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Abstract

Background: Pulmonary tuberculosis (PTB) is one of the serious infectious diseases worldwide; however, the gene
network involved in the host response remain largely unclear.

Methods: This study integrated two cohorts profile datasets GSE34608 and GSE83456 to elucidate the potential
gene network and signaling pathways in PTB. Differentially expressed genes (DEGs) were obtained for Gene
ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis using Metascape database. Protein-
Protein Interaction (PPI) network of DEGs was constructed by the online database the Search Tool for the Retrieval
of Interacting Genes (STRING). Modules were identified by the plug-in APP Molecular Complex Detection (MCODE)
in Cytoscape. GO and KEGG pathway of Module 1 were further analyzed by STRING. Hub genes were selected for
further expression validation in dataset GSE19439. The gene expression level was also investigated in the dataset
GSE31348 to display the change pattern during the PTB treatment.

Results: Totally, 180 shared DEGs were identified from two datasets. Gene function and KEGG pathway enrichment
revealed that DEGs mainly enriched in defense response to other organism, response to bacterium, myeloid
leukocyte activation, cytokine production, etc. Seven modules were clustered based on PPI network. Module 1
contained 35 genes related to cytokine associated functions, among which 14 genes, including chemokine
receptors, interferon-induced proteins and Toll-like receptors, were identified as hub genes. Expression levels of the
hub genes were validated with a third dataset GSE19439. The signature of this core gene network showed
significant response to Mycobacterium tuberculosis (Mtb) infection, and correlated with the gene network pattern
during anti-PTB therapy.

Conclusions: Our study unveils the coordination of causal genes during PTB infection, and provides a promising
gene panel for PTB diagnosis. As major regulators of the host immune response to Mtb infection, the 14 hub genes
are also potential molecular targets for developing PTB drugs.
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Background

Pulmonary tuberculosis (PTB) is one of the serious in-
fectious diseases with high mortality in the world. PTB
is caused by various strains of mycobacteria with Myco-
bacterium tuberculosis (Mtb) being mostly observed in
human. According to the World Health Organization
(WHO) report, there were 10 million new cases of PTB
disease and 1.5 million deaths worldwide in 2017
(WHO, 2018). It has been estimated that one third of
the world’s population are infected with Mtb as latent
infections, among which 5 to 10% would develop into
active tuberculosis (TB) [1, 2]. Quick diagnostic and effi-
cient treatment are of great importance to control the
spread of PTB and reduce its mortality [3, 4]. Despite ac-
cumulating evidence on the mechanism of PTB, the mo-
lecular processes and the specific gene regulations in the
progression of PTB remain to be explored.

Omics approaches, like genomics, transcriptomics,
proteomics and metabolomics, are high-throughput
methods that provide an opportunity to investigate the
global gene expression changes in PTB [3]. Transcrip-
tome profiling based on microarray or next-generation
sequencing has been widely used for differentially
expressed genes (DEGs) screening in human diseases.
With the application of genechips, a large amount of
data has been produced, most of which have been de-
posited in public databases. Integrating and re-analyzing
these data provide valuable clues to advance our re-
searches. In recently years, many microarray data profil-
ing studies have been performed on PTB [5]. Through
bioinformatic analysis, a number of DEGs and functional
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pathways have been identified [6]. However, these results
are either inconsistent due to sample heterogeneity in
individual studies, or limited by a single cohort study. So
far, no reliable biomarkers are available for PTB diagnos-
tics. Integrated bioinformatic analysis by combining
these expression profiling data together would be a
powerful approach to solve the disadvantages.

Here we analyzed two microarray datasets GSE34608
and GSE83456 from human whole blood samples in-
cluding 53 health controls and 79 PTB samples. Multiple
bioinformatics methods were employed to identify DEGs
between the two datasets. Gene Ontology, pathway en-
richment, Protein-Protein Interaction (PPI) network
construction were performed to reveal the function of
hub genes in PTB. Findings of this study might help to
explore essential diagnostic signatures for PTB and shed
a light on the molecular targets to treat PTB.

Methods

Gene expression microarray data acquisition

NCBI Gene Expression Omnibus database (GEO, http://
www.ncbi.nlm.nih.gov/geo) is a public functional gen-
omics database with high throughput gene expression
sequencing data and microarrays data. Two gene expres-
sion datasets GSE34608 [7] and GSE83456 [6], were
downloaded from GEO. GSE34608 contained 8 PTB
samples and 18 control samples, which is based on
GPL6480 platform (Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F). The GSE83456
dataset contained 45 PTB tissue samples and 61 control
samples. It is based on GPL10558 platform (Illumina
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plot of dataset GSE34608. b PCA plot of dataset GSE83456
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HumanHT-12 V4.0 expression beadchip). Another two
datasets GSE19439 and GSE31348 were used for hub
gene validation. GSE19439 contained 12 health and 13
PTB samples were used as validation dataset [8].
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GSE19439 is based on GPL6947 platform (Illumina
HumanHT-12 V3.0 expression beadchip). GSE31348
contained 27 subjects (135 samples) in five time point:
diagnosis, treatment for 1, 2, 4 and 26 weeks, which is
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Fig. 2 Selection and function of differentially expressed genes (DEGs). a Venn diagram of DEGs from the two datasets: GSE19439 and GSE34608.

Totally 51 down-regulated and 129 up-regulated genes are shared between the two GSE datasets. b and ¢ Functional annotation of DEGs using
Metascape. The top 20 terms are displayed as bar plot based on P value (log10 scale) (b), and the network plot (c)
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based on GPL570 platform (Affymetrix Human Genome
U133 Plus 2.0 Array) [9].

Identification of DEGs

Based on the microarray platform annotation, probe sets
were converted into the corresponding gene symbol for
the following analysis. Probe sets without corresponding
gene symbols were removed. The DEGs between control
and PTB samples were analyzed using limma (linear
models for microarray data) package in R. |log2FC (fold
change)| > 1 and adj. P-value <0.05 were considered as
statistically significant threshold for the DEGs selection
of GSE34608. |log2FC| >0.585 and adj. P-value <0.05
were considered as statistically significant threshold for
the DEGs selection of GSE83456. The co-existed DEGs
were identified by drawing the venn diagram of DEGs of
GSE34608 and GSE83456.

KEGG and GO enrichment analyses of DEGs

Metascape (a gene annotation & analysis resource;
http://metascape.org/) is online gene functional annota-
tion tool to provide a comprehensive set of biological in-
formation of genes and proteins [10]. To understand the
function of DEGs, Gene Oncology (GO) analysis, includ-
ing biological process (BP), cellular components (CC),
molecular function (MF), and KEGG pathway enrich-
ment were performed using Metascape.

PPI network construction and module analysis

In the present study, the PPI network was predicted
using the Search Tool for the Retrieval of Interacting
Genes (STRING; http://string-db.org) (version 11.0) on-
line database [11]. The cut off value for STRING analysis
is 0.04. Analyzing the functional interactions between
proteins may provide insights into the biological mecha-
nisms of action. PPI network were further visualized and
analyzed with Cytoscape (version 3.4.0) plug-in APP
Molecular Complex Detection (MCODE), which is used
for clustering a given network based on topology. The
most critical modules in the PPI network could be iden-
tified. The genes in top one module was displayed in this
study. The hub gene selection criteria were as follows:
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MCODE scores > 10, degree >20, neighborhood con-
nectivity > 10.

Hub genes analysis

The GO function, pathway, and protein domains of the
top module were analyzed using STRING. The expres-
sion levels of hub genes were further validated in data-
sets GSE19439 and GSE31348.

Results

Identification of DEGs

Gene expression profile of GSE34608 and GSE83456
were downloaded from GEO database. The microarray
data GSE34608 contains 18 control and 8 PTB patients.
The GSE83456 data contains 61 control samples and 45
PTB samples. PCA plots of both datasets indicated the
distinction expression of control and PTB samples
(Fig. 1a and b). 2214 and 1025 DEGs were identified
from GSE34608 and GSE83456 datasets, respectively
(Fig. 2a). Venn diagram demonstrated that, among the
180 shared DEGs, 51 genes were down-regulated and
129 genes were upregulated in both datasets (Fig. 2a).

GO enrichment and KEGG pathway analyses

Candidate DEGs functional Gene Ontology (GO) and
pathway enrichment analyses were performed with
Metascape. The results showed that DEGs were signifi-
cantly enriched in defense response to other organism,
response to bacterium, myeloid leukocyte activation,
cytokine production, positive regulation of defense re-
sponses, cytokine-mediated signaling pathway, interferon
signaling, etc. (Fig. 2b).

The subset of representative terms of gene function
analysis were converted into a network layout in Metas-
cape, as shown in Fig. 2c. Based on gene function ana-
lysis, all the significant terms were hierarchically
clustered into a tree based on Kappa-statistical similar-
ities. Each term is represented by a circle node, where its
size is proportional to the number of input genes fall
into that term. The color represents its cluster identity
(Fig. 2c). Terms with a kappa score > 0.3 are linked by

Table 1 Seven modules were identified by MCODE based on the 180 DEGs

Module Gene symbol

Module 1 TLR2 IL1B TLR8 TLR1 IFIH1 TLR5 IFITT CD19 IFIT2 CCR7 MPO CXCR3 IFI44 DDX60 FCGR2A CD163 IFI44L GBP2 TNFSF10
CD274 CCR2 XAF1 IFI16 IFITM1 IDO1 HERC5 SAMDOL EIF2AK2 RTP4 CCR1 CD27 PLSCRT TNFSF13B PARP9 EPSTIT

Module 2 CXCL10 GBP5 ELANE AIM2 LCN2 DEFA4 HP NLRC4 MMP8 LTF TCN1 HPSE

Module 3 STATT LCK FAS

Module 4 CEACAM1 GPR84 BST1

Module 5 FAM26F SPPL2A USP25

Module 6 DBP TLE2 AES

Module 7 CAMP CEACAM8 S100A12 RNASE3
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an edge. The statistically significant range of the node is
marked by color range (Fig. 2c).

PPI network construction and module analysis

The PPI network of 180 DEGs was constructed using
the STRING online database, and further analyzed using
app MCODE in Cytoscape software. Totally, seven mod-
ules were identified shown in Table 1. Module 1 from
the PPI network complex contained 35 genes, indicating
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the core functional gene panel. GO analysis of 35 genes
showed that their functions are related to defense re-
sponse and cytokine related pathway (Fig. 3a). PPI net-
work of module 1 was redrawn by STRING (Fig. 3b).
The expression level of 35 genes in dataset GSE34608
were shown in Fig. 3c. Genes CD27, CCR7, CD19, and
CXCR3 were significantly down-regulated in PTB sam-
ples, where other genes were upregulated. This result
was consistent with the gene expression levels in
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Fig. 3 Functional analysis of 35 genes in Module 1. a GO analysis reveals that genes functionally related to defense response to other organism
underlie PTB infection. b Network of Module 1 genes constructed by STRING. ¢ Heatmap showing the gene expression of module 1 in individuals
from dataset GSE34608. d Heatmap showing the gene expression of module 1 in individuals from dataset GSE83456. Each row represents a gene,
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Table 2 Function analysis of the 35 genes in module 1

Term Description Count FDR

Biological Process (GO)

GO:0006952 Defense response 28 of 1234 2.39E-24
GO:0002376 Immune system process 31 of 2370 1.2E-21
GO:0051707 Response to other organism 22 of 835 4.56E-19
GO:0006955 Immune response 25 of 1560 9A48E-18
GO:0002682 Regulation of immune system process 24 of 1391 1.52E-17
Molecular Function (GO)
GO:0019956 Chemokine binding 4 of 22 0.0000233
GO:0004950 Chemokine receptor activity 4 of 27 0.0000243
GO:0019957 C-C chemokine binding 3of 11 0.000088
GO:0016493 C-C chemokine receptor activity 30f13 0.00011
GO:0003725 Double-stranded RNA binding 4 of 70 0.00028
Cellular Component (GO)
GO:0009897 External side of plasma membrane 9 of 223 2.93E-08
GO:0009986 Cell surface 11 of 690 0.0000015
GO:0035354 Toll-like receptor 1-Toll-like receptor 2 protein complex 20of 2 0.00064
GO:0005887 Integral component of plasma membrane 11 of 1564 0.0017
GO:0044459 Plasma membrane part 13 of 2651 0.0083
KEGG Pathways
hsa04060 Cytokine-cytokine receptor interaction 8 of 263 0.00000133
hsa04620 Toll-like receptor signaling pathway 5 of 102 0.0000409
hsa05162 Measles 50f 133 0.0000955
hsa05168 Herpes simplex infection 5 of 181 0.00031
hsa05134 Legionellosis 3 of 54 0.0019
Reactome Pathways
HSA-168256 Immune system 22 of 1925 3.84E-12
HSA-1280215 Cytokine signaling in immune system 12 of 654 5.29E-08
HSA-913531 Interferon signaling 7 of 189 0.00000192
HSA-168249 Innate immune system 12 of 1012 0.0000032
HSA-909733 Interferon alpha/beta signaling 5 of 66 0.0000039
PFAM Protein Domains
PFO1582 TIR domain 4 of 22 0.0000057
PF13855 Leucine rich repeat 4 of 187 0.0051
PF13676 TIR domain 2of 11 0.0051
PF13306 Leucine rich repeats (6 copies) 3 of 88 0.0051
PF01463 Leucine rich repeat C-terminal domain 2 0of 12 0.0051
INTERPRO Protein Domains and Features
IPRO35897 TIR domain superfamily 4 of 26 0.00000766
IPRO00355 Chemokine receptor family 4 of 21 0.00000766
IPRO00157 TIR domain 4 of 22 0.00000766
IPR0O24644 Interferon-induced protein 44 family 20f2 0.00031

IPRO00483 Cysteine-rich flanking region, C-terminal 4 of 83 0.00031
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GSEB3456 (Fig. 3d). Furthermore, function analysis from
STRING database were shown in Table 2. GO function
was significantly related to defense response and im-
mune system response (biological process function), che-
mokine binding and chemokine receptor activity
(molecular function), and external side of plasma mem-
brane and cell surface (cellular component). KEGG and
Reactome pathways indicated that these 35 genes were
involved in cytokine-cytokine receptor interaction, Toll-
like receptor signaling pathway, immune system, and
cytokine signaling in immune system. TIR domain, leu-
cine rich repeat, and chemokine receptor family were
the three important features revealed by PFAM and
INTERPRO protein domains analysis (Table 2).

Hub genes analysis

A total of 14 genes were selected as hub genes based on
criteria MCODE (scores > 10, degree > 20, neighborhood
connectivity > 10) in Table 3. All the hub genes were be-
longing to the module 1. These hub genes were signifi-
cantly associated with Toll-like receptors, interferon-
induce proteins, and chemokine receptors (Table 3).

Table 3 The functions of 14 hub genes
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Among them, two genes were upregulated, whereas
others were downregulated (Fig. 3c). The expression
levels were further validated in dataset GSE19439 (Fig. 4).
The expression levels were also significantly different be-
tween health and PTB patients, except gene CD19 and
CXCRS3 (Fig. 4).

Gene expression level detection during PTB treatment

To figure out the expression level changes during PTB
treatment process, dataset GSE31348 were used to
evaluate the change level. GSE31348 contained the 27
PTB patients, including 135 samples from 5 time points.
Heatmap showed that the expression level of genes re-
lated with the functions (Fig. 5a). The expression level of
CCR7, CD19, and CXCR3 were significantly increased,
whereas the expression level of Interferon-induced pro-
teins, Toll-like receptors were decreased during the
treatment (Fig. 5a). Among these 14 genes, the expres-
sion level of CXCR3 were significantly increased, and
TLR2 and TLR5 were significantly decreased during the
PTB treatment (Fig. 5b). These three genes might have a
potential to evaluate PTB as a gene panel.

Gene  Score®  Full name Function®
cD1es 12 Scavenger receptor cysteine-rich Acute phase-regulated receptor involved in clearance and endocytosis of hemoglobin/
type 1 protein M130 haptoglobin complexes by macrophages and may thereby protect tissues from free
hemoglobin-mediated oxidative damage.
TLR5 11.02941 Toll-like receptor 5 Participates in the innate immune response to microbial agents.
IFIT1 10.82353 Interferon-induced protein with Interferon-induced antiviral RNA-binding protein that specifically binds single-stranded
tetratricopeptide repeats 1 RNA bearing a 5*-triphosphate group (PPP-RNA), thereby acting as a sensor of viral single-
stranded RNAs and inhibiting expression of viral messenger RNAs.
IFIT2 10.82353 Interferon-induced protein with IFN-induced antiviral protein which inhibits expression of viral messenger RNAs lacking 2
tetratricopeptide repeats 2 O-methylation of the 5' cap.
CCR7 10.7451  C-C chemokine receptor type 7 Receptor for the MIP-3-beta chemokine. Belongs to the G-protein coupled receptor 1
family.
CXCR3 112 C-X-C chemokine receptor type 3 Isoform 1- Receptor for the C-X-C chemokine CXCL9, CXCL10 and CXCL11 and mediates
the proliferation, survival and angiogenic activity of human mesangial cells (HMC) through
a heterotrimeric G-protein signaling pathway.
TLR1 10.7451  Toll-like receptor 1 Participates in the innate immune response to microbial agents. Specifically recognizes
diacylated and triacylated lipopeptides.
FCGR2A 10.63736 Low affinity immunoglobulin Binds to the Fc region of immunoglobulins gamma.
gamma Fc region receptor Il-a
cD19 10.7451  B-lymphocyte antigen CD19 Assembles with the antigen receptor of B-lymphocytes in order to decrease the threshold
for antigen receptor-dependent stimulation.
IFIH1 10.82353 Interferon-induced helicase C Innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and
domain-containing protein 1 plays a major role in sensing viral infection and in the activation of a cascade of antiviral
responses including the induction of type I interferons and proinflammatory cytokines.
IFl44L  10.82353 Interferon-induced protein 44-like Exhibits a low antiviral activity against hepatitis C virus.
TLR8 10.7451  Toll-like receptor 8 Key component of innate and adaptive immunity.
IFl44 10.82353 Interferon-induced protein 44 This protein aggregates to form microtubular structures.
TLR2 10.7451  Toll-like receptor 2 Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins

and other microbial cell wall components.

Score®: indicated MCODE score. Function®: obtained from NCBI (https://www.ncbi.nlm.nih.gov/)
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not significant

Discussion

In this study, we analyzed two GEO datasets GSE34608
and GSE83456 to identify hub genes related to PTB dis-
ease. Totally, 180 DEGs were identified by combining
these two GEO datasets (Fig. 2). With STRING protein-
protein interaction data, 14 hub genes were identified
(Figs. 3 and 4). The function of these 14 hub genes were
chemokine receptors, interferon-induced proteins and
Toll-like receptors (Tables 2 and 3). The signature of
hub genes are significantly correlated with PTB infection
as well as anti-PTB therapy (Fig. 5).

Our study reveals the core genes in response to Mtb
infection. The gene expression profile in PTB patients
conforms to the common inflammatory responses upon
viral and bacterial infections [12]. Chemokine receptors,
interferon-induced proteins, and Toll-like receptors were
involved in this core response profiling, and significantly
changed following successful treatment.

Chemokines play a major role in the host response to
Mtb infection as they contribute to the formation and
maintenance of quiescent granulomas and the establish-
ment of the TB granuloma. High concentrations of
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Fig. 5 The expression levels of hub genes during PTB treatment in five time points in dataset GSE31348. Heatmap (a) and box plot (b) of hub
genes in dataset GSE31348. The central of rectangle indicates the medium. The ends of the whiskers represent the first quartile to the third
quartile (the interquartile range or IQR). The ends of central line show the minimum or maximum value. *P value < 0.05; **P value < 0.01;

***P value < 0.001; ns indicates not significant

cytokines and chemokines are required for early protec-
tion against Mtb infections, but may also be involved in
the over-response of host immune system [13]. Plasma
cytokines can serve as biomarkers for the disease sever-
ity, and function to relieve the mycobacterial burden in
PTB disease [14]. Consistent with our analyses, a previ-
ous study has reported that PTB patients displayed sig-
nificantly elevated levels of CCL1, CCL3, CXCLI,
CXCL10 and CXCL11 which were significantly reduced
following successful treatment [14].

Type I interferon response pathway is a well-
established pathway crucial for the defense against viral
pathogens, but it could also be detrimental upon infec-
tion with mycobacteria [15]. Although the signaling axis
through this pathway is identical regardless of the type
of infection, the outcome is substantially different,
suggesting that the type I IFNs and the related IFN-
inducible genes are able to create a favorable or unfavor-
able intracellular milieu to promote or disrupt the
survival of invading pathogens [16]. Changes in mRNA
levels of IFIT1, IFIT2, CXCR3 and CD163 have been val-
idated by qPCR in previous studies [17-19]. Moreover,
Kim et al. [20] confirmed that five genes (IFN-y, TNF-a,
IL-2R, CXCL9, and CXCL10) could be used for the de-
tection of Mtb infection, including active PTB disease
and LTB with sensitivity of each gene above 80%. The
gene panel revealed in this study provides a more com-
prehensive network for selecting diagnostic biomarkers.
However, it needs to be further tested in other infectious
diseases to figure out the transcriptional signature spe-
cific to PTB disease or shared with other types of
infections.

The essential role of Toll-like receptors against myco-
bacterial infection has been revealed in vivo. Toll-like re-
ceptors play key roles in innate and adaptive immunity
against Mtb, and are involved in the recognition of con-
served microbial structures, leading to activation of an
inflammatory response. Previous study showed that
TLR3 and TLR5 were upregulated at 24, 48 and 72h
post-infection in A549 pulmonary epithelial cells treated
with Mtb [21], and the expression of neutrophil TLR2 is
also increased in PTB patients [22]. Whole blood from
patients had increased mRNA levels of TLR1 and TLR2
[23]. TLR2-deficient mice showed increased subsequent
progression to PTB disease, the rapid death and higher
Mtb burden [24]. TLR2 may function as a regulator of
inflammation, and its absence exacerbated the detrimen-

tal inflammatory response. TLR1 rs5743551 and

rs5743618 polymorphisms significantly increased under
the Mtb infection in 203 PTB patients, compared to 203
healthy subjects [24]. TLR8 polymorphisms rs3764879
and rs3764880 have also been reported to cause differen-
tial sensitivity to Mtb infection by specific strains [25].

Gene function can be regulated at multiple levels.
Integrated multi-omics analysis provides a better ap-
proach to understand the comprehensive biological
processes in human diseases. By integrating tran-
scriptomics, proteomics and metabolomics, Zhao
et al. [26] revealed the molecular link between lipid
metabolism and inflammatory response in chronic
obstructive pulmonary disease (COPD) treated with a
Chinese medicine Bufei Jianpi Formula in a rat
model. Similar strategies were also applied to study
the Laser Printer-Emitted Nanoparticles (PEPs)
inhalation exposure-induced disease risks to identify
metabolite biomarkers [27]. In Mtb research, metabo-
lomics has been applied to investigate the metabolic
traits in Mtb species [28, 29]. However, omics study
other than transcriptomics in the host system under
Mtb infection is limited. Changes in host proteome
and metabolome after Mtb infection need to be
further investigated to provide a more detailed land-
scape to understand the molecular mechanism of PTB
disease.

Conclusion

In summary, we construct a refined gene network repre-
senting the transcriptome signature in response to Mtb
infection and its treatment. The identified 14 hub genes
are promising biomarkers for developing transcriptome-
based PTB diagnostic or prognostic tests. As major regu-
lators of the host immune response to Mtb infection,
these genes are also potential molecular targets for de-
veloping drugs to treat PTB.
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