
sensors

Article

Detecting Incremental Frequent Subgraph Patterns in
IoT Environments

Kyoungsoo Bok, Jaeyun Jeong, Dojin Choi and Jaesoo Yoo *

Department of Information and Communication Engineering, Chungbuk National University, Chungdae-ro 1,
Seowon-Gu, Cheongju, Chungbuk 28644, Korea; ksbok@chungbuk.ac.kr (K.B.); jjjeong@chungbuk.ac.kr (J.J.);
mycdj91@gmail.com (D.C.)
* Correspondence: yjs@cbnu.ac.kr; Tel.: +82-43-261-3230

Received: 7 October 2018; Accepted: 15 November 2018; Published: 18 November 2018
����������
�������

Abstract: As graph stream data are continuously generated in Internet of Things (IoT) environments,
many studies on the detection and analysis of changes in graphs have been conducted. In this
paper, we propose a method that incrementally detects frequent subgraph patterns by using frequent
subgraph pattern information generated in previous sliding window. To reduce the computation cost
for subgraph patterns that occur consecutively in a graph stream, the proposed method determines
whether subgraph patterns occur within a sliding window. In addition, subgraph patterns that are
more meaningful can be detected by recognizing only the patterns that are connected to each other via
edges as one pattern. In order to prove the superiority of the proposed method, various performance
evaluations were conducted.

Keywords: graph stream; IoT; subgraph pattern; frequent pattern detection; incremental

1. Introduction

A graph is a data structure consisting of vertices and edges connecting the vertices. These graphs
have been used to represent many-to-many relationships between objects, where a vertex represents
an object, and an edge represents a relationship between objects [1–4]. Graphs are widely used in
various fields, such as road networks, bioinformatics, and social networks [5–7]. For example, in a
traffic network, regions are represented by vertices, and roads are expressed by edges. In a social
network, vertices represent users, and edges express the relationships of followers and friends. In
bioinformatics, graphs are used to model interactions between biomolecules, and graphical frequent
pattern detection is used for protein function prediction, mutant gene discrimination, disease type
identification, and so on [8–10]. Now, graph data change in real time due to the activation of Internet
of Things (IoT) along with the advances in network technologies. Stream data in which vertices and
edges that make up a graph continuously change are called graph streams. Graph streams have been
used in various fields for different applications, such as abnormal detection, real-time trend analysis,
and event detection [11–16]. As the graph stream has been applied in various fields, a large number of
studies on various techniques for the analysis of graph streams have been conducted [17–20].

As the vertices and edges are continually added, deleted, and updated in IoT environments,
studies on the detection or analysis of changes in graphs have also been conducted. Various approaches,
such as graph clustering, graph stream classification, subgraph mining, and frequent subgraph pattern
detection, have been proposed for graph analysis [5,21–27]. Frequent subgraph pattern, which detects
a subgraph frequently occurring during a specific period is a widely used analysis method for graph
streams [28–32]. In the IoT environment, frequent subgraph pattern is used for analyzing interactions
among various objects or for determining anomalies [33–35]. For example, in anomaly detection,

Sensors 2018, 18, 4020; doi:10.3390/s18114020 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9926-9947
http://dx.doi.org/10.3390/s18114020
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/4020?type=check_update&version=2

Sensors 2018, 18, 4020 2 of 16

the process of data transmission between IoT devices is modeled as graph data, and then a frequent
subgraph pattern is generated. If an infrequent subgraph pattern occurs, it is determined as an anomaly.

The frequent subgraph detection in static graphs identifies frequently occurring subgraphs in
the whole graph. However, graph streams continue to change vertices or edges over time. A graph
matching finds a correspondence between the vertices and the edges of two graphs that satisfies some
constraints. Since there are various subgraph patterns that can occur in the graph stream, all possible
subgraphs should be compared when using graph matching. Therefore, it takes a lot of comparison
time to detect frequent subgraphs by using graph matching in the graph stream. As the utilization
of frequent subgraph pattern detection in recent graph streams has increased, various approaches
have been actively conducted [29,36–38] in order to deal with this. In Reference [30], Data Stream Tree
(DSTree) was proposed to store graph streams in memory efficiently during frequent subgraph pattern
detection. Once the graph stream data are inputted, a DSTree is constructed, using whichever FP-tree
was constructed to detect the frequent pattern. In Reference [31], Data Stream Matrix (DSMatrix) was
proposed for storing graphs more efficiently than the DSTree proposed in Reference [30]. The DSMatrix
is a two-dimensional array, so it can be constructed at a lower cost than that of DSTree. In addition, the
frequency level of each pattern is calculated with a depth-first search after constructing a new FP-tree.
In Reference [32], a frequent detection that considers connectivity was proposed. In this method, a
simple frequent subgraph pattern detection using the AND operation was used, and only connected
patterns are detected by managing adjacent edge information. However, the existing methods have
several problems. First, Reference [30] uses many pointers because it constructs a DSTree, which
is time-consuming. In addition, References [30,31] detect insignificant frequent patterns since these
methods do not consider connectivity. Furthermore, References [30–32] employs a sliding window to
detect all frequent patterns. However, since they do not process duplicate operations, their operation
time is degraded.

Real-time processing is required to detect frequent subgraphs in the graph stream. Real-time
processing of graph streams needs to reduce processing time. Since real-time processing techniques
use memory, it is necessary to minimize memory usage. In this paper, we propose a new method that
can detect a frequent subgraph pattern incrementally in graph stream data inputted in real time. The
proposed method models the relationship between IoT devices in the IoT environment as a graph and
detects frequently occurring subgraphs above the threshold value as vertices and edges constantly
change over time. Frequent subgraphs that are detected through the proposed method are used
to determine anomalies in the IoT environment or to analyze interactions among IoT devices. The
proposed method is aimed at reducing processing time and memory usage to process graph streams in
real time. The proposed method constructs DSMatrix for graph streams and does not construct FP-tree
to reduce the memory usage. The proposed method determines whether re-calculation is needed after
calculating whether a subgraph pattern detected from the previous sliding window will be frequent
or not in the future. By doing so, only necessary calculations are performed, thereby reducing the
total computation. In addition, more meaningful patterns can be detected by recognizing the patterns
that are connected through edges between the patterns as one pattern. In addition, more meaningful
patterns can be detected by recognizing patterns that are connected to each other through their edges
as one pattern.

This paper is organized as follows. Section 2 analyzes the existing methods that detect a frequent
subgraph pattern in graphs and presents the limitations of the previous studies. Section 3 explains the
proposed frequent subgraph pattern detection method, and Section 4 presents performance evaluation
results that verify the superiority of the proposed method. Finally, Section 5 describes the conclusions
of this study and future research.

2. Related Works

In Reference [30], a frequent subgraph detection was proposed in which graph streams are rapidly
stored in memory using a tree structure called DSTree. Once the graph streams are inputted, each edge

Sensors 2018, 18, 4020 3 of 16

is arranged in order, and then a tree is constructed. Since each of the nodes in a DSTree maintains
edge information by batch, it can be maintained by just changing the relevant information, even if a
window slide has moved. Each node in a DSTree stores the names of the graph edges and the count
of the appearances for each batch, each of which is divided by a semicolon. If there is a scarce graph,
a tree is constructed only with regard to the edges newly created. Thus, efficient graph storage can
be achieved.

In Reference [31], a DSMatrix, which can store graph streams more efficiently than the previous
approaches were proposed. A DSMatrix is a 2D structure that represents whether an edge in the
graph is generated by one or zero to store graph stream data in a small memory usage. To detect a
frequent pattern, two approaches are used: Recursive-FP-tree and FP-trees for only frequent singletons.
Using the recursive-FP-tree method, graph streams are stored in the DSMatrix and then an FP-tree is
constructed for all edges. All frequent patterns are detectable by recursively constructing the FP-tree.
This method can easily extract preferred subgraph by constructing multiple FP-trees. In the FP-trees
for only frequent singletons, an FP-tree is first constructed with regard to all edges, and then each
node is visited using the depth-first search method to calculate the number of occurrences of frequent
patterns. This method can detect frequent patterns at a lower cost than that of the recursive-FP-tree
since FP-trees are constructed for only a singleton edge.

In Reference [32], a frequent subgraph pattern using a simple AND operation without FP-tree was
proposed. This method detects meaningful frequent patterns considering the connectivity between
edges. It uses two approaches: one excludes unconnected patterns after generating candidates of
frequent patterns using the AND operation for frequent subgraph pattern detection, and the other
verifies whether the connection is made prior to starting the AND operation, and then it performs
the operation.

A DSTree can store data in memory efficiently during frequent subgraph pattern detection [30].
Once graph stream data are inputted, a DSTree is constructed using whichever FP-tree was constructed
to detect the frequent pattern. A DSMatrix can store graphs efficiently [31]. The DSMatrix is a
two-dimensional array, so it can be constructed at a lower cost than that of the DSTree. In addition,
a frequency level of each pattern is calculated with a Depth-First Search (DFS) after constructing a
new FP-tree. In Reference [32], a frequent detection method that considers connectivity was proposed.
In this method, a simple frequent subgraph pattern detection using the AND operation is used, and
only connected patterns are detected by managing adjacent edge information in a table. However, the
existing methods have some limitations as Table 1. Reference [30] has a shortcoming when a graph’s
structure changes significantly because the structure of the DSTree also changes, which takes a lot
of time to reconstruct. In addition, when a DSTree is constructed, a large number of pointers are
used when graph data are dense, entailing a large management cost to maintain the tree. To solve
this problem effectively, a DSMatrix was proposed [31]. However, it requires many operations and a
lot of memory because a large number of FP-trees are constructed during frequent subgraph pattern
detection. It requires a lot of computation time because it travels all over the FP-trees to generate
frequent patterns. Reference [32] uses AND operation to detect frequent patterns. However, it has a
problem with performing comparative operations on the edges that are not likely to be detected in the
future. In addition, References [31,32] do not solve the duplicate calculation problem, which is one of
the drawbacks when using a sliding window, thereby degrading the performance.

In this paper, we propose an incremental frequent pattern detection to solve the problems of
existing methods. The proposed method reduces the amount of computation by reusing the results
of analysis from the previous sliding window as the window slide moves. It stores the input graph
streams in DSMatrix to reduce the cost of building a DSTree according to the changes of the graph
stream. It reduces memory usage because it only manages previously detected frequent pattern
information. The detected patterns are calculated and managed separately for the next few sliding
windows. This calculated value reduces the overall computation because the next sliding window
only performs AND operations on subgraph patterns that are likely to occur in a frequent pattern. It

Sensors 2018, 18, 4020 4 of 16

also reduces unnecessary comparison operations because only the connections between patterns are
determined in one pattern.

Table 1. Characteristics and limitation of the existing methods.

Methods Characteristics Limitations

[30]
• Use of less space because building a tree with only

the main lines from the sparse graph.
• fast access because it is constructed by using trees.

• Increased DSTree construction time when the structure
of the graph changes significantly.

• A large number of comparison operations occur because
it detects frequent patterns after the full scan of DSTree.

[31]

• Deployed at less cost than DSTree since DSMatrix is
a two-dimensional array.

• Construct FP-Trees to detect frequent patterns and
calculate the frequency of each pattern using
the DFS.

• Require a lot of computation and memory while
constructing many FP-Trees for frequent
pattern detection.

• DFS takes a long time to detect frequent patterns.
• Fail to resolve duplicate calculations, a problem caused

by the use of sliding window techniques.

[32]

• Fast and frequent patterns detection using simple
AND computations.

• Significant frequent pattern detection based
on connectivity.

• Significant performance degradation because AND
operations are performed on all patterns.

• Fail to resolve duplicate calculations, a problem caused
by the use of sliding window techniques.

3. The Proposed Frequent Subgraph Pattern Detection

3.1. Preliminary

A graph is a data structure to express a multiple-relationship among objects. The graph consists of
the vertex representing the object and the edge representing the relationship among the objects.
Definition 1 represents the definition for the graph. If data transmission between IoT devices
is represented as a graph in the IoT environment, a vertex represents IoT device and an edge
represents data transmission status between IoT devices. Similarly, when a human network on
a social network is represented as a graph, the vertex is the user and the edge is the friendship. Graphs
are divided into directed and undirected graphs. The undirected graph does not take into account the
direction of the edge between the vertices, but the directed graph displays the arrow lines along the
connected direction between the vertices. When the vertices or edges that make up the graph change
continuously over time, they are called graph streams. Graph streams are graphs that vertices and
edges change dynamically over time. The graph streams occur frequently in IoT environments where
the relationships of objects change. Definition 2 defines the graph stream Gt that occurs in time t.

Definition 1. Graph G
Given a set of vertices V and a set of edges E which are subsets of V ×V, a graph is defined as an order

pair G = (V, E).

Definition 2. Graph stream Gt

Given a set of vertices Vt at time t and a set of edges Et which are subsets of Vt ×Vt at time t, stream graph
is defined as order pair Gt = (Vt, Et).

In a static graph with no change, a frequent subgraph represents a subgraph that appears above
the threshold within the given graph. Since vertices and edges change continuously in the graph
stream over time, a frequent subgraph is defined as a subgraph with more than a threshold within a
continuous time interval, as defined in Definition 3.

Definition 3. Frequent subgraph in graph stream
Given a stream graph, frequent subraph is defined as Freq(SG) ≥ θ, where SG is a subgraph, Freq(SG)

is the occurrence percentage of graph that contain SG.

We incrementally detect a frequent subgraph in the graph stream. It constructs the DSMatrix
proposed in Reference [31] to determine whether or not each edge occurs in the input graph stream.

Sensors 2018, 18, 4020 5 of 16

With a two-dimensional array called DSMatrix, it is possible to store a large amount of edge information
in a small space. The proposed method generates subgraphs if neighboring edges occur frequently and
manage their occurrence information in the frequent subgraph management table by using DSMatrix.
It determines incrementally whether a frequent subgraph has occurred by using FiB, FiS, and slideNum
in the frequent subgraph management table. Table 2 shows the notations used in the proposed method.

Table 2. Notations.

Notation Description

DSMatrix Matrix representing the occurrence of the edge as 1 or 0
< vi, vj > edge connecting the vertices vi and vj

FiB Number of occurrences of the edge in one batch processing
FiS Total number of edges in the sliding window

slideNum Value to calculate whether Edge will be frequent or not during future window slide
AND operation Operations that determine whether two subgraphs occur simultaneously

3.2. Overall Procedure

As graph streams have been applied to IoT, including anomaly detection, real-time trend analysis,
and event detection, a large number of studies have been performed on various methods that analyze
graph streams [39,40]. There are three considerations when a frequent subgraph pattern is detected in
graph stream data. First, frequent subgraph pattern detection should be fast and should utilize limited
storage space efficiently. Since stream data are supplied constantly and no end point is specified, the
graph data to be analyzed change in real time. Thus, when graph are inputted and analyzed, graph
should be deleted, to some extent, to ensure sufficient memory for analyzing the next input graph.
Second, input graph differ as time passes. That is, the currently frequent patterns may not continue for
the next input graph, and vice versa. Finally, patterns should be generated considering the connectivity
of graphs. Here, connectivity means that detected patterns are connected to one another.

In this paper, we propose a frequent subgraph pattern detection incrementally for graph stream
data in IoT. The proposed method determines a frequent pattern for performing anomaly detection
or for analyzing the cooperative relationship between IoT devices. For example, anomaly detection
is determined as an anomaly when a subgraph that is not detected as a frequent pattern occurs, or
cooperative relationship analysis determines that mutual cooperation is very high in the event of a
frequent pattern among IoT devices. A frequent subgraph pattern is a connected subgraph that occurs
above a threshold for a particular time interval. The proposed method reuses the analyzed results
from the previous window when the window is moved to reduce the amount of computation. It stores
the input graph streams in a DSMatrix; then, frequent patterns can be detected through the simple
AND operation. Here, the detected patterns are calculated for determining whether they are frequent
or infrequent in the several sliding windows in the future, and then managed in a table separately.
Through the calculated values, only necessary calculations are performed in the next sliding window
to reduce the overall computation.

Sensors 2018, 18, 4020 6 of 16

The overall processing procedure of the proposed method is shown in Figure 1. The preprocessing
efficiently stores the input graph in the memory and generates a DSMatrix. Here, a DSMatrix can store
a large amount of graph data in a small space using a 2D structure. During frequent subgraph pattern
detection, an operation to generate the actual frequent patterns is performed. When graph patterns
are detected, graph pattern occurrences are summed to check whether frequent patterns occur, and
the occurrences of two patterns are summed again via the AND operation, thereby enabling frequent
subgraph pattern detection consisting of multiple edges. Here, the information on the frequent patterns
generated from the previous window slide is employed through the use of a frequent subgraph pattern
management table. In the frequent subgraph pattern management table, whether the previously
detected patterns will be frequent or infrequent in the next several sliding windows is calculated and
stored; through this value, only necessary calculations are performed in the next sliding window,
thereby reducing the overall computation. Finally, the detected frequent patterns are delivered to the
user and are simultaneously stored in the frequent subgraph pattern management table to be utilized
in the next window slide.

Sensors 2018, 18, x FOR PEER REVIEW 6 of 16

occurs above a threshold for a particular time interval. The proposed method reuses the analyzed

results from the previous window when the window is moved to reduce the amount of computation.

It stores the input graph streams in a DSMatrix; then, frequent patterns can be detected through the

simple AND operation. Here, the detected patterns are calculated for determining whether they are

frequent or infrequent in the several sliding windows in the future, and then managed in a table

separately. Through the calculated values, only necessary calculations are performed in the next

sliding window to reduce the overall computation.

The overall processing procedure of the proposed method is shown in Figure 1. The

preprocessing efficiently stores the input graph in the memory and generates a DSMatrix. Here, a

DSMatrix can store a large amount of graph data in a small space using a 2D structure. During

frequent subgraph pattern detection, an operation to generate the actual frequent patterns is

performed. When graph patterns are detected, graph pattern occurrences are summed to check

whether frequent patterns occur, and the occurrences of two patterns are summed again via the

AND operation, thereby enabling frequent subgraph pattern detection consisting of multiple edges.

Here, the information on the frequent patterns generated from the previous window slide is

employed through the use of a frequent subgraph pattern management table. In the frequent

subgraph pattern management table, whether the previously detected patterns will be frequent or

infrequent in the next several sliding windows is calculated and stored; through this value, only

necessary calculations are performed in the next sliding window, thereby reducing the overall

computation. Finally, the detected frequent patterns are delivered to the user and are

simultaneously stored in the frequent subgraph pattern management table to be utilized in the next

window slide.

Figure 1. Overall processing procedure.

3.3. Preprocessing

Preprocessing stores graph streams in the memory and configures the DSMatrix. Since graph

streams are continuously generated, graphs should be analyzed and deleted to ensure sufficient

memory for processing the next input graph. In addition, all patterns can be generated for frequent

patterns, considering not only currently generated graph but also previous and future graph. We use

a 2D array structure called a DSMatrix in the preprocessing considering this characteristic. Since

DSMatrix is a Boolean-type array, it can store more data in a smaller space than the DSTree uses in

the existing method [30]. In addition, since the presence of an edge in a graph is expressed by one or

zero, data can be added and deleted rapidly, which is suitable for the sliding window.

In a DSMatrix, a single window slide consists of the number of batches, which is set by the user.

Table 3 shows the DSMatrix that results when the graph streams 91 ~ GG are inputted, as shown in

Figure 2. Here, one batch consists of three graphs, and three batches comprise a single sliding

window. Each edge is represented by the names of the two connecting vertices. For example, the

edge connected by vertices iv and jv is expressed as  ji vv , . With the edges expressed in this

way, the contents parts in Table 3 represent whether the edges occur or not as one or zero, respectively.

Figure 1. Overall processing procedure.

3.3. Preprocessing

Preprocessing stores graph streams in the memory and configures the DSMatrix. Since graph
streams are continuously generated, graphs should be analyzed and deleted to ensure sufficient
memory for processing the next input graph. In addition, all patterns can be generated for frequent
patterns, considering not only currently generated graph but also previous and future graph. We
use a 2D array structure called a DSMatrix in the preprocessing considering this characteristic. Since
DSMatrix is a Boolean-type array, it can store more data in a smaller space than the DSTree uses in the
existing method [30]. In addition, since the presence of an edge in a graph is expressed by one or zero,
data can be added and deleted rapidly, which is suitable for the sliding window.

In a DSMatrix, a single window slide consists of the number of batches, which is set by the user.
Table 3 shows the DSMatrix that results when the graph streams G1 ∼ G9 are inputted, as shown in
Figure 2. Here, one batch consists of three graphs, and three batches comprise a single sliding window.
Each edge is represented by the names of the two connecting vertices. For example, the edge connected
by vertices vi and vj is expressed as < vi, vj >. With the edges expressed in this way, the contents parts
in Table 3 represent whether the edges occur or not as one or zero, respectively.

Table 3. DSMatrix.

Edge Contents (Batch1) Contents (Batch2) Contents (Batch3)

< v1, v2 > 1 1 1 1 1 1 1 1 1
< v1, v3 > 1 1 1 0 1 1 1 1 1
< v1, v4 > 1 0 0 1 1 0 0 1 0
< v2, v4 > 1 0 1 0 0 0 1 0 0
< v3, v4 > 1 0 1 0 1 0 1 1 1

Sensors 2018, 18, 4020 7 of 16

Sensors 2018, 18, x FOR PEER REVIEW 7 of 16

Table 3. DSMatrix.

Edge Contents (Batch1) Contents (Batch2) Contents (Batch3)

 21,vv 1 1 1 1 1 1 1 1 1

 31,vv 1 1 1 0 1 1 1 1 1

 41,vv 1 0 0 1 1 0 0 1 0

 42,vv 1 0 1 0 0 0 1 0 0

 43,vv 1 0 1 0 1 0 1 1 1

Figure 2. Example of a graph stream, where Gt is a graph at time t.

3.4. Initial Frequent Subgraph Pattern Detection

The initial frequent subgraph pattern detection generates a frequent subgraph pattern as a

reference pattern during the incremental frequent subgraph pattern detection. We considers two

features when a frequency pattern is detected. First, since stream data are continuously inputted,

graphs should be analyzed and deleted, to some extent, when inputted to ensure sufficient memory

for analyzing the next input graph. This requires a technique that detects a frequent subgraph

pattern rapidly. The pattern occurrences are summed to check whether frequent patterns occur, and

the occurrences of two patterns are summed again via the AND operation, thereby detecting

frequent patterns consisting of multiple edges continuously. Here, since the operation that sums the

number of occurrences and the AND operation are simple, patterns can be generated quickly.

Second, we consider connectivity. If two patterns are far away from each other, it is difficult to see

these two patterns as a single pattern, even if they occur simultaneously. Thus, our method detects

more meaningful frequent patterns by considering connectivity.

A frequency level of a single edge is checked first to detect a frequent pattern. The number of

occurrences in a single batch per edge in the DSMatrix, which is made in the preprocessing, is

calculated and inputted to the Frequency in Batch (FiB) column in the frequent subgraph pattern

management table, as presented in Table 4. FiB refers to the number of occurrences of the

corresponding edge in a single batch. In addition, Frequency in Sliding window (FiS) refers to a

value that sums all FiBs calculated previously, by which the determination of whether the current

Figure 2. Example of a graph stream, where Gt is a graph at time t.

3.4. Initial Frequent Subgraph Pattern Detection

The initial frequent subgraph pattern detection generates a frequent subgraph pattern as a
reference pattern during the incremental frequent subgraph pattern detection. We considers two
features when a frequency pattern is detected. First, since stream data are continuously inputted,
graphs should be analyzed and deleted, to some extent, when inputted to ensure sufficient memory
for analyzing the next input graph. This requires a technique that detects a frequent subgraph pattern
rapidly. The pattern occurrences are summed to check whether frequent patterns occur, and the
occurrences of two patterns are summed again via the AND operation, thereby detecting frequent
patterns consisting of multiple edges continuously. Here, since the operation that sums the number of
occurrences and the AND operation are simple, patterns can be generated quickly. Second, we consider
connectivity. If two patterns are far away from each other, it is difficult to see these two patterns as a
single pattern, even if they occur simultaneously. Thus, our method detects more meaningful frequent
patterns by considering connectivity.

A frequency level of a single edge is checked first to detect a frequent pattern. The number
of occurrences in a single batch per edge in the DSMatrix, which is made in the preprocessing, is
calculated and inputted to the Frequency in Batch (FiB) column in the frequent subgraph pattern
management table, as presented in Table 4. FiB refers to the number of occurrences of the corresponding
edge in a single batch. In addition, Frequency in Sliding window (FiS) refers to a value that sums all
FiBs calculated previously, by which the determination of whether the current edge is frequent in the
current sliding window can be verified. For example, the edge < v1, v2 > occurred three times in every
single batch and occurred a total of nine times in the current window slide.

Table 4. Frequent subgraph pattern management table.

Edge slideNum FiB (Batch1) FiB (Batch2) FiB (Batch3) FiS

< v1, v2 > 1 3 3 3 9
< v1, v3 > 1 3 2 3 8
< v1, v4 > 0 1 2 1 4
< v2, v4 > −1 2 0 1 3
< v3, v4 > 0 2 1 3 6

Sensors 2018, 18, 4020 8 of 16

slideNum is a calculated value determining whether a single edge will be frequent or not during
the next several slides. For example, even if zero is inputted to all < v1, v2 > in the next window slide,
the frequency count is still six, which is a frequent edge. However, if zero is input to all < v1, v2 >

again in the next window slide, the frequency count is three, which is not a frequent edge. Thus,
slideNum becomes one. The algorithm to calculate slideNum is shown in Algorithm 1. slideNum is
calculated as FiS and is divided into two cases, i.e., when it is larger or smaller than the threshold. If
it is larger than the threshold, the remaining number, after removing the first batch from the current
sliding window, is calculated as batchCount, and it is then determined whether batchCount exceeds
the threshold, assuming that all new input batches are zero. This process is iterated until batchCount
becomes smaller than the threshold. Then, the result is returned. If FiS is smaller than the threshold,
whether batchCount exceeds the threshold is checked, assuming that the next input batches are all one,
and the count is returned.

Algorithm 1. Algorithm to calculate slideNum.

Input:
FiB[] – array of FiB, which is the number of edges in a batch
FiS - The number of edges in sliding window
th - threshold
Output: slideNum
slideNum← 0
if FiS >= th then

batchCount← FiS–FiB[0]
while batchCount >= th and slideNum < slidingWindowSize do

batchCount← batchCount–FiB[slideNum+1]
slideNum← slideNum+1

return slideNum
else

batchCount← FiS–FiB[0]+batchSize
while batchCount < th and slideNum < slidingWindowSize do

batchCount← batchCount–FiB[SlideNum+1] + BatchSize
slideNum← slideNum + 1

return -slideNum

After single edges, which are frequent, are all detected, patterns consisting of multiple edges are
detected. If the AND operation is applied to the detected two patterns, it can identify the number of
frequent occurrences of two patterns at the same time. A pattern is expanded continuously using this
process. That is, if a pattern consisting of two edges is detected, a single frequent edge is employed.
In the previous example, if the AND operation is applied to < v1, v2 > and < v1, v3 > among the
single edge patterns, it produces 111;011;111 so that the number of occurrences becomes eight, which
indicates that < v1, v2, v3 > is also a frequent pattern.

Additionally, when detecting patterns consisting of multiple edges, connectivity should be taken
into consideration. An edge name is used to determine whether two patterns are connected. That is, if
there is a duplicate vertex ID in the pattern’s name, it indicates that the two patterns are connected. If
two patterns are not connected, they are not included in the frequent patterns. That is, as < v1, v2 >

and < v3, v4 > have no duplicate vertex ID, the AND operation is not performed. The detected
frequent patterns are stored in the frequent subgraph pattern management table, as presented in
Table 5. Here, FiB, FiS, and slideNum have the same as those used for the single edge.

Sensors 2018, 18, 4020 9 of 16

Table 5. Frequent subgraph pattern management table where patterns are added.

Subgraph slideNum FiB (Batch1) FiB (Batch2) FiB (Batch3) FiS

< v1, v2 > 1 3 3 3 9
< v1, v3 > 1 3 2 3 8
< v1, v4 > 0 1 2 1 4
< v2, v4 > −1 2 0 1 3
< v3, v4 > 0 2 1 3 6

< v1, v2, v3 > 1 3 2 3 8
< v1, v3, v4 > 0 2 1 3 6

< v1, v2, v3, v4 > 0 2 1 2 6

3.5. Incremental Frequent Subgraph Pattern Detection

The incremental frequent subgraph pattern detection is a technique to resolve duplicate
calculations, which is a problem in the sliding window. Since graph are duplicated in sliding windows,
performance is degraded. To resolve this problem, we store previously detected frequent subgraph
pattern information in the frequent subgraph pattern management table and generate a new frequent
pattern using the stored frequent pattern information. In the frequent subgraph pattern management
table, whether the previously detected patterns will be frequent or infrequent in the next several sliding
windows is calculated and stored; through this value, only necessary calculation is performed in the
next sliding window, thereby reducing the overall computation cost.

When new graphs G10 ∼ G12 are inputted as shown in Figure 3, a new batch is added to the
DSMatrix. If the new batch is added, FiB and FiS are calculated and stored, and the same is done in the
basic frequent subgraph pattern detection. However, if slideNum is not zero, slideNum is decreased
and FiB and FiS are not calculated. That is, < v1, v2 >, < v1, v3 >, and < v2, v4 > do not calculate FiB
and FiS, as presented in Table 6.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 16

among the single edge patterns, it produces 111;011;111 so that the number of occurrences becomes

eight, which indicates that  321 ,, vvv is also a frequent pattern.

Additionally, when detecting patterns consisting of multiple edges, connectivity should be

taken into consideration. An edge name is used to determine whether two patterns are connected.

That is, if there is a duplicate vertex ID in the pattern's name, it indicates that the two patterns are

connected. If two patterns are not connected, they are not included in the frequent patterns. That is,

as  21,vv and  43,vv have no duplicate vertex ID, the AND operation is not performed. The

detected frequent patterns are stored in the frequent subgraph pattern management table, as

presented in Table 5. Here, FiB, FiS, and slideNum have the same as those used for the single edge.

Table 5. Frequent subgraph pattern management table where patterns are added.

Subgraph slideNum FiB (Batch1) FiB (Batch2) FiB (Batch3) FiS

 21,vv 1 3 3 3 9

 31,vv 1 3 2 3 8

 41,vv 0 1 2 1 4

 42,vv −1 2 0 1 3

 43,vv 0 2 1 3 6

 321 ,, vvv 1 3 2 3 8

 431 ,, vvv 0 2 1 3 6

 4321 ,,, vvvv 0 2 1 2 6

3.5. Incremental Frequent Subgraph Pattern Detection

The incremental frequent subgraph pattern detection is a technique to resolve duplicate

calculations, which is a problem in the sliding window. Since graph are duplicated in sliding

windows, performance is degraded. To resolve this problem, we store previously detected frequent

subgraph pattern information in the frequent subgraph pattern management table and generate a

new frequent pattern using the stored frequent pattern information. In the frequent subgraph

pattern management table, whether the previously detected patterns will be frequent or infrequent

in the next several sliding windows is calculated and stored; through this value, only necessary

calculation is performed in the next sliding window, thereby reducing the overall computation cost.

When new graphs 1210 ~ GG are inputted as shown in Figure 3, a new batch is added to the

DSMatrix. If the new batch is added, FiB and FiS are calculated and stored, and the same is done in

the basic frequent subgraph pattern detection. However, if slideNum is not zero, slideNum is

decreased and FiB and FiS are not calculated. That is,  21,vv ,  31,vv , and  42,vv do not

calculate FiB and FiS, as presented in Table 6.

Figure 3. New input graph stream, where G10 is a graph at time 10, G11 is a graph at time 11, and G12 is

a graph at time 12.

Figure 3. New input graph stream, where G10 is a graph at time 10, G11 is a graph at time 11, and G12

is a graph at time 12.

Table 6. DSMatrix after the window slide moves.

Edge Contents (Batch2) Contents (Batch3) Contents (Batch4)

< v1, v2 > 1 1 1 1 1 1 111
< v1, v3 > 011 111 000
< v1, v4 > 110 010 111
< v2, v4 > 000 100 111
< v3, v4 > 010 111 010

When detecting frequent patterns consisting of multiple edges, a similar approach to the previous
procedure is used. In Table 7, pattern < v1, v2, v3 > has one slideNum so that it can be identified as a
frequent subgraph pattern without the need to calculate FiB and FiS. Thus, after slideNum is modified
to zero, a frequent subgraph pattern is maintained. For the pattern < v1, v3, v4 >, its slideNum is
zero. Thus, FiB and FiS are calculated by applying the AND operation only to the new input batch
of < v1, v3 > and < v3, v4 >. That is, since < v1, v3 > is 000 and < v3, v4 > is 010, 000 & 010 = 000.
Thus, it becomes FiB = 0 and FiS = 3 for the newly added part. Here, if FiS is larger than the threshold,
slideNum is calculated.

Sensors 2018, 18, 4020 10 of 16

Table 7. Frequent subgraph pattern detection after window slide moves.

Subgraph slideNum FiB (Batch2) FiB (Batch3) FiB (Batch4) FiS

< v1, v2 > 1→ 0 3 3
< v1, v3 > 1→ 0 2 3
< v1, v4 > 0 2 1 3 6
< v2, v4 > −1→ 0 0 1
< v3, v4 > 0 1 3 1 5

< v1, v2, v3 > 1→ 0 2 3
< v1, v3, v4 > 0 1 2 0 3

< v1, v2, v3, v4 > 0 2 1 0 3

4. Performance Evaluation

To prove the superiority of the proposed method, performance evaluation was conducted by
comparing it with the existing methods [31,32]. For convenience, the method proposed in Reference [31]
is called DSMatrix and the method proposed in Reference [32] is called SAND. Table 8 summarizes
the performance evaluation environment. The performance evaluation program was implemented
using Java. For performance data, arbitrarily created graph stream data and real data were used. For
real data, as-Caida [41], one of the datasets provided by SNAP [42], was employed. The data were
graphs that represent a connection relationship with network routers stored on a time basis. The
data consist of 65,003 vertices and 30,000 edges. A total of 122 datasets were inputted according to
the time sequence. The performance evaluation compared the processing time when the batch size,
window slide size, and threshold value were changed. If the frequent subgraph pattern detection time
is slower than the stream input rate, frequent patterns that cannot be discovered may be found. Thus,
the accuracy of the frequent subgraph pattern detection results can be evaluated. Finally, the amount
of memory used in the frequent subgraph pattern detection process was measured to evaluate the
space efficiency of DSMatrix.

Table 8. Performance evaluation environment.

Feature Contents

Processor Intel(R) Core(TM) i5-4440 3.10 GHz
Memory 8 GB

Disk 1 TB
Program language Java

When a frequent subgraph pattern is detected, if a graph stream input rate is faster than the
processing time, a frequent subgraph pattern may occur in which a new graph may be lost before
being detected. Thus, this study measured the frequent subgraph pattern detection time per sliding
window to establish the right input rate. Figure 4 shows how much time is consumed in each window
slide to verify whether data are lost. A total of 122 datasets were inputted according to the time
sequence. A single batch consisted of 10 graphs, and the processing time according to the sliding
window size was evaluated. The performance evaluation results showed that the frequent subgraph
pattern detection time in each sliding window was calculated by measuring the processing time for
each sliding window and taking the mean value. When a single sliding window consists of five
batches, the processing time is approximately 11 ms. However, if an interval of the graph input is
smaller than 11 ms, frequent patterns may be lost. Thus, frequent patterns can be detected accurately
when the data size, sliding window size, and batch size are appropriately selected according to the
data characteristics in application fields.

Sensors 2018, 18, 4020 11 of 16

Sensors 2018, 18, x FOR PEER REVIEW 11 of 16

Table 8. Performance evaluation environment.

Feature Contents

Processor Intel(R) Core(TM) i5-4440 3.10 GHz

Memory 8 GB

Disk 1 TB

Program language Java

When a frequent subgraph pattern is detected, if a graph stream input rate is faster than the

processing time, a frequent subgraph pattern may occur in which a new graph may be lost before

being detected. Thus, this study measured the frequent subgraph pattern detection time per sliding

window to establish the right input rate. Figure 4 shows how much time is consumed in each

window slide to verify whether data are lost. A total of 122 datasets were inputted according to the

time sequence. A single batch consisted of 10 graphs, and the processing time according to the

sliding window size was evaluated. The performance evaluation results showed that the frequent

subgraph pattern detection time in each sliding window was calculated by measuring the processing

time for each sliding window and taking the mean value. When a single sliding window consists of

five batches, the processing time is approximately 11 ms. However, if an interval of the graph input

is smaller than 11 ms, frequent patterns may be lost. Thus, frequent patterns can be detected

accurately when the data size, sliding window size, and batch size are appropriately selected

according to the data characteristics in application fields.

Figure 4. Processing time of the proposed method according to sliding window size.

Generally, as graph size increases, the rate of frequent subgraph pattern detection increases. As

a result, if too much time is taken to detect a frequent subgraph pattern from a large number of

graphs, the significance of the detected frequent subgraph pattern may be weakened. Figure 5 shows

the comparison of the experimental results for data processing time between the proposed and

existing methods as the number of edges increased. This experiment generated arbitrary graphs and

changed the number of edges in the graphs to conduct performance evaluation. A batch consisted of

100 graphs, and a window slide consisted of five batches. In addition, a threshold was set to 80% to

detect patterns that appeared more than 400 times in the window slide. In this experiment, when the

number of edges was small, no significant processing time was revealed. However, when the

number of edges was increased, the processing time in the proposed method was reduced by up to

60% compared to that of the existing methods. The reason for this was because duplicate processing

results also increased as the number of edges increased, and the existing methods performed

duplicate processing continuously.

Figure 4. Processing time of the proposed method according to sliding window size.

Generally, as graph size increases, the rate of frequent subgraph pattern detection increases. As a
result, if too much time is taken to detect a frequent subgraph pattern from a large number of graphs,
the significance of the detected frequent subgraph pattern may be weakened. Figure 5 shows the
comparison of the experimental results for data processing time between the proposed and existing
methods as the number of edges increased. This experiment generated arbitrary graphs and changed
the number of edges in the graphs to conduct performance evaluation. A batch consisted of 100 graphs,
and a window slide consisted of five batches. In addition, a threshold was set to 80% to detect patterns
that appeared more than 400 times in the window slide. In this experiment, when the number of edges
was small, no significant processing time was revealed. However, when the number of edges was
increased, the processing time in the proposed method was reduced by up to 60% compared to that of
the existing methods. The reason for this was because duplicate processing results also increased as the
number of edges increased, and the existing methods performed duplicate processing continuously.Sensors 2018, 18, x FOR PEER REVIEW 12 of 16

Figure 5. Processing time according to the number of edges.

DSMatrix is based on sliding windows. Accordingly, its processing time depends on the sliding

window size. Thus, it is important to set a sliding window size that is suitable for different

applications. Figure 6 shows the difference in processing time between the proposed and two

existing methods according to the window slide size. Each graph is an arbitrarily created graph that

consists of 300,000 edges. In the figure, when 20 batches are included in a single sliding window, the

proposed method reduces the processing time by 63% compared to that of DSMatrix and by 50%

compared to that of SAND. This result verifies that, compared to the existing methods, the

performance of the proposed method improves as the number of sliding windows increases. This is

because, during several graph streams, according to the value of slideNum, it was determined that

no calculation will be needed in the future when using the incremental frequent subgraph pattern

detection method. As a result, the overall computation cost was reduced, as patterns not needing

calculation increased when the sliding window size increased.

Figure 6. Processing time according to the sliding window size.

A frequent subgraph pattern means a subgraph that frequently occurs above the threshold. We

confirmed through various experiments that the results of frequent pattern detection of the

proposed method are identical to those of the existing methods. Therefore, we compare the

proposed method with the existing methods in terms of the processing time according to the

changing threshold. Figure 7 shows the processing time according to a threshold value. The graph in

Figure 5. Processing time according to the number of edges.

DSMatrix is based on sliding windows. Accordingly, its processing time depends on the sliding
window size. Thus, it is important to set a sliding window size that is suitable for different applications.
Figure 6 shows the difference in processing time between the proposed and two existing methods
according to the window slide size. Each graph is an arbitrarily created graph that consists of
300,000 edges. In the figure, when 20 batches are included in a single sliding window, the proposed
method reduces the processing time by 63% compared to that of DSMatrix and by 50% compared
to that of SAND. This result verifies that, compared to the existing methods, the performance of the
proposed method improves as the number of sliding windows increases. This is because, during

Sensors 2018, 18, 4020 12 of 16

several graph streams, according to the value of slideNum, it was determined that no calculation will
be needed in the future when using the incremental frequent subgraph pattern detection method. As a
result, the overall computation cost was reduced, as patterns not needing calculation increased when
the sliding window size increased.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 16

Figure 5. Processing time according to the number of edges.

DSMatrix is based on sliding windows. Accordingly, its processing time depends on the sliding

window size. Thus, it is important to set a sliding window size that is suitable for different

applications. Figure 6 shows the difference in processing time between the proposed and two

existing methods according to the window slide size. Each graph is an arbitrarily created graph that

consists of 300,000 edges. In the figure, when 20 batches are included in a single sliding window, the

proposed method reduces the processing time by 63% compared to that of DSMatrix and by 50%

compared to that of SAND. This result verifies that, compared to the existing methods, the

performance of the proposed method improves as the number of sliding windows increases. This is

because, during several graph streams, according to the value of slideNum, it was determined that

no calculation will be needed in the future when using the incremental frequent subgraph pattern

detection method. As a result, the overall computation cost was reduced, as patterns not needing

calculation increased when the sliding window size increased.

Figure 6. Processing time according to the sliding window size.

A frequent subgraph pattern means a subgraph that frequently occurs above the threshold. We

confirmed through various experiments that the results of frequent pattern detection of the

proposed method are identical to those of the existing methods. Therefore, we compare the

proposed method with the existing methods in terms of the processing time according to the

changing threshold. Figure 7 shows the processing time according to a threshold value. The graph in

Figure 6. Processing time according to the sliding window size.

A frequent subgraph pattern means a subgraph that frequently occurs above the threshold. We
confirmed through various experiments that the results of frequent pattern detection of the proposed
method are identical to those of the existing methods. Therefore, we compare the proposed method
with the existing methods in terms of the processing time according to the changing threshold. Figure 7
shows the processing time according to a threshold value. The graph in this performance evaluation
used arbitrarily generated data, which consisted of 300,000 edges; one batch consisted of 100 graphs,
and one sliding window consisted of five batches. As shown in the figure, the processing time slowed
down rapidly as the threshold became smaller. This was because the number of cases to be considered
when two or more frequent patterns were detected increased exponentially. However, when the
threshold was set to 80%, the processing time in the proposed method was faster: 60% of that of
DSMatrix and 55% of that of SAND. The reason for this is, as the threshold value became larger,
slideNum was likely to increase, which improved the performance. Thus, it is important to select a
threshold value that is suitable to the data and the application field.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 16

this performance evaluation used arbitrarily generated data, which consisted of 300,000 edges; one

batch consisted of 100 graphs, and one sliding window consisted of five batches. As shown in the

figure, the processing time slowed down rapidly as the threshold became smaller. This was because

the number of cases to be considered when two or more frequent patterns were detected increased

exponentially. However, when the threshold was set to 80%, the processing time in the proposed

method was faster: 60% of that of DSMatrix and 55% of that of SAND. The reason for this is, as the

threshold value became larger, slideNum was likely to increase, which improved the performance.

Thus, it is important to select a threshold value that is suitable to the data and the application field.

Figure 7. Processing time according to threshold.

A larger memory usage is advantageous to the frequent subgraph pattern detection of larger

graph sizes. Frequent patterns may occupy more space than graph increases occupy. Thus, if the

memory usage is bigger, frequent patterns of larger data can be detected. Figure 8 shows the

memory usage measured using the as-Caida data. Here, the sliding window size was five, and each

batch consisted of 10 graphs. The proposed method used a memory of 83 MB on average, which

used more memory than SAND (62 MB on average). This was because the proposed method

employs the frequent subgraph pattern management table to improve the processing time, resulting

in additional memory space for pattern management. In addition, DSMatrix used 412 MB of

memory on average because it employs many pointers to construct trees, and there are many

duplicate data because trees are constructed for each edge. However, as the proposed method and

SAND detect frequent patterns using a bit product rather than a tree, they used less memory.

Figure 8. Memory usage.

Figure 7. Processing time according to threshold.

Sensors 2018, 18, 4020 13 of 16

A larger memory usage is advantageous to the frequent subgraph pattern detection of larger
graph sizes. Frequent patterns may occupy more space than graph increases occupy. Thus, if the
memory usage is bigger, frequent patterns of larger data can be detected. Figure 8 shows the memory
usage measured using the as-Caida data. Here, the sliding window size was five, and each batch
consisted of 10 graphs. The proposed method used a memory of 83 MB on average, which used
more memory than SAND (62 MB on average). This was because the proposed method employs the
frequent subgraph pattern management table to improve the processing time, resulting in additional
memory space for pattern management. In addition, DSMatrix used 412 MB of memory on average
because it employs many pointers to construct trees, and there are many duplicate data because trees
are constructed for each edge. However, as the proposed method and SAND detect frequent patterns
using a bit product rather than a tree, they used less memory.

Sensors 2018, 18, x FOR PEER REVIEW 13 of 16

this performance evaluation used arbitrarily generated data, which consisted of 300,000 edges; one

batch consisted of 100 graphs, and one sliding window consisted of five batches. As shown in the

figure, the processing time slowed down rapidly as the threshold became smaller. This was because

the number of cases to be considered when two or more frequent patterns were detected increased

exponentially. However, when the threshold was set to 80%, the processing time in the proposed

method was faster: 60% of that of DSMatrix and 55% of that of SAND. The reason for this is, as the

threshold value became larger, slideNum was likely to increase, which improved the performance.

Thus, it is important to select a threshold value that is suitable to the data and the application field.

Figure 7. Processing time according to threshold.

A larger memory usage is advantageous to the frequent subgraph pattern detection of larger

graph sizes. Frequent patterns may occupy more space than graph increases occupy. Thus, if the

memory usage is bigger, frequent patterns of larger data can be detected. Figure 8 shows the

memory usage measured using the as-Caida data. Here, the sliding window size was five, and each

batch consisted of 10 graphs. The proposed method used a memory of 83 MB on average, which

used more memory than SAND (62 MB on average). This was because the proposed method

employs the frequent subgraph pattern management table to improve the processing time, resulting

in additional memory space for pattern management. In addition, DSMatrix used 412 MB of

memory on average because it employs many pointers to construct trees, and there are many

duplicate data because trees are constructed for each edge. However, as the proposed method and

SAND detect frequent patterns using a bit product rather than a tree, they used less memory.

Figure 8. Memory usage.
Figure 8. Memory usage.

The existing methods require high computation costs to detect frequent patterns after the initial
graph is generated. In addition, the detection of frequent subgraphs using sliding windows resulted in
unnecessary comparison. The proposed method reduces processing time because it manages frequent
subgraph patterns and performs comparative operations only on subgraph patterns that may occur in
the future. In addition, similar to the method proposed in Reference [32], only subgraphs managed in
frequent subgraph patterns perform AND operation, thereby reducing the comparison operation. The
proposed method reduces the number of edges, the size of the sliding window, and the processing
time as the threshold changes. Memory based processing is performed because real-time processing is
required to detect frequent subgraph patterns in the graph stream. Therefore, it is important to reduce
memory usage when detecting frequent subgraphs. DSMatrix [31] uses a lot of memory because it
constructs DSMatrix for input graph streams and constructs the FP-Trees for frequent pattern detection.
SAND [32] uses the least memory since it does not deploy FP-Trees and only constructs DSMatrix for
input graph streams. The proposed method constructs DSMatrix for input graph streams, similar to
SAND, but additionally manages the frequent subgraph patterns to reduce unnecessary comparison
operations. Therefore, it uses more memory than SAND. However, the proposed method does not use
that much memory since it only manages frequently occurring subgraphs, not all subgraphs.

5. Conclusions

In this paper, we proposed an incremental processing method to detect frequent patterns from
graph streams. The proposed method can reduce the processing time by managing frequent patterns
discovered in previous sliding windows in a frequent subgraph pattern management table, then
utilizing the data in the table for the next sliding window. It also generates more meaningful frequent
patterns by considering connectivity. The performance evaluation results verified that the proposed
method could reduce duplicate operations, which was an important feature since the amount of

Sensors 2018, 18, 4020 14 of 16

duplicated data increased in the sliding windows when the graph and sliding window sizes increased.
As a result, the processing time was reduced by 55% on average, compared to the existing methods.
The proposed method manages frequent patterns in the table, so it has the limitation of needing
excessive memory space to manage frequent patterns in the table, and more time is needed to scan
them as the number of frequent patterns increases. Thus, for future research, a study will be conducted
using an index for direct access to the required pattern to reduce the cost of scanning when the number
of patterns to be managed increases.

Author Contributions: Conceptualization, K.B., J.J., D.C., and J.Y.; Methodology, K.B., J.J., and D.C.; Validation,
J.J.; Data Curation [41,42], J.J., and D.C; Writing-Original Draft Preparation, K.B.; Writing—Review & Editing, J.Y.

Funding: This research was supported by the MSIT(Ministry of Science, ICT), Korea, under the ITRC(Information
Technology Research Center) support program (IITP-2018-2013-1-00881) supervised by the IITP(Institute for
Information & communication Technology Promotion), by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIP) (No. 2016R1A2B3007527), by Next-Generation Information Computing
Development Program through the National Research Foundation of Korea(NRF) funded by the Ministry of
Science, ICT (No. NRF-2017M3C4A7069432), and by the ICT R&D program of MSIT/IITP. [B0101-15-0266,
Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, S.; Li, J.; Hu, C.; Lin, X.; Huai, J. Big graph search: challenges and techniques. Frontiers Comput. Sci. 2016,
10, 387–398. [CrossRef]

2. Zhang, L.; Gao, J. Incremental graph pattern matching algorithm for big graph data. Sci. Program. 2018, 2018,
1–8. [CrossRef]

3. Labouseur, A.G.; Birnbaum, J.; Olsen, P.W.; Spillane, S.R.; Vijayan, J.; Hwang, J.; Han, W. The G graph
database: efficiently managing large distributed dynamic graphs. Distrib. Parallel Databases 2015, 33, 479–514.
[CrossRef]

4. Yan, D.; Bu, Y.; Tian, Y.; Deshpande, A. Big graph analytics platforms. Found. Trends Databases 2017, 7, 1–195.
[CrossRef]

5. Jiang, F.; Leung, C.K. Mining interesting “following” patterns from social networks. In Proceedings of the
International Conference on Data Warehousing and Knowledge Discovery, Munich, Germany, 2–4 September
2014; pp. 308–319.

6. Tian, Y.; McEachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. SAGA: a subgraph matching tool for biological
graphs. Bioinformatics 2017, 23, 232–239. [CrossRef] [PubMed]

7. Fariha, A.; Ahmed, C.F.; Leung, C.K.; Abdullah, S.M.; Cao, L. Mining frequent patterns from human
interactions in meetings using directed acyclic graphs. In Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 38–49.

8. Li, P.; Heo, L.; Li, M.; Ryu, K.H.; Pok, G. Protein function prediction using frequent patterns in protein-protein
interaction networks. In Proceedings of the International Conference on Fuzzy Systems and Knowledge
Discovery, Shanghai, China, 26–28 July 2011; pp. 1616–1620.

9. Peng, J.; Yang, L.; Wang, J.; Liu, Z.; Li, M. An efficient algorithm for detecting closed frequent subgraphs
in biological networks. In Proceedings of the International Conference on BioMedical Engineering and
Informatics, Sanya, China, 28–30 May 2008; pp. 677–681.

10. Mrzic, A.; Meysman, P.; Bittremieux, W.; Moris, P.; Cule, B.; Goethals, B.; Laukens, K. Grasping frequent
subgraph mining for bioinformatics applications. BioData Mining 2018, 11, 1–24. [CrossRef] [PubMed]

11. Namaki, M.H.; Lin, P.; Wu, Y. Event pattern discovery by keywords in graph streams. In Proceedings of the
International Conference on Big Data, Boston, MA, USA, 11–14 December 2017; pp. 982–987.

12. Manzoor, E.A.; Milajerdi, S.M.; Akoglu, L. Fast memory-efficient anomaly detection in streaming
heterogeneous graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1035–1044.

13. Choudhury, S.; Holder, L.B.; Chin, G.; Agarwal, K.; Feo, J. A Selectivity based approach to continuous pattern
detection in streaming graphs. In Proceedings of the International Conference on Extending Database
Technology, Brussels, Belgium, 23–27 March 2015; pp. 157–168.

http://dx.doi.org/10.1007/s11704-015-4515-1
http://dx.doi.org/10.1155/2018/6749561
http://dx.doi.org/10.1007/s10619-014-7140-3
http://dx.doi.org/10.1561/1900000056
http://dx.doi.org/10.1093/bioinformatics/btl571
http://www.ncbi.nlm.nih.gov/pubmed/17110368
http://dx.doi.org/10.1186/s13040-018-0181-9
http://www.ncbi.nlm.nih.gov/pubmed/30202444

Sensors 2018, 18, 4020 15 of 16

14. Vlassopoulos, C.; Kontopoulos, I.; Apostolou, M.; Artikis, A.; Vogiatzis, D. Dynamic graph management for
streaming social media analytics. In Proceedings of the ACM International Conference on Distributed and
Event-based Systems, Irvine, CA, USA, 20–24 June 2016; pp. 382–385.

15. Edouard, A.; Cabrio, E.; Tonelli, S.; Thanh, N.L. Graph-based event extraction from twitter. In Proceedings
of the International Conference Recent Advances in Natural Language Processing, Varna, Bulgaria,
2–8 September 2017; pp. 222–230.

16. Eberle, W.; Holder, L. Identifying anomalies in graph streams using change detection. In Proceedings of the
KDD Workshop on Mining and Learning in Graphs, San Francisco, CA, USA, 14 August 2016.

17. McGregor, A. Graph stream algorithms: A survey. SIGMOD Record 2014, 43, 9–20. [CrossRef]
18. Guo, Y.; Hong, S.; Chafi, H.; Iosup, A.; Epema, D.H.J. Modeling, analysis, and experimental comparison of

streaming graph-partitioning policies. J. Parallel Distrib. Comput. 2017, 108, 106–121. [CrossRef]
19. Aridhi, S.; Montresor, A.; Velegrakis, Y. BLADYG: A graph processing framework for large dynamic graphs.

Big Data Res. 2017, 9, 9–17. [CrossRef]
20. Aggarwal, C.C.; Li, Y.; Yu, P.S.; Jin, R. On dense pattern mining in graph streams. PVLDB 2010, 3, 975–984.

[CrossRef]
21. Kim, K.; Seo, I.; Han, W.; Lee, J.; Hong, S.; Chafi, H.; Shin, H.; Jeong, G. TurboFlux: A fast continuous

subgraph matching system for streaming graph data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 411–426.

22. Riedy, J. Streaming graph analysis: new models, new architectures. In Proceedings of the ACM International
Conference on Computing Frontiers, Ischia, Italy, 8–10 May 2018; p. 268.

23. Yang, M.; Rashidi, L.; Rajasegarar, S.; Leckie, C. Graph stream mining based anomalous event analysis.
In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Nanjing, China,
28–31 August 2018; pp. 891–903.

24. Boobalan, M.P.; Lopez, D.; Gao, X.Z. Graph clustering using k-Neighbourhood Attribute Structural similarity.
Appl. Soft Comput. 2016, 47, 216–223. [CrossRef]

25. Gao, J.; Zhou, C.; Zhou, J.; Yu, J.X. Continuous pattern detection over billion-edge graph using distributed
framework. In Proceedings of the International Conference on Data Engineering, Chicago, IL, USA,
31 March–4 April 2014; pp. 556–567.

26. Sun, Z.; Wang, H.; Wang, H.; Shao, B.; Li, J. Efficient subgraph matching on billion node graphs. PVLDB
2012, 5, 788–799. [CrossRef]

27. Valari, E.; Kontaki, M.; Papadopoulos, A.N. Discovery of top-k dense subgraphs in dynamic graph collections.
In Proceedings of the International Conference on Scientific and Statistical Database Management, Chania,
Crete, Greece, 25–27 June 2012; pp. 213–230.

28. Abdelhamid, E.; Canim, M.; Sadoghi, M.; Bhattacharjee, B.; Chang, Y.; Kalnis, P. Incremental frequent
subgraph mining on large evolving graphs. IEEE Trans. Knowl. Data Eng. 2017, 29, 2710–2723. [CrossRef]

29. Ramraja, T.; Prabhakarb, R. Frequent Subgraph Mining Algorithms—A Survey. Procedia Comput. Sci. 2015,
47, 197–204. [CrossRef]

30. Leung, C.K.; Khan, Q.I. DSTree: A tree structure for the mining of frequent sets from data streams. In
Proceedings of the International Conference on Data Mining, Hong Kong, China, 18–22 December 2006;
pp. 928–932.

31. Braun, P.; Cameron, J.J.; Cuzzocrea, A.; Jiang, F.; Leung, C.K. Effectively and efficiently mining frequent
patterns from dense graph streams on disk. In Proceedings of the International Conference in Knowledge
Based and Intelligent Information and Engineering Systems, Gdynia, Poland, 15–17 September 2014;
pp. 338–347.

32. Cuzzocrea, A.; Han, Z.; Jiang, F.; Leung, C.K.; Zhang, H. Edge-based mining of frequent subgraphs
from graph streams. In Proceedings of the International Conference in Knowledge Based and Intelligent
Information and Engineering Systems, Singapore, 7–9 September 2015; pp. 573–582.

33. Ismail, W.N.; Hassan, M.M.; Alsalamah, H.A. Mining of productive periodic-frequent patterns for IoT data
analytics. Future Gener. Comp. Syst. 2018, 88, 512–523. [CrossRef]

34. Chen, F.; Deng, P.; Wan, J.; Zhang, D.; Vasilakos, A.V.; Rong, X. Data mining for the internet of things:
Literature review and challenges. IJDSN 2015, 11, 1–14. [CrossRef]

35. Tsai, C.; Lai, C.; Chiang, M.; Yang, L.T. Data mining for internet of things: A survey. IEEE Commun. Surv. Tutor.
2014, 16, 77–97. [CrossRef]

http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1016/j.jpdc.2016.02.003
http://dx.doi.org/10.1016/j.bdr.2017.05.003
http://dx.doi.org/10.14778/1920841.1920964
http://dx.doi.org/10.1016/j.asoc.2016.05.028
http://dx.doi.org/10.14778/2311906.2311907
http://dx.doi.org/10.1109/TKDE.2017.2743075
http://dx.doi.org/10.1016/j.procs.2015.03.198
http://dx.doi.org/10.1016/j.future.2018.05.085
http://dx.doi.org/10.1155/2015/431047
http://dx.doi.org/10.1109/SURV.2013.103013.00206

Sensors 2018, 18, 4020 16 of 16

36. Elseidy, M.; Abdelhamid, E.; Skiadopoulos, S.; Kalnis, P. GRAMI: Frequent subgraph and pattern mining in
a single large graph. PVLDB 2014, 7, 517–528. [CrossRef]

37. Tanbeer, S.K.; Leung, C.K.; Cameron, J.J. Interactive mining of strong friends from social networks and its
applications in E-commerce. J. Org. Comput. E. Commerce. 2014, 24, 157–173. [CrossRef]

38. Bifet, A.; Holmes, G.; Pfahringer, B.; Gavaldà, R. Mining frequent closed graphs on evolving data streams.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, 21–24 August 2011; pp. 591–599.

39. Shivraj, V.L.; Rajan, M.A.; Balamuralidhar, P. A graph theory based generic risk assessment framework
for internet of things (IoT). In Proceedings of the International Conference on Advanced Networks and
Telecommunications Systems, Bhubaneswar, India, 17–20 December 2017; pp. 1–6.

40. Almuammar, M.; Fasli, M. Pattern discovery from dynamic data streams using frequent pattern mining with
multi-support thresholds. In Proceedings of the International Conference on the Frontiers and Advances in
Data Science, Xi’an, China, 23–25 October 2017; pp. 35–40.

41. Center for Applied Internet Data Analysis. Available online: http://www.caida.org (accessed on 20 July 2018).
42. Stanford Large Network Dataset Collection. Available online: https://snap.stanford.edu/data/ (accessed on

20 July 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.14778/2732286.2732289
http://dx.doi.org/10.1080/10919392.2014.896715
http://www.caida.org
https://snap.stanford.edu/data/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	The Proposed Frequent Subgraph Pattern Detection
	Preliminary
	Overall Procedure
	Preprocessing
	Initial Frequent Subgraph Pattern Detection
	Incremental Frequent Subgraph Pattern Detection

	Performance Evaluation
	Conclusions
	References

