralizing regions of the bone
and growth plate and plays a role in the initiation of matrix vesicle-mediated mineraliza-
tion [14]. Consistently, Phospho1−/− mice displayed hypo-mineralization of the bone at birth,
biomechanical incompetency, scoliosis, and spontaneous greenstick fractures [61,62]. More
recently, Dillon et al. demonstrated ectonucleotide phosphodiesterase/pyrophosphatase
member 6 (Enpp6)−/− mice also revealed hypo-mineralization [63]. ENPP6 is a member
of the nucleotide pyrophosphatase/phosphodiesterase family with lysophospholipase C
activity, generating phosphocholine with a monoacylglycerol byproduct [64–66]. There-
fore, ENPP6 may functionally lie upstream of PHOSPHO1 to generate intra-vesicular
phosphocholine. As proposed by Stewart et al. (2018), ENPP6, as well as phospho-
lipase A2 (PLA2), may act in sequence in the matrix vesicle membranes to produce
phosphocholine, which PHOSPHO1 subsequently hydrolyzes into PO4

3− [67]. Taken
together, both PLA2/ENPP6/PHOSPHO1 and TNAP/ENPP1/Pit1/Pit2 are important
cascades for liberating and increasing the PO4

3− concentration in matrix vesicles. Both
PLA2/ENPP6/PHOSPHO1 and TNAP/ENPP1/Pit1/Pit2 pathways may be necessary for
normal mineralization in the bone.

3. Development of Mineralized Nodules and Collagen Mineralization
3.1. Growth of Mineralized Nodules

The calcium phosphate crystals that are nucleated inside the matrix vesicles grow
in all directions and then penetrate the plasma membrane to exit the vesicles, eventu-
ally forming mineralized nodules, which are also referred to as calcifying globules [1,3,4].
Under TEM observation, mineralized nodules appear as globular structures composed
of radially assembled hydroxyapatite crystals [44,68]. It seems likely that the growth of
mineralized nodules is regulated by non-collagenous proteins in the osteoid. Among
these materials, osteopontin is especially suited to regulating mineralization because it is a
negatively charged and highly phosphorylated molecule that can effectively inhibit hydrox-
yapatite formation and growth [6,69]. Osteocalcin is another important bone matrix protein
subjected to vitamin K-dependent carboxylation at its glutamate residues. Using crystal
structural analysis, Hoang et al. demonstrated a negatively charged protein surface in
γ-carboxylated osteocalcin, which could bind to Ca2+ in a hydroxyapatite crystal lattice [70].
In our experiments, the administration of warfarin, an inhibitor for the γ-carboxylation of
glutamine residues, resulted in the failure of mineralized nodule formation and the dis-
persal of numerous needle-shaped crystal mineral fragments throughout the osteoid [71]
(Figure 3). Recently, γ-carboxylase-deficient mice revealed the same abnormality with
disassembled, scattered crystal minerals in the bone, which is consistent with our obser-
vation of the warfarin-treated rats [72]. When used clinically, warfarin administration to
women in the first trimester of pregnancy is associated with embryopathy characterized
by stippled epiphyses and distal extremity hypoplasia [73]. Therefore, osteocalcin may
play an important role in the formation of the globular assembly of needle-shaped mineral
crystals, i.e., mineralized nodules, which can make focal contact with collagen fibrils to
enable normal mineralization in bone.
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permission from Ref. [71]. 2009, Oxford University Press. Bar, 2 mm. 

3.2. Collagen Mineralization 
Collagen mineralization begins at the point of contact with mineralized nodules. 

TEM observations demonstrated that mineralization spreads from the contact point of 
the mineralized nodules toward the periphery of the collagen fibrils [2]. This finding 
suggests that collagen mineralization orderly progresses from the contact points with 
mineralized nodules, presumably allowing the regular deposition of calcium phosphate 
crystals onto the collagen fibrils. At a higher magnification, the spicules of calcium 
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(tropocollagen) of collagen fibrils, thus indicating that mineral crystals are deposited on 
the superhelix, which serves as a scaffold for collagen mineralization. After contact with 
the mineralized nodules, the collagen fibrils eventually become completely mineralized. 
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with the surface of newly formed collagen fibrils are localized to the large space between 
collagen fibrils. By contrast, in the areas close to the mineralization front of the osteoid, 
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matrix, where they differentiate into osteocytes. Immediately before becoming 

Figure 3. TEM observation on normal mineralized nodules and dispersed mineral crystals in osteoid.
(a) Normal rats demonstrate globular assembly of mineral crystals in osteoid. (b) When administered
with warfarin, an inhibitor of g-carboxylation, however, many dispersed mineral crystals (arrows)
are seen in the osteoid. The images are cited from Ref. [71]. Reprinted with permission from Ref. [71].
2009, Oxford University Press. Bar, 2 mm.

3.2. Collagen Mineralization

Collagen mineralization begins at the point of contact with mineralized nodules.
TEM observations demonstrated that mineralization spreads from the contact point of the
mineralized nodules toward the periphery of the collagen fibrils [2]. This finding suggests
that collagen mineralization orderly progresses from the contact points with mineralized
nodules, presumably allowing the regular deposition of calcium phosphate crystals onto
the collagen fibrils. At a higher magnification, the spicules of calcium phosphate crystals
can be seen on the fibrillar structures identical to the superhelix (tropocollagen) of collagen
fibrils, thus indicating that mineral crystals are deposited on the superhelix, which serves
as a scaffold for collagen mineralization. After contact with the mineralized nodules, the
collagen fibrils eventually become completely mineralized.

Proteoglycans such as decorin and biglycan, which directly bind the collagen surface
through GAG chains, inhibit the growth of mineral crystals [74–76]. Collagen mineral-
ization in the osteoid increases proportionally based on the distance from the osteoblasts,
whereas the amount of decorin in the osteoid decreases further away from the bone sur-
face [77]. In the osteoid close to the osteoblasts, proteoglycans combined with the surface
of newly formed collagen fibrils are localized to the large space between collagen fibrils.
By contrast, in the areas close to the mineralization front of the osteoid, proteoglycans
are almost exclusively bound to mature collagen fibrils and are rarely found between the
narrowed spaces of collagen fibrils. Moreover, the levels of decorin mRNA and protein
expression are significantly decreased before and at the beginning of matrix mineral-
ization [78]. Therefore, collagen mineralization may also be regulated by proteoglycans.
Proteoglycans not only contribute to the inhibition of bone mineralization but also modulate
the aggregation of collagen fibrils [23,79,80]. Biglycan-knockout mice and biglycan/decorin
double-knockout mice exhibit reduced bone mineral density as well as abnormal mor-
phology of collagen fibrils in the bone matrix [21]. Taken together, the growth of mineral
crystals and the maturation of collagen fibrils through the modulation of proteoglycans
substantially affect the progression of collagen mineralization.

4. Osteocyte Network and the Biological Function of Regulating Bone Mineralization
4.1. Distribution of the Osteocyte Network

Osteoblasts secrete bone matrix proteins and can become embedded in the bone ma-
trix, where they differentiate into osteocytes. Immediately before becoming embedded
into the bone matrix, osteoblasts rearrange the actin filament assembly along the cell mem-
branes and the cytoplasmic processes, which resemble that of embedded osteocytes [24].
This implies that the osteoblasts approaching osteocytic differentiation and the newly-
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differentiated osteocytes decide the geometrical structure of the cellular network of their
cytoplasmic processes. In addition, the collagen fibril orientation seems to be associated
with the direction of the cytoplasmic processes of the osteoblasts and newly-differentiated
osteocytes [81]. Repp et al. have documented that the intimate link between the OLCS and
the collagen molecules implies an interplay between osteocyte processes and the arrange-
ment of the surrounding collagen fibers [82]. Regularly distributed osteocytes and their
cytoplasmic processes appear to control the rearrangement of mineral crystals parallel to
the long axis of the collagen fibrils [83].

Recent review articles have shown variations in the osteocyte distribution within
differently organized bone matrices during bone development and morphogenesis [84,85].
There are different types of osteogenesis (i.e., static osteogenesis (SO) and dynamic osteo-
genesis (DO)), which decide the fate of the osteocytes and the geometrical arrangement
of the canalicular network. Although SO and subsequent DO occur in the process of
intramembranous ossification, only DO occurs directly close to the remnants of the cal-
cifying cartilage during endochondral ossification [84,85]. We thus postulated that the
slowly-embedded osteocytes in the bone matrix, especially in the cortical bone that induces
SO and subsequent DO, show the geometrically regulated distribution of cell bodies and
cytoplasmic processes.

Osteocytes are housed in osteocytic lacunae in the bone, while their thin cytoplasmic
processes pass through narrow channels, referred to as osteocytic canaliculi, interconnected
through gap junctions [86,87]. Thereby, osteocytes build two passageways: one is a cytoso-
lic track through the cytoplasmic processes of osteocytes and osteoblasts, and the other is a
narrow space between the canalicular walls and the cytoplasmic processes. It is believed
that osteocytes and their meshwork of cytoplasmic processes establish a functional group
for intercellular communication, molecular transport, mechanical stress-sensing, and miner-
alization regulation [25–28]. However, it is likely that osteocytes featuring two passageways
in the OLCS communicate with other bone cells, such as osteoblasts/bone lining cells and
preosteoblasts, by mediating the processes of wiring and volume transmission, as reported
by Marotti [88]. This indicates that osteoblasts and osteocytes may reciprocally modulate
their functions not only through volume transmission (paracrine and autocrine stimulation)
but also through wiring transmission (that is, in a neuronal-like manner). In addition,
recent reports have demonstrated new insights into osteocytic function, such as the piezo1
ion channel for mechanical signaling [89], the Cas–NF-κB interplay in osteocytes upon
shear stress induction [90], and EphrinB2-RhoA-limited autophagy in osteocytes during
secondary mineralization [91], all of which may be breakthroughs for better understanding
the physiological function of osteocytes and their network.

4.2. Osteocyte-Derived Molecules Involved in Peripheral Mineralization

Osteocytes physiologically synthesize several important molecules, e.g., dentin ma-
trix protein (DMP) 1, matrix extracellular phosphoglycoprotein (MEPE), osteopontin, and
Phex, for regulating surrounding bone mineralization. DMP1 has a high Ca2+-binding
capacity and, therefore, is postulated to play a role in bone mineralization in the vicinity
of osteocytes [33]. Recently, Oya et al. demonstrated that C-terminal DMP1 is phosphory-
lated within osteocytes and then secreted into the peri-canalicular matrix of mineralized
bone, suggesting that negatively-charged phosphorylated C-terminal DMP1 plays an im-
portant role in recruiting Ca2+ in the peri-canalicular matrix [34]. DMP1 belongs to the
small integrin-binding ligand N-linked glycoprotein (SIBLING) family, which also includes
MEPE, osteopontin, bone sialoprotein, and dentin sialo-phosphoprotein, and is encoded
by a gene located on human chromosome 4q21 and mouse chromosome 5q21 [92,93]. Re-
garding MEPE, Rowe et al. identified the novel functional domain acidic serine-rich and
aspirate-rich motif (ASARM) peptide, which is highly conserved across species. MEPE can
be cleaved by cathepsin B to release the carboxy-terminal ASARM peptide [31,94], which
is then phosphorylated to inhibit bone mineralization [31]. However, MEPE reversibly
binds to Phex, which protects MEPE from proteolysis by cathepsin B, indicating that the
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MEPE-Phex complex blocks the inhibition of mineralization [32]. As with osteopontin,
Addison et al. demonstrated that the ASARM peptide of osteopontin inhibited mineraliza-
tion by binding to hydroxyapatite in a phosphorylation-dependent manner and that Phex
blocked this mineralization inhibition [95]. Since osteocytes express abundant MEPE [96],
DMP1 [33], and osteopontin, especially in Hyp mice fed a high-phosphate diet [97], it
can be easily assumed that osteocyte-derived SIBLINGs would regulate peripheral bone
mineralization by the osteocytes. This postulation is evidenced by the report that a DMP1
absence results in rickets or osteomalacia in mice [98] and by autosomal recessive hypophos-
phatemic rickets/osteomalacia (ARHR) in human patients [99]. Hence, osteocytes seem to
be involved in the regulation of the surrounding mineralization. However, Phex/SIBLINGs
are usually associated with the congenital deformities rickets and osteomalacia. Therefore,
it is necessary to elucidate whether SIBLINGs play an important role in the physiological
regulation of bone mineralization in a normal state (Figure 4).
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5. Cellular Interplay between Osteoblasts and Osteocytes in Bone Mineralization

Osteoblasts secrete matrix vesicles, which provide initiation sites for mineralization
during primary mineralization, while osteocytes appear to regulate bone mineralization
through Phex/SIBLINGs. Taking these findings into account, the interplay between os-
teoblasts and osteocytes in the regulation of bone mineralization seems likely. Matrix
vesicles secreted by osteoblasts grow into globular assemblies of needle-like calcium phos-
phate crystals, called mineralized nodules, which then induce collagen mineralization.
During nucleation and subsequent growth inside the vesicles, the influx of Ca2+ and PO4

3−

is promoted by many enzymes and membrane transporters located on the matrix vesicles
and mineralized nodules (particularly, they are located on the ruptured membranes of
the vesicles).

However, the growth of large, terminal mineralized nodules that are distant from
osteoblasts, as well as collagen mineralization, may be regulated by a mechanism other than
enzymes associated with matrix vesicles secreted by the osteoblasts. In the osteoid, there
seem to be two possible pathways that supply Ca2+ and PO4

3− to terminal mineralized
nodules and collagen mineralization: one is from the osteoblast-covered bone surface, and
the other is from osteocytic canaliculi, which are opened to the osteoid. We have observed
abundant ENPP1 on the secretory membranes of osteoblasts, while TNAP activity was
evident on the basolateral membranes rather than the secretory side [81]. This may imply
that ENPP1 provides abundant PPi beneath the osteoblasts to inhibit excessive nucleation
and Ca2+ and PO4

3− deposition outside the matrix vesicles. In other words, matrix vesicle-
mediated mineralization is initiated by the finely-tuned nucleation of Ca2+ and PO4

3− only
inside the vesicles.

In our study, the bones of the kl/kl mice displayed broad unmineralized areas despite
highly concentrated serum Ca2+ and PO4

3− [33]. However, under higher magnification by
TEM, the osteoblasts of the kl/kl mice produced many matrix vesicles which did not grow
into large, terminal mineralized nodules [100]. Hence, supplementation with Ca2+ and
PO4

3− from osteocytic canaliculi may be predominant compared with that from osteoblast-
covered bone surfaces, or Ca2+ and PO4

3− supplementation from both pathways may
be necessary for normal mineralization. Whichever the reason, the interplay between
osteoblasts and osteocytes appears to be necessary for the sequential, finely-tuned pro-
cesses of normal bone mineralization, i.e., nucleation in the matrix vesicles, formation of
mineralized nodules, and collagen mineralization.

Wingless/int1 (Wnt)/β-catenin signaling may be involved in the interplay of os-
teoblasts and osteocytes on mineralization. Zhou et al. have demonstrated the downregula-
tion of the Wnt/β-catenin pathway during the terminal mineralization process. They also
revealed that aberrant activation of Wnt/β-catenin signaling in osteocytes resulted in the
deposition of extra-large mineralized nodules on collagen fibrils [101]. Wang et al. have
proposed the paradigm shift that bone mineralization is directly linked to osteocytes but
not osteoblasts [76]. The authors also documented that osteocyte defects lead to the onset
of osteomalacia via a sharp increase in β-catenin mechanisms.

6. Conclusions

Primary mineralization in bone is achieved by matrix vesicle-mediated mineralization;
matrix vesicles contain a variety of membrane transporters and enzymes involved in the
nucleation and subsequent growth of crystalline calcium phosphates inside the vesicles.
For proper mineralization, the biological accumulation of Ca2+ and PO4

3− in the vesicles
is necessary. Of particular importance is the influx of PO4

3− into matrix vesicles, which
involves a complex interplay among ENPP1, ANK, TNAP, and Pit1. Crystalline calcium
phosphates grow radially, penetrate the vesicle membranes, and then exit the vesicles
to form mineralized nodules, which are globular assemblies of needle-shaped mineral
crystals. In contrast to primary mineralization, secondary mineralization increases bone
mineral density, presumably due to osteocytic functions. Osteocytes appear to regulate
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bone mineralization, which is mediated by Phex/SIBLINGs. Thus, bone mineralization is
biologically regulated by osteoblasts and osteocytes.
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