
V Y Bogdanov and 
V N Khirmanov

R35–R434:1

REVIEW

SARS-CoV-2, platelets, and endothelium: 
coexistence in space and time, or a pernicious 
ménage à trois?

Vladimir Y Bogdanov 1 and Vladimir N Khirmanov2

1Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
2Department of Cardiovascular Medicine, Nikiforov’s All-Russian Center for Emergency and Radiation Medicine, Saint Petersburg, Russia

Correspondence should be addressed to V Y Bogdanov or V N Khirmanov: vladimir.bogdanov@uc.edu or vkhirmanov@mail.ru

Abstract

As we enter year 3 of SARS-CoV-2 pandemic, long-term consequences of COVID-19 
have become a major public health issue worldwide; however, the molecular and 
cellular underpinnings of ‘long COVID’ remain very poorly understood. A paradigm has 
recently emerged that thrombo-inflammatory consequences of SARS-CoV-2’s impact on 
endothelial cells and platelets likely play a significant role in the development of chronic 
symptomatology associated with COVID-19. In this brief overview, we discuss the recent 
findings pertaining to the detection of SARS-CoV-2 virions in vascular cell subtypes, the 
contribution of the coagulation system to the development of ‘long COVID’, and the 
potential role of stem/progenitor cells in the viral and thrombotic dissemination in this 
disorder.

Introduction

Thrombosis is one of the most perilous and frequently 
occurring clinical manifestations of the novel infectious 
disease СOVID-19 caused by a single-stranded RNA (ssRNA) 
coronavirus SARS-CoV-2. Thrombi have been detected in 
the lung and other anatomical locations/vascular beds. 
Thrombotic disorders are not typically observed during 
the initial stages of СOVID-19, which is confined to the 
epithelial lining of the upper respiratory tract; thrombi 
are more likely to occur if there is systemic progression. 
The pathogen infects lung tissue and replicates in alveolar 
cells; the subsequent disruption of the basal membrane 
facilitates SARS-CoV-2’s access to pericytes and endothelial 
cells in the nearby capillaries, leading to the development 
of thrombotic micro-vasculitis (1). Upon ensuing 
physical damage to the vascular barrier, the pathogen 
reaches systemic circulation (2). Viremia and viral sepsis 
– the hallmarks of severe COVID-19 – carry a high risk of 

thrombotic vasculitis, thrombosis, and thromboembolism 
(3) that can manifest long-term in the latent form, as well 
as a persisting (so-called ‘long COVID’) and/or progressive 
process; they are also prevalent in COVID-19’s terminal 
stage.

At the present time, the prevailing views of the 
pathophysiological underpinnings of SARS-CoV-2- 
induced hemostatic derangements emphasize 
thrombogenic phenomena that are secondary to the 
infection itself, for example, generalized immune and/or  
inflammatory mechanisms such as cytokine storm, 
complement activation, and various types of immune 
responses (4, 5, 6, 7, 8). It remains an open question 
whether ssRNA viruses can directly disrupt cellular 
effectors of hemostasis to an extent that would yield a pro-
thrombotic shift. Even though the amount of information 
on this effect is very modest and its interpretation is 
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controversial, it is reasonable to explore a hypothesis 
that some of COVID-19’s thrombotic sequelae – those 
that develop relatively early, as well as later on upon the 
onset of an unfavorable, prolonged course of the disease 
– can be caused at least in part by virus-induced cellular 
disruption. Specifically, SARS-CoV-2 virions themselves 
and its substructures, for example, intact ssRNA, viral 
proteins, and/or fragments thereof may serve as triggering 
agents/contributors to the damage of the cellular effectors 
of hemostasis. As outlined below, the damage caused to 
endothelial and/or platelet precursors in particular may set 
the stage for viral dissemination throughout the body, that 
is, the development of COVID-19 septicemia, as well as 
the conversion of the disease into a chronic disorder (long 
СOVID).

Detection of SARS-CoV-2 virions in cellular 
effectors of hemostasis

Platelets and endothelial cells are hardly at the forefront 
of active ssRNA viral invasion and/or virion production – 
if detected at all, the rate of viral replication in these cell 
types is minimal and virions are not commonly detected 
in the supernatants of infected cultured cells (4, 9, 10). At 
the same time, a number of morphological, molecular, and 
physiological signs of cellular damage have been described 
that are tied to either the virions themselves, or its 
specific components; this damage may lead to significant 
clinicopathological consequences.

Platelets

There is abundant evidence that platelets are hyperactive 
in patients with СOVID-19, with some studies implicating 
SARS-CoV-2 as a direct contributor. Manne et  al. (11) 
demonstrated that platelet hyperactivation is partly due to 
the changes in nucleic acid content in their cytosol. Zaid 
et al. (12) detected SARS-CoV-2 RNA in hyperactive platelets 
that produced – and released into plasma – high quantities 
of inflammatory cytokines, serotonin, and platelet factor 
4 (PF4) that can act as a chemokine (13). Thus, infected 
activated platelets may contribute to cytokine storm in 
COVID-19. In a detailed study, Zhang et al. (14) concluded 
that platelet hyperactivation in severe COVID-19 is 
positively associated with viremia (RNA-emia). In vitro, 
SARS-CoV-2 virions as well as isolated S-protein were shown 
to directly activate healthy human platelets as evidenced 
by platelet aggregation and spreading, PAC-1 binding, 
SELP expression, α-granule secretion, dense granule 

release, and clot retraction; MAPK signaling pathway has 
been implicated. This leads to the elevation of coagulation 
factors F5/(F)V and F13/(F)XIII, several inflammatory 
cytokines (PF4, TNF, IL1B, and CXCL8), P-selectin, and 
platelet–leukocyte aggregates in the circulation (14).

Vascular endothelium

Several studies reported clinical and morphological signs  
of infectious endotheliitis in COVID-19. Various organs 
and tissues seem to be affected; electron microscopy, 
molecular, and immunohistochemical (IHC) approaches 
revealed the presence of SARS-CoV-2 virions and/or their 
fragments in the endothelium (1, 10, 15, 16, 17, 18, 19, 20, 
21, 22, 23). The expression of mRNA encoding IL6 and IFN-
α proteins is increased in infected human microvascular 
endothelial cells (10). The levels of some of the markers of 
endothelial dysfunction (VCAM1, ANGPT2, and ICAM1) 
are positively associated with viral load in the circulation 
(RNA-emia) (24).

Transgenic mice expressing human angiotensin-
converting enzyme 2 (hACE2) and non-human primates are 
susceptible to infection with SARS-CoV-2; in both of these 
experimental models, colocalization of the virus (readouts 
being RNA and protein) and the endothelial marker CD31 
have been described, along with the activation of KRAS 
and MAPK signaling pathways (22). SARS-CoV-2 can also 
infect mature, pre-activated murine endothelial cells that 
become ACE2-positive, which was demonstrated using 
IHC and electron microscopy approaches (22). Thus, SARS-
CoV-2 virus is able to infect and directly damage mature 
vascular endothelial cells in vitro and in vivo.

Viral replication has been described in the infected 
cultures of lung tissue-derived microvascular endothelial 
cells, albeit its intensity is appreciably lower compared to 
that observed in the paired cultures of lung tissue-derived 
epithelial cells (2). In both types of infected cells, generalized 
aberrations of the proteome have been described (2). Even 
though SARS-CoV-2 virions and S-protein are only barely 
detectable in endothelial cells, there is a marked expression 
of nucleocapsid protein (NP) with the accompanying 
alterations of certain ultra-structures, including the Golgi 
apparatus.

NP of SARS-CoV-2 – but not that of other coronaviruses, 
that is, SARS-CoV, MERS-CoV, HUB1-CoV, and/or H1N1 
– can strongly activate human endothelial cells via the 
engagement of TLR2/NFKB and MAPK signaling pathways. 
SARS-CoV-2 NP potentiates the expression of ICAM1 
and VCAM1, thus promoting monocyte adhesion to 
endothelial surfaces, as well as such proinflammatory 
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cytokines as SELE, MCP-1/CCL2, IL1B (mRNA), and TNF – a 
potent inducer of endothelial activation; it is notable that 
the nature and the magnitude of SARS-CoV-2 NP’s effects 
on the endothelium are comparable to those of TNF (25, 
26). TNF and various selectins (of endothelial as well as 
platelet origin) are known to be potent stimulators of von 
Willebrand factor (vWF) and coagulation factor F8/(F)VIII 
secretion from the endothelium; in COVID-19, a strong 
elevation of vWF and F8 secretion from the endothelium 
has been reported (26, 27).

Tissue factor and COVID-19

Evidence continues to accumulate that COVID-19-
associated coagulopathies are associated with tissue factor 
(TF)-driven thrombosis. Under physiological conditions, 
TF is absent from the circulation and triggers clotting by 
forming a 1:1 complex with the serine protease coagulation 
Factor 7/FVII (a) upon tissue and/or vessel wall injury; 
however, blood-borne TF-bearing microvesicles (MVs) 
can contribute to thrombosis in various pathological 
states, including COVID-19 (reviewed in Mackman et  al.) 
(28). TF+ MVs may transfer enzymatically active TF to the 
surface of endothelial cells as well as platelets, rendering 
them more thrombogenic. Two seminal observations 
documented the presence of TF+ MVs in the blood of 
COVID-19 patients (29, 30). Most recently, TF protein was 
found to be significantly elevated in the blood of COVID-19 
patients with thrombosis compared to COVID-19 patients 
without thrombosis; complement factor C2 was proposed 
as a possible contributor to the increased TF expression 
(31). The cell sources of TF in the circulation of COVID-19 
patients are thought to be primarily lung epithelial cells 
and monocytes (28); however, it cannot be excluded that 
activated endothelial cells may also release TF+ MVs in 
COVID-19 patients.

Encephalopathy and COVID-19

Encephalopathies (brain fog) comprise a frequent, 
clinically pronounced manifestation of COVID-19 – during 
the acute stage, throughout convalescence, as well as post-
COVID. Its presentation is rather distinct in patients with 
mild/moderate vs severe disease; in the latter group, it is 
influenced by many pathogenic factors including hypoxia, 
cytokine-induced damage, direct neuronal invasion by the 
virus, drug toxicity, and macrovascular (thromboembolic) 
events, for example, strokes, the occurrence of which is 

significantly higher even among younger patients (32). 
Patient age and comorbidities are equally important. It is 
very likely that, in older patients, COVID-19 is exacerbated 
by such age-related conditions as cerebrovascular disease, 
encephalopathies of hypertonic and/or metabolic origin, 
and Alzheimer’s disease. It is all but certain that COVID-
19 fuels the progression of such encephalopathies (33), 
particularly because this infection worsens the already-
present neurodegeneration.

With that being said, the frequency of encephalopathy-
type symptoms among younger patients (16–30 years old) 
with moderate COVID-19 is remarkable, and even more 
so – their persistence for many months in over a half 
of such patients (34). This suggests that pre-morbidity 
neurodegeneration factors, comorbidities, macrovascular 
events/strokes, and/or other major cerebral abnormalities 
do not play a major role in such patients; rather, the root 
cause(s) may lie in organic neurotoxic insults or, equally 
possibly, micro(vascular) focal brain injury. Furthermore, 
even mild COVID-19 may lead to brain atrophy, increased 
cerebrospinal fluid volume, and decreased ability to 
perform complex tasks (35).

In support of this tenet, Qin et  al. (36) demonstrated 
that, in post-COVID-19, the odds of micro-focal brain 
injury/microcirculatory-type deficiencies are high even in 
the absence of overt neurological symptoms. We note that 
these deficiencies are likely related to inflammatory factors, 
as well as endothelial damage. In COVID-19, cerebral 
endotheliitis with micro-thrombosis and hemorrhage 
(micro-focal manifestation) has been demonstrated via 
clinical observations, as well as histologically using various 
visualization techniques (20, 37, 38). Micro-emboli in 
the cerebral vascular bed can also be deemed a proven 
phenomenon in COVID-19 (39).

SARS-CoV-2 entry into target cells: 
mechanisms and uncertainties

It is remarkable that even though SARS-CoV-2 and its 
RNA have been detected in mature human platelets and 
vascular endothelial cells, these cells typically do not 
express functional components of the classical stepwise 
mechanism of SARS-CoV-2‘s entry into the cell that 
comprises the cell surface receptor/protease ACE2 and 
the transmembrane protease serine-2 (TMPRSS2). A few 
isolated reports notwithstanding (14, 23) the expression 
and/or biosynthesis of these two key peptidases has been 
detected in endothelial cells and/or platelets at extremely 
low levels (11, 12, 40, 41, 42).
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Then how, in the absence of the canonical mechanisms, 
does SARS-CoV-2 virus manage to infect target cells-
effectors of hemostasis, that is, platelets and endothelial 
cells? Several possibilities can be proposed. First, low-
level peptidase expression may be sufficient to yield viral 
infection, yet it may elude detection using conventional 
approaches/testing conditions. For instance, Kaneko et al. 
(43) demonstrated that pressure shifts in the pulsating 
circulation are required for the expression of ACE2 in 
endothelial cells to become manifest; other experimental 
conditions favoring ACE2 expression have been described 
(22). We note that high viral load and inflammation 
likely serve as a direct trigger of this mechanism (42). 
Secondly, protease expression may depend on vascular 
bed-specific features of the endothelium, for example, the 
type of the vessel and its diameter, the vessel’s presence in 
a particular tissue and/or organ, etc. One example of this 
comprises the prevalence of ACE2/TMPRSS2 expression 
in the coronary capillaries above arterioles/venules and, 
even more so, above coronary arteries (1, 23). Thirdly, 
other, yet-to-be-described mechanisms of viral entry may 
exist: matrix metalloprotease BSG/CD147 (basigin) is able 
to functionally substitute ACE2 (44, 45, 46), whereas the 
function of TMPRSS2 can be substituted by that of several 
cellular proteases, for example, proprotein convertase furin 
(47) and cysteine proteases cathepsin B and L (48). The αvβ3 
integrin-mediated endocytosis may also facilitate SARS-
CoV-2’s entry into endothelial cells (49). Finally, another 
potential route of SARS-CoV-2’s entry into cells and the 
ensuing infection should be pointed out, which may be 
critically important.

Stem cells as a SARS-CoV-2 gateway

It has been reported that ACE2 and TMPRSS2 – the two 
peptidases that play key roles in facilitating the canonical 
entry of SARS-CoV-2 into cells – are expressed at high 
levels in hematopoietic stem cells (HSCs) and endothelial 
progenitor cells (EPCs). Moreover, the expression of these 
peptidases is at the highest level in their precursors – 
CD45-positive very small embryonic-like stem cells, which 
may correspond to hemangioblasts (50, 51). At the same 
time, the proportion of cells expressing ACE2 decreases 
significantly during their differentiation and conversion 
into mature blood cells and vascular endothelial cells (50). 
Concomitantly, an alternative mechanism of viral entry 
into cells may come into play: recent studies demonstrated 
that, in COVID-19, the above-mentioned metalloprotease 

BSG/CD147 facilitates SARS-CoV-2’s entry into 
megakaryocytes which results in specific transcriptome-
level aberrations that can be passed on to mature platelets 
with pathological consequences (52). In agreement with 
this, studies using HSCs and EPCs demonstrated that SARS-
CoV-2-induced transcriptome-level aberrations can be 
passed on to mature cells during the differentiation process 
(50); the possible mechanisms that lead to SARS-CoV-2-
induced pathological changes in HSCs are discussed in 
detail elsewhere (53).

Among the aberrations that were detected in infected 
endothelial cells at the RNA and protein levels, some of 
the most notable comprise inflammatory hyperactivation, 
diminution of the regenerative potential and pathological 
transformation, elicitation of pyroptosis, enhanced release 
of cytosolic components (e.g. cytokines and TF) into the 
intercellular space, and peripheral cell thrombosis (22, 50, 
51, 54, 55, 56).

Infection of stem/progenitor cells vis-à-vis 
viral and thrombotic dissemination

Viremia is one of the cardinal determinants of outcomes in 
severe COVID-19; it is observed frequently and can persist 
for weeks and even months. Concomitantly, heightened 
levels of infection-prone endothelial precursors are 
present in the circulation; precursor levels positively 
associate with viremia (57, 58). Infection by SARS-CoV-2 
damages endothelial cells as well as platelets in ways that 
may contribute to the development of thrombotic micro-
vasculitis, thrombosis of large veins and arteries, and 
embolisms – all characteristic for and prevalent in the 
course of severe acute COVID-19 and long COVID: we note 
that precursor cell infection likely contributes not only 
to multi-organ and thrombo-vascular complications but 
also to the development of long COVID (Fig. 1). We note 
that endothelial dysfunction/damage and thrombotic 
complications increasingly appear to be frequent 
and prolonged sequelae of COVID-19 (59, 60, 61, 62). 
Interestingly, there is evidence that vasculitis comprises a 
locus minoris resistentiae: judging from [18F]FDG-PET/CT 
data, the hallmark of inflammation associated with long 
COVID is its predominance in the bone marrow and in the 
vasculature (63). The elegant recent work by Pretorius and 
colleagues demonstrated that platelets are hyperactivated 
in patients with long COVID (64), which may explain the 
fact that d-dimer levels can remain elevated up to several 
months post-acute phase of the disease (65). Virus-induced  
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cellular senescence may be of particular relevance to 
platelet pathology in long COVID: supernatants from 
virus-infected senescent human fibroblasts – but not 
from non-infected and/or senescence-incapable cells – 
prompted platelet activation, shortened clotting times, 
and induced the formation of neutrophil extracellular 
traps in vitro (66).

Alpha, beta, gamma, delta, omicron… and 
how far beyond? Treating and preventing 
(long) COVID

As we write this review, a highly transmissible omicron 
variant of SARS-CoV-2 (B.1.1.529) has become the 
predominant strain in the United States. Omicron’s spike 

Figure 1
Pathophysiological hallmarks of acute SARS-CoV-2 infection and its chronic consequences (long COVID). 1. Infection by SARS-CoV-2 occurs via inhalation 
of virus-containing respiratory droplets. 2 and 3. SARS-CoV-2 infects alveolar cells. 4. In alveoli, ACE2-expressing alveolar type II cells comprise SARS-CoV-

2’s target (ACE2 is depicted in the drawing with a viral particle bound to it: ). ACE2 facilitates viral entry into the cells; subsequently, viral replication 
leads to the development of alveolitis and necrotic inflammation accompanied by basal membrane disruption whereby viral particles come in contact 
with endothelial cells of alveolar capillaries. Endothelial cells are progressively damaged by inflammation and, at high viral titers, become infected even 
though the levels of ACE2 expressed on their surfaces are quite low. Viral replication does not seem to occur in endothelial cells; however, their damage 
leads to a pro-thrombotic phenotype, exemplified by the release of von Willebrand factor. The resultant pathological changes comprise thrombotic 
microvascultis of the lung, which is accompanied by a pro-thrombotic shift in the plasma proteome. 5. SARS-CoV-2 originating from lung microvascular 
endothelium enters the bloodstream, which comprises the onset of the septic phase during which – aside from the systemic viral dissemination and 
inflammation, vasculitis, and hyper-coagulation – infection of stem/progenitor cells in the bone marrow and other tissues is a significant pathological 
hallmark. 7. ACE2 is also expressed in several types of other progenitor cells, including hematopoietic and endothelial progenitors, which renders them 
vulnerable to SARS-CoV-2. 8 and 9. Megakaryocytes express their own alternative gateways for coronavirus entry, for example, BSG/CD147 (depicted in 

the drawing with a viral particle bound to it ). Viral replication does not seem to occur in megakaryocytes; however, aberrations of the transcriptome 
have been described in megakaryocytes as well as platelets produced by them, likely with pro-thrombotic consequences. 10. Damage to the lung 
endothelium caused by the infection of endothelial cells, hematogenous viral dissemination, infection of the cellular precursors of endothelial cells/
platelets, and transcriptome-level thrombogenic aberrations caused by the virus in infected cells significantly contribute to a) the severity of early 
SARS-CoV-2 infection; b) the emergence of SARS-CoV-2 infection’s septic multi-organ and thrombo-vascular complications; c) the development of  
long COVID.
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protein sequence has 30+ mutations that render it not 
only more transmissible and invasive than all previous 
variants (67) but also resistant to most MAB therapies as 
was presciently predicted by Chen and colleagues (68). 
However, Omicron also seems to cause less severe disease 
(presumably due to a less severe viral burden in the lower 
respiratory tract) and, to date, reports about thrombotic 
complications have been extremely rare (69, 70). We note 
that this echoes the observations in murine and hamster 
models of B.1.1.529 infection (71). While it is too early 
to know whether Omicron causes long COVID and, if 
so, whether it is less severe, we posit that the ability of 
SARS-CoV-2 to mutate so rapidly heightens the need 
for inexpensive therapies whose efficacy is less likely to 
be impacted by viral adaptations in its genome; in this 
light, Paxlovid holds promise (72). Equally important is 
the clinicians’ ability to predict COVID-19 severity; one 
promising technology comprises testing for early non-
neutralizing, afucosylated IgG antibodies specific to SARS-
CoV-2 – in a recent study, they were found to be associated 
with progression from mild to more severe COVID-19 (73).

Concluding remarks

As we await SARS-CoV-2 to turn endemic, the numbers of 
those with long-term consequences of COVID-19 continue 
to rise. In this brief overview, we aimed to convey the 
notion that the interactions between the virus, endothelial 
cells, and platelets likely comprise a pathophysiological 
ménage à trois with many systemic ramifications and, 
possibly, additional cell (sub)types participating. Thus, 
the development of approaches to effectively manage long 
COVID is critical, and improving our understanding of its 
cellular and molecular underpinnings is essential to the 
success of this effort.
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