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Clinical subphenotypes in COVID-19: derivation, validation,
prediction, temporal patterns, and interaction with social
determinants of health
Chang Su 1, Yongkang Zhang1, James H. Flory2, Mark G. Weiner 1, Rainu Kaushal 1,3,4✉, Edward J. Schenck 3,5✉ and
Fei Wang 1✉

The coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the biological mechanisms of host response
to the viral infection remains limited. Identification of meaningful clinical subphenotypes may benefit pathophysiological study,
clinical practice, and clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine learning and
routinely collected clinical data, assess temporal patterns of these subphenotypes during the pandemic course, and examine their
interaction with social determinants of health (SDoH). We retrospectively analyzed 14418 COVID-19 patients in five major medical
centers in New York City (NYC), between March 1 and June 12, 2020. Using clustering analysis, 4 biologically distinct subphenotypes
were derived in the development cohort (N= 8199). Importantly, the identified subphenotypes were highly predictive of clinical
outcomes (especially 60-day mortality). Sensitivity analyses in the development cohort, and rederivation and prediction in the
internal (N= 3519) and external (N= 3519) validation cohorts confirmed the reproducibility and usability of the subphenotypes.
Further analyses showed varying subphenotype prevalence across the peak of the outbreak in NYC. We also found that SDoH
specifically influenced mortality outcome in Subphenotype IV, which is associated with older age, worse clinical manifestation, and
high comorbidity burden. Our findings may lead to a better understanding of how COVID-19 causes disease in different populations
and potentially benefit clinical trial development. The temporal patterns and SDoH implications of the subphenotypes may add
insights to health policy to reduce social disparity in the pandemic.
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INTRODUCTION
The outbreak of coronavirus disease 2019 (COVID-19), caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection, has led to a pandemic that imposed tremendous pressure
on healthcare systems globally1. As the pandemic continues and the
second wave has emerged in the US and many other countries,
research is still needed to understand how SARS-CoV-2 causes the
wide spectrum of COVID-19 disease. Previous studies have
uncovered substantial variation in the host response to SARS-CoV-
2 and the variable clinical manifestations of this disease, including
respiratory failure, kidney injury, and cardiovascular dysfunction2–8.
Pivotal studies of corticosteroids9 and anticoagulation10,11 demon-
strate differential responses in distinct subpopulations based on
severity of disease. The pathophysiology of differential organ
dysfunction in COVID-19 remains unclear across varied patient
populations. Prior to the COVID-19 pandemic, identification of
biologically distinct, data-driven subphenotypes12,13 has helped to
disentangle complex syndromic disease, such as sepsis14,15, ARDS16,
heart failure17,18, diabetes19, and Alzheimer’s disease20.
Identifying robust subphenotypes in COVID-19 patients could

lead to improved understanding of biological mechanisms of host
response to SARS-CoV-2 infection and may identify subpopula-
tions that could be prioritized for clinical trial enrollment13,21.
Previous efforts22–25 have been made in this area but remain

limited probably due to cohort size, data availability, and lacking
evaluation of robustness and usability of the identified subphe-
notypes. In addition, the hospitalized case fatality rate of COVID-19
has varied over the course of the pandemic26,27 and according to
social determinants of health (SDoH)28–30. Exploration of temporal
patterns and SDoH characteristics in conjunction with subpheno-
types may derive new insights to improve public health.
In this analysis, our goal was to derive and validate COVID-19

subphenotypes amongst a population of patients who pre-
sented to the emergency department (ED) or were hospitalized
in multiple health systems in New York City (NYC). Specifically,
we used routinely collected clinical data to first derive
subphenotypes using the agglomerative hierarchical clustering
model. Then, multiple strategies in data preprocessing, data
filtering, and data-driven models (both unsupervised clustering
model and supervised predictive model) were used to confirm
reproducibility and usability of the identified subphenotypes.
After that, statistical analyses were conducted to evaluate the
characteristics and clinical outcomes of the subphenotypes.
Further analyses were performed to examine temporal patterns
of the subphenotypes and impacts of SDoH status on
subphenotype-level outcomes. The overall workflow of our
study is illustrated in Fig. 1.
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RESULTS
Patients
A total of 14418 patients with confirmed COVID-19 between
March 1 and June 12, 2020, treated in ED (N= 2354, 16.3%) or
inpatient (N= 12064, 83.7%) settings, were included for analysis
from the five major medical centers in New York City (NYC). Details
of inclusion and exclusion criteria are presented in the

Supplementary Fig. 1. We identified 2853 (19.8%) deaths within
60-day after COVID-19 confirmation in total, including 2801
(19.4%) in-hospital deaths and 52 (4%) deaths after discharge
from COVID related hospitalization or ED visits. Considering
population diversity (especially race) of the five medical centers
(see Supplementary Table 1), we combined four centers and
randomly divided them into the development cohort (70%) and

Fig. 1 A schematic of the analysis plan. a Strategy for construction of development, internal validation, and external validation cohorts.
b Data preparation for clustering analysis. c Derivation of subphenotypes in the development cohort. Reproducibility of the identified
subphenotypes were evaluated in multiple ways, including d sensitivity analyses in the development cohort and subphenotype rederivation
in the internal validation cohort; and e training subphenotype predictive model in the development cohort and f using it to predict
subphenotype memberships of patients in the external validation cohort. Last, g further analyses were conducted to interpret
subphenotypes, explore temporal patterns of subphenotypes during the pandemic, and evaluate impact of SDoH characterisitics on
subphenotypes. NYC New York City, SDoH social determinants of health, UMAP Uniform Manifold Approximation and Projection.
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internal validation cohort (30%); patients of the remaining center
were used as the external validation cohort (see Fig. 1 and
Supplementary Fig. 1).
The development cohort contained a total of 8199 patients with

a median age of 65.35 (interquartile range [IQR] [50.57, 75.17])
years old, consisting of 3787 (46.2%) females, 2036 (24.8%) white
patients, and 2155 (26.3%) black patients. The internal validation
cohort contained a total of 3519 patients with similar patient
characteristics when compared with the development cohort, with
a median age of 63.51 (IQR [50.95, 75,17]) years old, consisting of
1585 (45.0%) females, 838 (23.8%) white patients, and 915 (26%)
black patients. The external validation cohort contained a total of
2700 patients. It had a median age of 65.85 (IQR [51.08, 77.38])
years old and consisted of 1305 (48.3%) females, 675 (25.0%)
white patients, and 545 (20.2%) black patients. Across the three
cohorts, the overall 60-day mortality rates after ED or hospital
discharge were 18.65, 19.78, and 20.59%, respectively. More
details of the characteristics of the studied cohorts appeared in
Table 1.

Subphenotypes derivation
In the development cohort, the agglomerative hierarchical
clustering model identified 4 distinct subphenotypes based on
presenting clinical data of the patients (see Supplementary Figs. 3
and 4 and Supplementary Results). Characteristics including
demographics, clinical variables, comorbidities, clinical outcomes,
and medication treatments across the 4 subphenotypes were
presented in Table 2 and Figs. 2 and 3.
Subphenotype I consisted of 2707 (33.02%) patients. Compared

to the others, it included more younger (median age 57.45 years,
IQR [42.70, 70.02]) and female (N= 1601 [59.15%]) patients. Those
patients had more normal values across all clinical variables and
lower chronic comorbidity burden. The patients also had better
clinical outcomes including a low 60-day mortality (N= 188
[6.94%]) and a low rates of mechanical ventilation (N= 190
[7.02%]) and ICU admission (N= 242 [8.94%]).
Subphenotype II consisted of 3047 (37.16%) patients. Compared

to other subphenotypes, it included more male patients (N= 1941
[63.70%]) and was likely to have more abnormal inflammatory
markers (such as C-reactive protein, erythrocyte sedimentation
rate, interleukin 6, lactate dehydrogenase, lymphocyte count,

neutrophil count, white blood cell count, and ferritin), and markers
of hepatic dysfunctions (such as ferritin, alanine aminotransferase,
aspartate aminotransferase, and bilirubin). Overall comorbidity
burden of Subphenotype II was low. Clinical outcomes including
60-day mortality (N= 528 [17.33%]), mechanical ventilation (N=
527 [17.30%]), and ICU admission (N= 675 [22.15%]) of Sub-
phenotype II were at a moderate level.
Subphenotype III included 1486 (18.12%) patients, consisting of

more older (median age 69.45 years, IQR [57.05, 79.62]) and black
(N= 503 [33.85%]) patients, compared to subphenotypes I and II.
Those patients of Subphenotype III were likely to have more
abnormal renal dysfunction markers (such as blood urea nitrogen,
creatinine, chloride, and sodium) and hematologic dysfunction
markers (such as d-dimer, hemoglobin, and red blood cell
distribution width). Overall comorbidity burden of Subphenotype
III was high. Clinical outcomes including 60-day mortality (N= 337
[22.68%]), intubation (N= 195 [13.12%]), and ICU admission (N=
242 [16.29%]) of Subphenotype II were close to that of
Subphenotype II and at a moderate level as well.
Subphenotype IV included 959 (11.70%) patients. Compared to

other subphenotypes, it included more older (median age 75.53
years, IQR [64.10, 84.83]) and male (N= 588 [61.31%]) patients.
Those patients of Subphenotype IV had more abnormal values
across all clinical variables and higher chronic comorbidity burden
than the others. Obesity burden is lower in Subphenotype IV than
others. In line with its biological characteristics, Subphenotype IV
had the worst clinical outcomes in 60-day mortality (N= 476
[49.64%]), intubation (N= 242 [25.23%]), and ICU admission (N=
335 [34.93%]). In addition, the medications including antibiotics,
corticosteroids, and vasopressor were more frequently used in
Subphenotype IV.

Subphenotype reproducibility and prediction
In the development cohort, sensitivity analyses under two
different settings (sensitivity to quality control and outliers and
sensitivity to clustering methods) confirmed the underlying 4-
cluster structure of the data (see Supplementary Figs. 3 and 4,
Supplementary Table 5, and Supplementary Results). Patients’
memberships of the 4 clusters rederived by sensitivity analyses
were highly consistent with those derived in the primary analysis
(see Supplementary Fig. 6). Moreover, we did not find substantial

Table 1. Characteristics of the development, internal validation, and external validation cohorts.

Characteristics Cohort

Development cohort Internal validation cohort External validation cohort

No. of patients 8199 3519 2700

Construction method 70% patients (randomly selected) from
4 medical centers

Remaining 30% patients from
4 medical centers

Patients from the last center

Age, y, Median (IQR) 63.53 [50.57–75.15] 63.51 [50.95–75.17] 65.58 (51.08–77.39)

Sex female, N (%) 3787 (46.2) 1585 (45.0) 1305 (48.3)

Race, N (%)

White 2036 (24.8) 838 (23.8) 675 (25.0)

Black 2155 (26.3) 915 (26.0) 545 (20.2)

Asian 409 (5.0) 193 (5.5) 28 (1.0)

Other/unknown 3599 (43.9) 1573 (44.7) 1452 (53.8)

Outcomes (60 days), N (%)

Mortality 1529 (18.65) 696 (19.78) 556 (20.59)

Mechanical ventilation
(intubation

1154 (14.07) 497 (14.12) 248 (9.19)

ICU admission 1494 (18.22) 661 (18.78) –

ICU intensive care unit, IQR interquartile range, SDoH social determinants of health.
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changes in clinical characteristics of the subphenotypes in the
sensitivity analyses (see Supplementary Tables 6 and 7).
Subphenotypes were also rederived in the internal validation

cohort, where the 4-cluster structure was found as the optimal fit
as well (see Supplementary Fig. 7 and Supplementary Results).
Clinical characteristics of the rederived subphenotypes in the
internal validation cohort, including demographics, laboratory
variables, comorbidities, and clinical outcomes, also showed very
similar patterns with the subphenotypes derived in the primary
analysis (see Fig. 3, Supplementary Fig. 8, and Supplementary
Table 8).
To further evaluate subphenotype robustness and usability, we

trained a predictive model of subphenotypes in the development
cohort and used it to predict subphenotype membership in the
external validation cohort. Clinical variables of presenting
laboratory tests for clustering analysis were used as candidate
predictors. The trained predictive model (XGBoost classifier)
achieved very high performance in predicting each subphenotype
(see Supplementary Fig. 9). SHapley Additive exPlanation (SHAP)
values illustrated contributions of the clinical variables in
distinguishing each subphenotype from others (see Supplemen-
tary Fig. 10). Patterns of the produced SHAP values were highly in
line with the subphenotype characteristics: (1) normal values of
the clinical variables indicated Subphenotype I; (2) abnormal
inflammatory and hepatic markers were predictive of Subpheno-
type II; (3) abnormal renal and hematologic markers indicated
were likely to indicate Subphenotype III; (4) Subphenotype IV was
associated with abnormal values of most variables. After that, the
trained predictive model was used to predict subphenotype
memberships of patients in the external validation cohort. The
predicted subphenotypes in the external validation cohort were
well separated in the UMAP space (see Supplementary Fig. 11) and
showed clinical characteristics similar to findings in the primary
analysis (see Fig. 3, Supplementary Fig. 12, and Supplementary
Table 9).
Last, results from leave-one-center-out analysis also confirmed

the 4-cluster structure underlying our data (see Supplementary
Fig. 13). Meanwhile, subphenotypes identified by the leave-one-
center-out analysis among the whole population showed char-
acteristics in line with those identified in the primary analysis (see
Supplementary Table 10). Those above demonstrated stability of
the identified subphenotypes across the five centers.

Temporal characteristics of subphenotypes
Temporal patterns of the COVID-19 subphenotypes were illu-
strated by the bar charts, showing the composition of subpheno-
type memberships of patients confirmed per week, since the
outbreak in NYC, i.e., March 1, 2020 (see Fig. 4a–c). Except week 1
and week 14 that had few patients confirmed, the composition of
the 4 subphenotypes per week evolved over time and showed
similar patterns across the development, internal validation, and
external validation cohorts. In general, patients with confirmed
SARS-CoV-2 infection rapidly increased within the first month
since the outbreak and reached the peak at week 5 (early April).
Subphenotype I (mild symptom) and Subphenotype II (moderate
symptom, low comorbidity burden) dominated the time period
prior to the peak (first 4 weeks since outbreak). In contrast,
Subphenotype IV (severe symptom, high comorbidity burden) had
a low proportion within the first 4 weeks but showed a largely
increased proportion from week 6–9. Since week 10, the
proportion of Subphenotype I gradually increased while others
especially Subphenotype IV shrank. Subphenotype III (moderate
symptom, high comorbidity burden) had a relatively stable
proportion over time.Ta
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Fig. 2 Chord diagrams showing differences in abnormal clinical variables and comorbidity burden among subphenotypes. a Abnormal
biomarkers vs. all subphenotypes. b Abnormal biomarkers vs. each subphenotype. c Comorbidities vs. all subphenotypes. d Comorbidities vs.
each subphenotype. ATA asthma, CAD coronary artery disease, COPD chronic obstructive pulmonary disease, HF heart failure, HLD
hyperlipidemia, HTN hypertension.
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Impact of SDoH on subphenotypes
In general, worse SDoH in terms the socioeconomic variables were
likely in Subphenotype IV (see Supplementary Table 11). More-
over, logistic regression analysis identified similar patterns of
relationships between the SDoH variables with 60-day mortality
risk across subphenotypes; however, absolute log odds and
Hazard ratio of the SDoH variables varied across subphenotypes
(see Fig. 4d and Supplementary Tables 12 and 13). For example,
low absolute log odds were observed in all six SDoH variables in
Subphenotype I. In contrast, we did see increased absolute log
odds of all six SDoH variables in Subphenotype IV. Hazard ratio
showed similar pattern.
Agglomerative hierarchical clustering based on the SDoH

variables grouped the patients into a 3-cluster model (see
Supplementary Fig. 14 and Supplementary Results), which can
be interpreted as high (H), middle (M), and low (L) SDoH strata (see
Supplementary Table 14). Stratum L, representing disadvantaged
SDoH status, accounted for a slightly higher mortality rate (H vs. M
vs. L, 17.59 vs. 19.91 vs.19.98%, P-value= 0.08). In addition,
stratum L had a lower ICU admission rate (16.16%, P-value <
0.001). The relative high mortality but low ICU admission rate may
be caused by critical care strain during periods of increased
COVID-19 ICU demand, as suggested by a recent study31.
Distributions of the SDoH strata by biological subphenotypes
were shown in the Supplementary Table 15. In the analysis to
further explore how SDoH strata affected the outcome of each
biological subphenotype, we found varied patterns of correlations
between SDoH strata and 60-day mortality (see Fig. 4e) by
subphenotypes. Notably, in line with the results of the univariate
analysis above, SDoH strata were likely to have a strong impact on

the 60-day mortality in Subphenotype IV. Particularly, in Sub-
phenotype IV, SDoH stratum L was associated with a 55.19% 60-
mortality rate, which was 5.55% higher than the subphenotype
level (49.64%, see Table 2) and 8.52% higher than that of the SDoH
stratum H. In subphenotypes I, II, and III, we didn’t find mortality
rate discrepancy higher than 3% between any pair of SDoH strata.
Similarly, considering stratum H as reference, stratum L had largely
increased log odds of mortality in Subphenotype IV (log odds=
0.40, SD= 0.19, P-value= 0.04). (see Supplementary Table 16).

DISCUSSIONS
We derived subphenotypes of COVID-19 patients treated at five
major medical centers in NYC across the whole course of the first
wave of the pandemic, using the clinical data at the presentation
to the emergency department (ED) or hospital. Different from the
previous subphenotype studies of COVID-1922–24, we focused on a
larger, more representative, and diverse population presented at
the ED and/or hospitalized without COVID-19 specific therapy. We
derived subphenotypes using clustering analysis in the develop-
ment cohort and validated them using a combination of multiple
validation strategies, including the use of different data proces-
sing, different data filtering, and different machine learning
models (both unsupervised clustering and supervised predictive
models). All validation approaches confirmed the reproducibility
of the 4-cluster structure of the data and clinical characteristics of
the identified subphenotypes. We would also highlight that all
machine learning models used for subphenotype derivation and
validation were performed only on the presenting clinical
variables that were routinely collected in daily patient care and

Fig. 3 Kaplan–Meier (KM) plots for 60-day mortality by subphenotypes. The survival probabilities were shown with 95% confidence
interval. X-axis denotes time (days) after COVID-19 confirmation and Y-axis denotes the survival probability. a–c KM plots by subphenotypes in
the development, internal validation, and external validation cohorts, respectively.
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are available to providers by ED or hospital admission. This allows
us to potentially capture the underlying variable mechanisms of
the complex disease, but also enhances the generalizability and
feasibility of the identified subphenotypes to be used in clinical
practices and patient enrollment in clinical trials.
Importantly, the 4 subphenotypes identified were significantly

separated in demographics, clinical variables, and chronic

comorbidities, and strongly predictive of the 60-day mortality
outcome. Subphenotype IV included more older, male patients,
abnormal markers indicating hyperinflammation, liver injury,
cardiovascular problems, renal dysfunctions, and coagulation
disorders, and a higher comorbidity burden (except for obesity)
compared to the other subphenotypes. In contrast, Subphenotype
I was composed of relatively healthy, younger females who had

Fig. 4 Plots showing temporal patterns and SDoH implications of subphenotypes. a–c Proportions of subphenotype memberships of
patients confirmed per week, since March 1, 2020. d Log odds and Hazard ratio (mean values and standard deviation [error bar]) showing
associations between individual SDoH characteristics and 60-day mortality risk, using logistic regression analysis and Cox regression analysis,
adjusting for age and sex, respectively. e Plot showing alteration of 60-day mortality rate (Y-axis) of each SDoH stratum to that of
subphenotype level. *P-value < 0.05.
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more normal values across all markers and comorbidity burdens
compared to the other subphenotypes. There was a strong
concordance between their clinical profiles and outcomes, such as
Subphenotype IV showed the worst clinical outcome while
Subphenotype I showed the best outcome among the 4 sub-
phenotypes. These are in line with observations reported in a
previous small cohort study23. Interestingly, Subphenotypes II and
III showed similar, moderate-level 60-day mortality rates, but their
clinical characteristic profiles suggested that they were likely to
have distinct biological mechanisms. In particular, results from our
primary analysis and validation approaches demonstrated that
Subphenotype II was correlated with relative hyperinflammation,
while Subphenotype III was associated with renal injury, lower
platelet level and a high comorbidity burden (significantly higher
than Subphenotypes I and II, and equivalent to Subphenotype IV).
Moreover, in accordance with the clinical characteristics and
outcomes, the worse subphenotypes (Subphenotypes III and IV)
were more likely to receive medications in antibiotics, corticoster-
oids, and vasopressor than the others. These findings suggested
that our identified subphenotypes offer insight into the varied
mechanisms of COVID-19.
Typically, data-driven approaches for the identification of

subphenotypes of human disease are based on the unsupervised
clustering methods12,14–16,22–24,32. The natural attributes of the
unsupervised methodology in discovering underlying patterns
from data make them the best fit for subphenotype identification.
Once the subphenotypes were determined, there would be a
need of subphenotype membership assignments for new patients.
However, previous studies barely discussed such down-stream
usability of the identified subphenotypes. In this analysis, we built
a supervised predictive model of the identified subphenotypes.
Our predictive model achieved an ideal prediction performance in
the development cohort and predicted subphenotypes in the
external validation cohort that presented the same pattern of
clinical characteristics with that of the originally derived sub-
phenotypes. In this way, instead of validating the subphenotypes
in a different route, the predictive model brought additional
implications as: (1) it provides a feasible and accurate way to apply
the identified subphenotypes to clinical practice; and (2)
contributions of the clinical variables in subphenotype prediction
calculated by the SHAP method showed concordant patterns with
the subphenotypes’ clinical characteristics and hence confirmed
biological profiles of the subphenotypes in the multivariate
prospective.
Time is a crucial factor in the spread of COVID-19. Previous

studies have examined the temporal trends of COVID-19 out-
comes such as in-hospital mortality rate during the course of the
pandemic26,27, but limited attention has been drawn on evolving
patterns of COVID-19 phenotypes. We filled this gap in the present
study. Our observations suggested varied temporal trends of the
identified subphenotypes during the first 14 weeks of the
pandemic in NYC. Interestingly, since the COVID-19 outbreak in
NYC on March 1, 2020, Subphenotypes I and II dominated the time
period prior to the peak (first 4 weeks since outbreak), possibly as
they contained more relatively younger patients who may have
had more frequent social activities to be infected. Subphenotype
IV, with older age, worse health conditions, and poorer outcomes,
was boosted within the second month (April 2020) post spread
peak, consistent with tremendous mortality rate of NYC in April33.
This would suggest that younger, biologically strong patients

(Subphenotypes I and II) got infections early and boosted the
spread, while older, biologically vulnerable patients (Subpheno-
type IV) accounted for the second infections within a population
probably due to housing. After that, the proportion of Sub-
phenotype I out of all patients confirmed per week gradually
expanded while that of the others, especially Subphenotype IV
shrank. The potential reason would be that valuable experience
(such as the improved use of masks and social distancing),

reinforced healthcare systems, and announced health policies did
protect the population who likely develop severe subphenotypes
(Subphenotype IV). In general, such temporal trends of the
biological subphenotypes would be a considerable, fine-grained
explanation of the observed outcome (mortality rate) evolving
trends in epidemiology26.
SDoH such as vulnerable socioeconomic neighborhood status

have been associated with poor outcomes of COVID-1926,30. In this
work, we explored the impact of SDoH on different biological
subphenotypes from both univariate and multivariate perspec-
tives. We first examined the associations of individual socio-
economic characteristics with mortality risk in each subphenotype.
We then derived comprehensive SDoH strata using the data-
driven clustering method and evaluated their correlations with
mortality risk in each subphenotype. The results confirmed our
hypothesis that SDoH impacts biological subphenotypes differ-
ently. The highly expanded mortality risk log odds of individual
SDoH variables and discrepancy of mortality rate among SDoH
strata indicate that SDoH has a much stronger association with
mortality outcomes in Subphenotype IV, compared to the others.
In other words, once a sick, elderly patient shows up with COVID-
19 (Subphenotype IV), the disadvantaged socioeconomic status
significantly increased their mortality. In contrast, disadvantaged
SDoH status was unlikely to lead to significantly increased
mortality risk in Subphenotype I. This evidence further demon-
strated that the COVID-19 pandemic has disproportionately
affected patients with lower socioeconomic status. In general,
our findings added new information on social disparities in the
COVID-19 pandemic. Unlike previous studies29,30,34,35 that focused
on the entire population, we extended the study from a new angle
by focusing on the biologically different populations (i.e.,
subphenotypes). Our findings also showed evidence that the
identified subphenotypes would provide considerable guidance in
health policy to reduce social disparities in the pandemic.
While this study presents a new contribution in the efforts to

parse the biological heterogeneity of COVID-19, there remain
several limitations. First of all, our data-driven approach relied on
the availability of patient data. In this study, we identified
subphenotypes using the routinely collected clinical variables
that were correlated with COVID-1936 and available in the INSIGHT
database37. We were not able to extract presenting symptoms and
vital data while the incorporation of such data would add in new
insights. Second, in our study, the analyzed data were collected at
ED or hospital presentation, so the time between COVID-19
symptom onset to ED or hospital presentation could be a
covariate of disease severity and clinical outcomes. However,
such data was not available in the INSIGHT database. Third,
missing values may affect the robustness of the identified
subphenotypes. In order to address this issue, we excluded
variables with high missingness. For the remaining variables, we
used the K-nearest neighbors imputation algorithm38. Even so, we
still missed these real values hence may incorporate bias. Fourth,
our study was based on presenting clinical data, such that each
patient was characterized in a snapshot. The full use of
longitudinal data of patients may allow us to capture the
complexity of the disease arc to identify interesting subpheno-
types. Previous studies tried to derive COVID-19 subphenotypes
based on longitudinal information22,24, yet they were based on
univariate trajectory data in small cohorts. The collection of
multivariate, longitudinal data in large cohorts remains challen-
ging and modeling such data to identify subphenotypes requires
improved data-driven methods12,13,21. Fifth, this is a multiple
institutional analysis in NYC. To evaluate the generalizability of the
identified subphenotypes, further validation on data collected
from other areas is needed in future work.
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METHODS
Study design and cohort description
We used data of COVID-19 patients from INSIGHT Clinical Research
Network (CRN)37. INSIGHT is funded by the Patient-Centered Outcomes
Research Institute (PCORI) and aggregates clinical data of diverse patient
populations across five academic medical centers in New York City (NYC),
including New York University Langone Medical Center (NYU-LMC), New
York Presbyterian—Weill Cornell Medical Center (NYP-WCMC), New York
Presbyterian—Columbia University Medical Center (NYP-CUMC), Mount
Sinai Health System (MSHS), and Montefiore Medical Center (MMC). COVID-
19 diagnosis was defined as having at least one positive laboratory test
result for SARS-CoV-2 infection or at least one ICD-10 diagnosis code for
COVID-19 (see Supplementary Note 1). Study participants were adult
patients who were diagnosed with COVID-19 and treated in ED or inpatient
settings in these five health centers from March 1 to June 12, 2020. Criteria
used to assess patient eligibility are illustrated in the Supplementary Fig. 1.
Exclusion criteria include younger than 18 years old; duplicated patient IDs;
having no emergency department (ED) or inpatient (IP) admission within
14 days after COVID-19 confirmation; or having missing values on all
clinical variables. Considering the population diversity of the five medical
centers (see Supplementary Table 1), we combined patients of four centers
and randomly divided them into the development cohort (70%) and
internal validation cohort (30%). Patients of the last center were used as
the external validation cohort.

Candidate variables for subphenotype identification
We considered 30 clinical variables associated with COVID-19 onset,
symptoms, or outcomes36 and available in the INSIGHT database as the
candidate variables to derive subphenotypes. The variables included
inflammatory markers (C-reactive protein, erythrocyte sedimentation rate
[ESR], interleukin 6 [IL-6], procalcitonin, bands [i.e., premature neutrophil],
lactate dehydrogenase [LDH], lymphocyte count, neutrophil count, and
white blood cell count), inflammatory and hepatic markers (albumin and
ferritin), hepatic markers (alanine aminotransferase [ALT], aspartate amino-
transferase [AST], and bilirubin), markers of cardiovascular conditions
(creatine kinase [CK], lactate, troponin I, and troponin T), markers of renal
dysfunctions (bicarbonate, blood urea nitrogen [BUN], creatinine, chloride,
and sodium), markers of hematologic dysfunctions (d-dimer, hemoglobin,
platelet count, prothrombin time [PT], red blood cell distribution width
[RDW], and glucose), and oxygen saturation. For each patient, we extracted
the first value of each clinical variable within the collection window, which
was defined as: (1) time period from COVID-19 confirmation to the first
inpatient encounter, if the patient has an inpatient admission within 14 days
after confirmation; or (2) 14 days after COVID-19 confirmation if there was
only ED encounters but no inpatient admissions following the COVID-19
diagnosis. If there was no record in the collection window, we extracted the
last value within 3 days before confirmation (see Supplementary Fig. 2).

Other clinical characteristics, clinical outcomes, and
medications
We also examined other clinical characteristics of the patients, including
demographics, comorbidities, and body mass index (BMI). Demographics
included age, sex, and race. Baseline comorbidities included hypertension,
diabetes, coronary artery disease (CAD), heart failure, chronic obstructive
pulmonary disease (COPD), asthma, cancer, obesity, and hyperlipidemia. For
each patient, the most recent BMI data were collected. We analyzed 60-day
all-cause mortality as the primary outcome for the patients. Need for
mechanical ventilation and admission to the intensive care unit (ICU) were the
secondary outcomes. We also analyzed the treatments for COVID-19,
including antibiotics (combining ceftriaxone, azithromycin, piperacillin tazo-
bactam, meropenem, vancomycin, and doxycycline), corticosteroids (combin-
ing prednisone, methylprednisolone, dexamethasone, and hydrocortisone),
hydroxychloroquine, enoxaparin, heparin, and vasopressor. These above data
were collected from patient records available in the INSIGHT database as well.

SDoH data
To explore the impact of SDoH status on the subphenotypes, we extracted
patients’ neighborhood socioeconomic characteristics, including median
household income, percentage of residents without a high school degree,
percentage of residents who are essential workers, percentage of
households with crowding housing conditions (i.e., households with >1
person per room), percentage of non-white residents, and unemployment

rate. These characteristics were extracted from the 2018 American
Community Survey39. Previous studies40–46 have indicated that these
social conditions are associated with higher probability of infection,
hospitalization, and other adverse outcomes, e.g., mortality, in COVID-19.

Data preparation
We first assessed the value distributions and missingness of the 30
candidate clinical variables (see Supplementary Tables 2 and 3). For data
quality control, seven variables of high missingness (missing more than
70% values) were excluded and the remaining 23 variables were used for
deriving subphenotypes. The seven high-missing variables were included
in sensitivity analysis. Details of usage of the clinical variables were
presented in Supplementary Table 4. Logarithmic transformation was
applied to the non-normal distributed variables (see Supplementary Table
4). In order to eliminate the effects of value magnitude, all variables were
scaled based on z-score.
Last, K-nearest neighbors (KNN) imputation38 was used to address

missing values. More details can be found in the Supplementary Note 2.

Subphenotype derivation, validation, and prediction
We originally derived subphenotypes using the development cohort. More
specifically, agglomerative hierarchical clustering with Euclidean distance
calculation and Ward linkage criterion47 was applied to the 23 clinical
variables after data preparation. We used agglomerative hierarchical
clustering because it is robust to different types of data distributions and
typically produces a dendrogram that visualizes data structure to help
determine the optimal cluster number. Besides dendrogram, we calculated
21 measures of clustering models provided by ‘NbClust’ software48 to
determine the optimal number of clusters, i.e., subphenotypes. More
details can be found in the Supplementary Note 3.
In order to evaluate the reproducibility, we validated our subphenotypes

in four ways. First, we performed sensitivity analyses using the develop-
ment cohort to evaluate (1) sensitivity to quality control and outliers and
(2) sensitivity to clustering algorithms. To assess sensitivity to quality
control and outliers, we incorporated all 30 candidate variables and
excluded patients who have outlier values, defined as values out of the
range of [μ− 5σ, μ+ 5σ], where μ and σ are the mean and standard
deviation of the specific variable. Then similar to the primary analysis, we
performed agglomerative hierarchical clustering to rederive subpheno-
types and determined optimal cluster number using dendrogram and
‘NbClust’. To assess sensitivity to clustering algorithms, we rederived
subphenotypes using the Gaussian mixture model (GMM)49, which is a
probabilistic model for clustering analysis based on a mixture of Gaussian
distributions. The optimal cluster number in GMM was determined by
comprehensively considering Akaike information criterion (AIC), Bayesian
information criterion (BIC), and median probability of group membership
(see Supplementary Note 4).
Second, we used the internal validation cohort and rederived

subphenotypes using the same agglomerative hierarchical clustering with
the primary analysis for validation. The optimal cluster number was
determined using dendrogram and ‘NbClust’ as well.
Third, for the aims of confirming subphenotypes and their usability, we

used the supervised predictive model. More specifically, considering
subphenotype membership of each patient as the label to predict, we built
a predictive model of subphenotypes based on the 23 clinical variables
used for subphenotype derivation. The predictive model was based on the
supervised XGBoost classifier50, a powerful tree-based machine learning
model. The predictive model was trained in the development cohort using
a 10-fold cross-validation strategy. To address the multi-label classification
(since we identified more than 2 subphenotypes), a one-vs-the-rest
strategy was used in model training. Prediction performance was
measured by receiver operating characteristics curve (ROC) and area
under ROC curve (AUC). We also engaged the SHapley Additive
exPlanation (SHAP) values to assess contributions of the clinical variables
in distinguishing each subphenotype from the others. Once the predictive
model was trained, it was performed on the external validation cohort to
predict the patients’ subphenotype memberships.
To assess stability of the subphenotypes across the five medical centers, we

further performed leave-one-center-out analysis. Specifically, within each loop
of the leave-one-center-out procedure, we used a specific center as the
within-loop validation cohort. The remaining four centers were combined as
the within-loop development cohort, which was used to derive clusters, i.e.,
subphenotypes, and train XGboost-based predictive model of subphenotypes.
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Then the predictive model was used to predict patients’ cluster membership
in the within-loop validation cohort. Similar to the consensus clustering51,
after all the five iterations, we generated a N ×N cluster consensus matrix
M= [mij], where N is the total number of patients and mij is the ‘consensus
value’ between patients i and j, which is defined as the frequency that the two
patients are assigned to the same cluster during the leave-one-center-out
procedure. Typically, the consensus value ranges from 0 to 1, where a value of
0 means that the pair of patients never been grouped to the same cluster,
while a value of 1 means that they always assigned to the same cluster during
the leave-one-center-out procedure. Finally, the agglomerative hierarchical
clustering was performed on the consensus matrix. Our goal is to confirm if
we can still obtain cluster structure observed in our primary analysis under the
leave-one-center-out procedure.

Subphenotype interpretation
For the aim of subphenotype interpretation, we first visualized the
subphenotypes in two ways: (1) 2-D visualization calculated by Uniform
Manifold Approximation and Projection (UMAP) algorithm52 based on
clinical variables for clustering (showing distributions of subphenotypes
within low-dimensional space); (2) chord diagrams53 showing differences
of subphenotypes in terms of abnormal clinical variable groups and
comorbidities. More details can be found in the Supplementary Note 5.
We also characterized subphenotypes by evaluating their differences in

demographics, all clinical variables, comorbidities, clinical outcomes, and
medications prescribed after COVID-19 confirmation. Data were presented
as median (interquartile range [IQR]) for continuous variables and exact
patient number (percentage) for categorical variables. To compare
subphenotypes, we performed the Kruskal–Wallis test for continuous data
and χ2 test for categorical data. Analysis of covariance (ANCOVA) was also
applied for between-subphenotypes comparisons, adjusting for age and
gender. Two-tailed P-values smaller than 0.05 were considered as the
threshold for statistical significance. Survival analyses were performed to
assess associations of subphenotypes to clinical outcomes, where
Kaplan–Meier plots were created accordingly.

Temporal pattern of subphenotypes
To evaluate the temporal pattern of the subphenotypes during the course
of the pandemic, we created bar charts to visualize the proportion of each
subphenotype out of the total patients confirmed per week, since the
COVID-19 outbreak in NYC (March 1, 2020).

Impacts of SDoH on COVID-19 subphenotypes
Multiple analyses were conducted to assess the impact of SDoH on COVID-
19 subphenotypes. For each subphenotype, we first performed logistic
regression analysis and Cox regression analysis to assess the association of
each SDoH variable with 60-day mortality, adjusting for age, sex, and/or
clinical variables. After that, we performed agglomerative hierarchical
clustering on the six socioeconomic variables to derive comprehensive
SDoH strata. Within each subphenotype, we compared 60-day mortality
rates between the SDoH strata. We also used logistic regression analysis
and Cox regression analysis to assess the association of SDoH strata with
60-day mortality, adjusting for age and sex, within each subphenotype.

Ethics
The Institutional Review Board of the Weill Cornell Medicine approved this
study (Protocol number: 20-04021948). In this study, because all clinical
data obtained from the INSIGHT clinical research network were
deidentified, a waiver of consent was obtained from the ethics institution.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All clinical data studied in this work can be downloaded from INSIGHT clinical
research network at https://insightcrn.org/our-data/, via request. Neighborhood
socioeconomic data were obtained from the 2018 American Community Survey that
can be downloaded from the United States Census Bureau at https://data.census.gov/
cedsci/.

CODE AVAILABILITY
All computer codes in this study are available at https://github.com/ChangSu10/
COVID-Insight-subphenotyping. Implementation of our work is based on Python 3.7
and R 3.6. More specifically, clustering models were implemented based on Python
packages ‘scikit-learn 0.23.2’ (https://scikit-learn.org/stable/) and ‘scipy 1.5.3’ (https://
www.scipy.org). Supervised predictive modeling was based on ‘XGBoost 1.2.1’
(https://xgboost.readthedocs.io/en/latest/) and ‘SHAP 0.35.0’ (https://shap.
readthedocs.io/en/latest/). Data dimension reduction and visualization were
performed based on Python package ‘UMAP-learn 0.3.9’ (https://umap-learn.
readthedocs.io/en/latest/). R package ‘NbClust’ (https://cran.r-project.org/web/
packages/NbClust/NbClust.pdf) was used to calculate measures of clusters to
determine the optimal cluster number in agglomerative hierarchical clustering.
Chord diagrams were created using R package ‘circlize’ (https://cran.r-project.org/
web/packages/circlize/index.html). All statistical tests and survival analyses were
performed based on R.
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