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Chronic lymphocytic leukemia (CLL) is a common disease with highly variable clinical course. Several recurrent chromo-

somal alterations are associated with prognosis and may guide risk-adapted therapy. We have developed a targeted

genome-wide array to provide a robust tool for ascertaining abnormalities in CLL and to overcome limitations of the 4-

marker fluorescence in situ hybridization (FISH). DNA from 180 CLL patients were hybridized to the qChipVR Hemo array

with a high density of probes covering commonly altered loci in CLL (11q22-q23, 13q14, and 17p13), nine focal regions

(2p15-p16.1, 2p24.3, 2q13, 2q36.3-q37.1, 3p21.31, 8q24.21, 9p21.3, 10q24.32, and 18q21.32-q21.33) and two larger regions

(6q14.1-q22.31 and 7q31.33-q33). Overall, 86% of the cases presented copy number alterations (CNA) by array. There

was a high concordance of array findings with FISH (84% sensitivity, 100% specificity); all discrepancies corresponded to

subclonal alterations detected only by FISH. A chromothripsis-like pattern was detected in eight cases. Three showed con-

comitant shattered 5p with gain of TERT along with isochromosome 17q. Presence of 11q loss was associated with shorter

time to first treatment (P 5 0.003), whereas 17p loss, increased genomic complexity, and chromothripsis were associated

with shorter overall survival (P< 0.001, P 5 0.001, and P 5 0.02, respectively). In conclusion, we have validated a targeted

array for the diagnosis of CLL that accurately detects, in a single experiment, all relevant CNAs, genomic complexity,

chromothripsis, copy number neutral loss of heterozygosity, and CNAs not covered by the FISH panel. This test may be

used as a practical tool to stratify CLL patients for routine diagnostics or clinical trials. VC 2015 The Authors. Genes,
Chromosomes & Cancer Published by Wiley Periodicals, Inc.
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INTRODUCTION

Chronic lymphocytic leukemia (CLL) is molec-

ularly and clinically very heterogeneous: some

patients have stable disease for many years

whereas others show a rapidly progressive course

requiring early treatment (Swerdlow et al., 2008;

Zenz et al., 2010). Although new targeted thera-

peutic approaches (i.e., small molecule kinase and

BCL2 inhibitors) are improving the outcome,

there remains no curative option besides alloge-

neic stem cell transplantation.

Approximately 80% of CLL cases show genetic

alterations at diagnosis, mainly copy number alter-

ations (CNA) rather than chromosomal transloca-

tions. The main recurrent CNA are losses of

13q14, 11q22-q23, and 17p13, and trisomy 12. Cur-

rently, as part of routine diagnosis, these four

CNAs are tested using fluorescence in situ hybrid-

ization (FISH) and based on them, five prognostic

groups can be defined (Dohner et al., 2000). Dele-

tion in 13q14 is the most frequent CNA in CLL

(�50% of cases) and is associated with good prog-

nosis when it is found as a sole abnormality (Doh-

ner et al., 2000). Trisomy 12 is present in 10–20%

and is associated with NOTCH1 mutations (Balatti

et al., 2012; Lopez et al., 2013; Villamor et al.,

2013). The 11q22-q23 losses are rarely found in

early-stage disease but are present in �25% of

patients with advanced disease; the minimal

deleted region harbors ATM, which is mutated in

one-third of cases (Austen et al., 2005), and

BIRC3, mutated in a small subset of cases (Rossi

et al., 2012). The presence of 11q losses has been

associated with more rapid disease progression and

extensive lymphadenopathy as well as with shorter

time to first treatment (TTT), duration of remis-

sion, and overall survival (Dohner et al., 1997).

Nevertheless, these associations in the rituximab

era are less marked (Hallek et al., 2010; Skowron-

ska et al., 2012; Rosenquist et al., 2013). Finally,

17p13 deletions are found in 4–9% of CLL requir-

ing first-line therapy; they are found in up to 30–

40% patients with relapsed/refractory disease

(Zenz et al., 2008, 2011), mainly due to selection

of pre-existing subclones with mutated TP53
(Rossi et al., 2014). Roughly 80% of cases with 17p

deletions show TP53 mutations (Zenz et al., 2008).

17p/TP53 alterations are associated with worse

prognosis and have important clinical implications

at the time of starting the treatment given that

these cases are highly chemorefractory to standard

cytotoxic regimens (Dohner et al., 1995; Catovsky

et al., 2007; Forconi et al., 2008; Dicker et al.,

2009; Zenz et al., 2009). Because chemotherapy

depends on TP53 it is mandatory to screen for

TP53 alterations before initiation of treatment and

to consider different therapeutic approaches like

alemtuzumab, idelalisib, navetoclax, or ibrutinib

(Pospisilova et al., 2012; Farooqui et al., 2015).

Besides 11q and 17p losses, other CNAs

reported to confer prognostic value are gains at 2p

and 8q and losses at 6q and 8p (Chapiro et al.,

2010; Gunnarsson et al., 2010; Brown et al., 2012).

Unfortunately, routine FISH testing does not

include these regions. Moreover, it has been

recently reported that in a series of CLL cases

with a normal FISH pattern the presence of CNAs

detected by single nucleotide polymorphism

(SNP) array (in 22% of cases) was prognostically

relevant (Mian et al., 2013). The detection of all

these genetic biomarkers may be of paramount

importance in clinical practice, since they may

identify high risk patients and eventually guide

the treatment. Microarray studies of CLL patients

have also defined a strong association of increased

genomic complexity with poor prognosis (Edel-

mann et al., 2012; Malek, 2013), represented

mainly by cases with a mutated TP53 gene. Clonal

evolution (Gunnarsson et al., 2011; Braggio et al.,

2012; Knight et al., 2012; Malek, 2013) and chro-

mothripsis (Edelmann et al., 2012) have also been

associated with shorter survival in CLL. Overall,

these data emphasize the advantages of assessing

global genomic complexity by arrays. The only

types of genetic alteration that arrays are not able

to detect are balanced translocations, which are

rare in CLL and have not been associated to poor

clinical behavior, except if they are accompanied

by a 17p loss (Baliakas et al., 2014).

Array-based platforms are now widely used in

routine diagnosis, especially for constitutional dis-

eases, and are gaining popularity in assessing can-

cer samples. Many studies have demonstrated that

FISH and arrays have more than 90% concordance

and that arrays better define gains and losses

(Schwaenen et al., 2004; Pfeifer et al., 2007; Gunn

et al., 2008; Sargent et al., 2009; Kay et al., 2010;

O’Malley et al., 2011; Ouillette et al., 2011;

Rinaldi et al., 2011; Edelmann et al., 2012; Knight

et al., 2012). The few discordances observed in

these studies are usually due to insufficient probe

density and subclonality. Another advantage of

arrays versus FISH is that only arrays are able to

detect copy-number neutral loss of heterozygosity

(CNN-LOH) of mutated TP53, for instance (Ouil-

lette et al., 2011), and also 11q losses not targeting

ATM, gains of chromosome 12 not involving the

CHROMOTHRIPSIS IN CLL 669

Genes, Chromosomes & Cancer DOI 10.1002/gcc



centromere, and 13q losses not targeting DLEU2,

which are the standard FISH probes used in CLL

samples (Gunn et al., 2009; Hagenkord et al.,

2010).

In the present study, we describe the develop-

ment of a custom array for CLL that interrogates

the most significant genetic alterations, is particu-

larly enriched in CLL-associated regions, and that

captures the complex patterns of aberrations,

including chromothripsis. This tool may guide the

risk-stratification and therapeutic decisions accord-

ing to the genomic alterations or genomic com-

plexity of each patient.

MATERIALS AND METHODS

Patients

The study included 133 patients from the Hos-

pital Clinic (Barcelona) with the diagnosis of CLL

according to the WHO criteria (Swerdlow et al.,

2008) (Table 1). All patients gave informed con-

sent in agreement with the Institutional Review

Board and according to the International Cancer

Genome Consortium guidelines (Hudson et al.,

2010). In addition, a second series of 47 CLL

patients from another institution (University of

Leicester, UK, with genetic analyses performed at

the University of Kiel) was studied. Fifty-seven

cases (32%) were sampled at the time of diagnosis

and the remaining were obtained 7–696 months

after diagnosis, with a median of 177 months.

Overall, patients were predominantly males (64%),

with a median age of 62 years, and most of them

presented with Binet stage A (72%). Adverse prog-

nostic factors were detected in about half of the

patients: IGHV unmutated status in 62% and posi-

tive expression of CD38 and ZAP-70 in 38 and

44% of cases, respectively. At 10 years of follow-

up, 83% patients (95% confidence interval [CI]:

71–95%) had received CLL-specific treatment,

and the overall survival (OS) of the entire cohort

was 39% (95% CI: 27–51%). Number of cases and

techniques applied to each of the series are

detailed in Supporting Information Figure S1.

Molecular and Cytogenetic Analyses

DNA was extracted from mononuclear blood

cells from CLL patients by using a Qiagen kit

(Qiagen, Valencia, CA). All cases had more than

50% tumor cells. IGHV, TP53, NOTCH1, and

SF3B1 mutation analyses were performed using

direct Sanger sequencing as previously described

(Quesada et al., 2012; Villamor et al., 2013; Del-

gado et al., 2014). Conventional cytogenetics (CC)

was performed on G and/or R banded chromo-

somes obtained after short term culture (usually

up to 72 h) without stimulation or with stimulation

with e.g. Phorbol 12-Myristate 13-Acetate or

DSP30 (Shi et al., 2013). Results were described

according to the International System for Human

Cytogenetic Nomenclature (Shaffer et al., 2013).

Only cytogenetic data from samples obtained

within 6 months from the DNA sampling date

were considered. The FISH panel used interro-

gated the commonly deleted regions in 11q22,

13q14.3, and 17p13 as well as (partial) trisomy 12

(Abbott Molecular, Des Plaines, IL). For the

detection of chromosomal aberrations affecting the

TERT locus, FISH was applied using a three color

break-apart assay (RP11-678B2 spectrum green,

RP11-117B23 diethylaminocoumarin, and RP11-

356C5 spectrum orange) (Nagel et al., 2010). At

least one hundred nuclei were examined for each

probe and were evaluated in accordance with the

diagnostic cut-offs of the respective laboratories.

TABLE 1. Main Clinical Characteristics and Outcome of 180
CLL Patients

Patient characteristics N %

Age, years
Median 62
Range 33–98

Gender
Male 115 64
Female 65 36

Binet stage
A 130 72
B 37 21
C 12 7

ZAP 70 expression
Negative (�20%) 60 56
Positive (>20%) 48 44

CD38 expression
Negative (�30%) 93 62
Positive (>30%) 58 38

IGHV mutational status
Mutated 59 38
Unmutated 96 62

Mutations
NOTCH1 26 22
SF3B1 13 12
TP53 18 14

Treated patients 133 74
Deceased patients 83 47
Patients treated at 10 yr (95% CI) – 83% (71–95%)
Overall survival at 10 yr (95% CI) – 39% (27–51%)

CI, confidence interval; yr, years.
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Copy Number Arrays

A custom oligonucleotide-based comparative

genomic hybridization (CGH) array was designed

based on SurePrint G3 Human CGH 8x60K micro-

array using eArray software (Agilent Technologies,

Palo Alto, CA) (Table 2 and Supporting Informa-

tion Table S1). In the version v1.0 of the array the

selected oligonucleotide probes targeted some

focal genomic regions at high coverage (7.7–8.4

probes per Kb), some commonly altered regions at

medium/high coverage (0.4–1.8 probes per Kb),

and the whole genome at a lower coverage (back-

bone). With this design, the backbone was com-

posed of an average of one probe every 115 kb

outside the regions of interest. The probe density

was higher in 13q14.3, 11q22-q23, and 17p13 (Fig.

1A) and even more enriched in specific genes

related to lymphoid neoplasms (MTAP/CDKN2A/
CDKN2B, BCL2L11, BCL11A, REL, BCL2,
MALT1, MYC, NMYC, and SP110/SP140/SP100);

medium coverage was applied to relatively large

regions spanning 6q14.1-q22.31, 7q31.33-q33, and

11q22.3-q23.3. The array was also enriched in

probes covering two immunoglobulin loci (IGH at

14q32 and IGK at 2p11) for B-cell clonality control.

All catalogued germline copy number variants

were removed (Database of Genomic Variants:

http://dgv.tcag.ca/dgv/app/home). The series of

133 patients (and one sequential sample from case

102) from Barcelona (Spain) were hybridized with

the version 1.0 outsourced to qGenomics (www.

qgenomics.com). Then we designed version v3.0,

which included three new focal CNA (2q13,

3p21.31, and 10q24.32) and 10340 SNP probes

from the Agilent catalog for LOH detection.

Regions of potential CNN-LOH 6q, 8p, 11q, 13q,

and 17p were interrogated with 23% (2384) of this

set of SNP probes, whereas a backbone of the

genome was covered with the remaining probes

(7962) (Table 3). The series of 47 CLL patients

from Leicester (UK) was hybridized with the v3.0

design outsourced to qGenomics.

For each hybridization 300–600 ng of DNA

were used. Array hybridization and scanning pro-

cedures were performed as previously described

(Salaverria et al., 2013). As quality control metric

we used DLR spread (probe-to-probe log ratio

noise of an array) and all samples had low values

(mean 0.17; range 0.106–0.35) indicating high

quality of hybridization. The qChipVR Hemo array

data have been deposited to GEO under the

accession GSE66923.

TABLE 2. Chromosomal Regions Enriched in the qChipVR Hemo Array (GRCh37/hg19) for Detection of Copy Number Alterations

Chr Start End Size Region (genes) Densitya

chr2 60676446 60782012 105566 2p16.1 (BLC11A) Very high
chr2 61104447 61151158 46711 2p16.1 (REL) Very high
chr2 111878490 111926022 47533 2q13 (BCL2L11) Very high
chr2 231090445 231223847 133402 2q37.1 (SP140) Very high
chr8 128747629 128753930 6301 8q24.21 (MYC) Very high
chr11 108082602 108252729 170127 11q22.3 (ATM) Very high
chr13 50556688 50699677 142989 13q14.2 (DLEU2, DLEU1, MIR16-1, MIR15A) Very high
chr17 7563917 7591659 27742 17p13.1 (TP53) Very high
chr2 16050000 16150000 100000 2p24.3 (MYCN) High
chr2 60500000 61500000 1000000 2p16.1-p15 (BCL11A, PAPOLG, REL PUS10, PEX13) High
chr2b 111376353 111977326 600973 2q13 (BUB1, ACOXL, BCL2L11) High
chr2 230055752 231666905 1611153 2q36.3-q37.1 (DNER, TRIP12, FBXO36, SLC16A14,

SP110, SP140, SP100)
High

chr2 89118885 89438885 320000 2p11.2 (IGK) High
chr3b 46996537 48502973 1506436 3p21.31 (SETD2,MAP4, CDC25A, FBXW12) High
chr9 21798721 22125806 327085 9p21.3 (MTAP, CDKN2A, CDKN2B) High
chr10b 103818600 104498019 679419 10q24.32 (GBF1, NFKB2, PSD, FBXL5, SUFU) High
chr13 48007849 54010887 6003038 13q14.2-q14.3 High
chr14 106328955 106808955 480000 14q32.33 (IGH) High
chr17 6500001 10700000 4199999 17p13.1 High
chr18 56250406 61070906 4820500 18q21.32-q21.33 (MALT1, ZNF532, SEC11C, PIGN,

TNFRSF11A, ZCCHC2, PHLPP1, BCL2)
High

chr6 78000000 120000000 42000000 6q14.1-q22.31 Intermediate
chr7 124449746 136150979 11701233 7q31.33-q33 Intermediate
chr11 106000000 118000000 12000000 11q22.3-q23.3 Intermediate

aVery high coverage: 7.7–8.4 probes x Kb; high: 0.7–1.8 probes x Kb; intermediate: 0.1–0.2 probes x Kb.
bRegions added to v3.0 and not enriched in v1.0.
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A subset of 34 samples was additionally ana-

lyzed using Affymetrix Genome-Wide Human

SNP6.0 microarrays (SNP6.0) (Affymetrix, Santa

Clara, CA), outsourced to Centro Nacional de

Genotipado CEGEN (www.cegen.org) following

the manufacturer’s procedures as previously

described (Royo et al., 2012). Nexus 7.5 Discov-

ery Edition (Biodiscovery, El Segundo, CA) was

used for global analysis and visualization of

results from both platforms. Array data were vis-

ually inspected for possible subclonal alterations.

Coordinates are given according to the GRCh37/

hg19 assembly.

Statistical Methods

To correlate data from qChipVR Hemo, FISH,

and karyotyping crosstab analysis (Fisher’s exact

test) and Cohen’s kappa coefficient were used to

measure the agreement between the techniques

for four categorical variables (11q, 13q, and 17p

losses and trisomy 12). TTT was calculated from

the date of sampling to the date of frontline treat-

ment or last follow-up, and OS was calculated

from the date of sampling to the date of death or

last follow-up. TTT and OS were plotted using

the Kaplan–Meier method and the log-rank test

Figure 1. Whole-genome overview of copy number alterations
detected by qChipVR Hemo array. (A) Chromosomal view of four
altered regions highlighted with a red box. Probes for losses of 13q,
17p, 6q, and 11q14-q23 are enriched in the array. Gray dots represent
individual probes and the higher density of probes in these regions as

compared with the backbone coverage can be observed. (B) Frequency
plot of copy number alterations in 180 CLL patients. On the X-axis
the chromosomes are represented horizontally, on the Y-axis the per-
centage of cases showing the copy number alterations (gains in blue,
losses in red).
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was applied. Multivariate analysis was performed

with the stepwise proportional hazards model

(Cox model) assessing that the covariates used in

the model did not violate the proportional hazard

assumption. The 37 cases with post-treatment

samples were excluded from the survival analy-

ses. PASW Statistics 18.0 (SPSS, Hong Kong

S.A.R) was used. All statistical tests were two-

sided and the level of statistical significance was

set at 0.05.

RESULTS

Landscape of Alterations and Complexity of CLL

Genomes Detected by a qChipVR Hemo Array

Of the 180 cases hybridized with qChipVR Hemo,

154 (86%) had CNA. In total, 511 alterations were

identified (mean 2.8 CNAs per sample; range 0–

28), 377 being deletions and 134 gains (Fig. 1B

and Supporting Information Table S2). Recurrent

alterations usually tested in CLL were identified

in 143 cases (79%): loss in 13q14.3 (48%), loss in

11q22-q23, including the ATM gene (24%), loss in

17p13, including the TP53 gene (12%), and tris-

omy 12 (21%). Interestingly, 35 of the 43 (81%)

cases with loss of 11q included also the BIRC3
gene, and an additional case showed only deletion

of BIRC3 but no loss of ATM (case 184). The

qChipVR Hemo detected homozygous deletions of

13q14.3 in 22 (25%) of the samples with this alter-

ation (Supporting Information Figs. S2A and S2B).

Besides 13q14.3, a single homozygous deletion

was found (D961, 11q23.2-q23.3, size 1.6 Mb and

telomeric to the ATM gene) and only one case

(D1016) showed amplifications (three discontinu-

ous amplifications in 12p13.3, 12p12.3, and

12p12.1). Other recurrent CNAs were losses of 6q

(7%), gains of 2p (6%), focal loss of 3p21 (5%), and

4p losses, 8p losses, and 8q gains (4% each).

Among the 47 cases hybridized qChipVR Hemo v3.0

(including SNP probes) only two cases showed

copy CNN-LOH of 11q, no other CNN-LOH was

detected in 6q, 8p, 13q, or 17p.

From patient 102, two sequential samples were

studied: at diagnosis and at clinical progression 4

years later. The case showed no CNAs at diagnosis

but a complex genetic profile with 17 alterations at

progression, including 17p loss (Supporting Infor-

mation Fig. S3).

Of note, using qChipVR Hemo array analysis we

identified eight cases (8/180; 4%) with multiple

lesions in single chromosomes, a pattern sugges-

tive of chromothripsis (at least seven switches

between two or more copy number states detected

on an individual chromosome) (Edelmann et al.,

2012; Rausch et al., 2012). Six of the cases had a

deletion in 17p, with concomitant mutation of

TP53 in three of these. Interestingly, in three of

the eight cases with the chromothripsis-like pat-

tern we observed a shattered 5p arm characterized

by alternating losses and gains, including gain of

the TERT (Figs. 2A and 2B). To confirm the alter-

ations at the TERT locus we performed FISH

with a three color break-apart assay (Nagel et al.,

2010). Consistent with the array results, one case

had a gain of the TERT locus in 30% of the nuclei

analyzed (D1016). The other two cases (D1089

and 094) showed gain of the TERT locus in 86%

and 62% of the nuclei, respectively, and loss of

the centromeric region with breakpoints closely

centromeric of TERT. Interestingly, gain of TERT
in case 094 showed a tandem duplication pattern

(Fig. 2C). Two cases without 5p alterations

showed a normal FISH pattern, i.e. two normal

copies of the gene (D961 and D990).

Comparison of the Custom Array with FISH,

Metaphase Cytogenetics, and SNP6.0 Array

We next compared alterations detected by

qChipVR Hemo array and FISH in 106 cases. The

median percentage and range of altered cells by

TABLE 3. Chromosomal Regions Enriched in the qChipVR Hemo Array v3.0 (GRCh37/hg19) for Detection of Copy Number Neu-
tral Loss of Heterozigosity

Chr Start End Size Region
No. SNP
probes

Density
(probe/Mb)

chr6 76070412 149814761 73744 6q14-q25.1 1046 14
chr8 285123 28752104 28467 8p23.3-p21.1 662 23
chr11 103864934 119876696 16012 11q22.3-q23.3 252 16
chr13 44049120 59049915 15001 13q14.11-q21.1 185 12
chr17 72082 16177386 16105 17p13.3-p11.2 238 15
Backbone – – – whole-genome 7962 3
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FISH was 81% (range 20–99) for 11q loss, 62%

(range 20–90) for trisomy 12, 62% (range 10–100)

for 13q loss, and 30% (range 10–100) for 17p (Sup-

porting Information Tables S3 and S4). Concord-

ance measured by kappa coefficient showed

perfect agreement for loss of 11q and trisomy 12

(j 5 1.00), strong for 13q loss (j 5 0.806), and

moderate for 17p loss (j 5 0.598). Overall, there

was a high specificity (100% for all regions tested)

and sensitivity (mean: 84%; 100% for 11q loss and

trisomy 12, 84% for 13q loss, and 50% for 17p

loss). All discrepancies corresponded to subclonal

alterations detected only by FISH in 10–22% of

the cells in 10 cases with 13q14 FISH deletion

and 10–17% of the cells in 13 cases with 17p FISH

deletion. Among the 26 cases without CNAs by

array, four cases had only deletion of 13q14 by

FISH in 12, 12, 14, and 22% of the cells,

respectively.

Comparison between the qChipVR Hemo array

and CC results was performed using only data

from the 64 cases with abnormal karyotypes (Sup-

porting Information Tables S3 and S5 and Fig.

S4). The concordance was strong for 11q loss and

trisomy 12 (j 5 0.806 and 0.779) and good for 17p

loss (j 5 0.706). Thirteen of the 15 (87%) discrep-

ancies were CNAs detected by array but not by

CC (five deletions of 11q, 5 trisomies 12, and 3

deletions of 17p). In two cases, the 17p deletions

were not detected by array. Deletion in 13q was

observed in 18 cases by CC, 14 of them were also

detected by array but four subclonal deletions

were only detected by CC (in 2, 3, 4, and 6 meta-

phases, respectively).

Figure 2. Chromothripsis of chromosome 5 detected by
qChipVR Hemo array and TERT analysis. (A) An overview of whole-
genome alterations of 3 CLL patients with chromothripsis is shown in
the upper panel. Chromosomes 1 to 22 are represented horizontally
(gains in blue, losses in red). (B) Chromosome 5 of the three affected
patients; 5p was involved by chromothripsis in all cases and extended
to 5q in one patient. The TERT gene, included in the minimaly gained
region, is highlighted by a square. All cases showed concomitantly gain

of 17q and loss of 17p (with mutation of TP53 only in case D1016).
(C) Interphase FISH analysis confirmed gain of TERT in the three cases
with gain. FISH results of case D1016 showed three signals for RP11-
678B2 (green), RP11-117B23 (blue), and RP11-356C5 (orange); FISH
results of case D1089 and 094 showed three signals for RP11-678B2
(green) and RP11-117B23 (blue) and one signal for RP11-365C5
(orange), and case 094 showed an amplification or tandem duplication
pattern. Arrows indicate TERT signals.
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The combination of CC and the qChipVR Hemo

array information identified that common losses in

13q and 17p were associated with recurrent trans-

locations involving these regions: nine transloca-

tions involving 13q with chromosomes 3, 7, 9, 11,

14, 16, and 17 as partners had loss of the minimal

region in 13q14.3 in all cases except two. Similarly,

nine translocations involving chromosome 17 with

chromosomes 4, 5, 13, 15, and 18 as partners

resulted in TP53 loss in all cases except two. Inter-

estingly, 3 cases had translocations involving 3p,

and one of them (case D1024) had a focal loss of

2.7 Mb, including the SETD2 and MAP4 genes,

due to an unbalanced translocation with 13q14,

t(3;13)(p22;q14). Interestingly, a MALT1-MAP4
fusion has been reported in diffuse large B-cell

lymphoma (Murga Penas et al., 2006). No translo-

cations of 11q were found, although it was the sec-

ond most frequently lost region. Three cases

harbored the t(14;18)(q32;q21) but no losses were

observed in the 18q region.

The results of the qChipVR Hemo array were

next compared with the SNP6.0 array results in 34

cases. Both platforms reliably detected the same

CNAs (Supporting Information Fig. S5), and only

two minor discrepancies were observed: a biallelic

loss in 13q14.3 that was detected as a monoallelic

loss by SNP6.0 (Supporting Information Fig. S2C)

and a small and subclonal loss in 13q14.2 (35 Kb)

in case 038 detected only by qChipVR Hemo (due

to a high coverage of the region in the targeted

array: 326 probes in qChipVR Hemo and 12 probes

in SNP6.0).

Gene Mutations

High risk mutations in NOTCH1, SF3B1, and

TP53 were detected in 22, 12, and 14% of the

patients, respectively. In relation of common

CNAs, trisomy 12 was more common in cases with

NOTCH1 mutations than in cases with NOTCH1
wild-type (P = 0.01); 13q14 losses were more fre-

quent in cases with wild-type NOTCH1 compared

with those with NOTCH1 mutations (P 5 0.015);

and 17p loss was associated with TP53 mutations

(P< 0.001) (Supporting Information Fig. S6). Of

the 26 cases without CNAs by array eight had

mutations in NOTCH1 and four had SF3B1 muta-

tions; none had TP53 mutations.

Clinical Impact

We next investigated whether the presence of

CNA detected by qChipVR Hemo array had a sig-

nificant impact on patient outcome. CLL patients

with 11q losses had significantly shorter TTT (P =
0.003; hazard ratio [HR] 2.4; 95% confidence inter-

val [CI] 1.3–4.3); patients with two or more CNAs

also had shorter TTT (P = 0.001; HR 2.6; 95% CI

1.5–4.4) (Supporting Information Fig. S7). More-

over, outcome analysis showed that patients with

17p deletions detected by array analysis had a sig-

nificantly shorter survival than patients without

17p loss (5-year OS, 19% versus 60%, P < 0.001).

However, patients with 17p loss detected only by

FISH in low percentage of cells (<17%) behaved

similarly to patients without 17p loss (Figs. 3A and

3B). Additionally, patients with chromothripsis-

like patterns had poor prognosis compared with

patients without such a pattern (5-year OS 0% ver-

sus 56%; P = 0.02) (Fig. 3C). Finally, stratification

of patients according to number of CNAs showed

that chromosomal complexity correlated with

prognosis (>6 CNAs vs. 4–6 CNAs vs. 0–3 CNAs;

5-year OS 19, 45, and 61%, respectively; P =
0.001) (Fig. 3D). In a multivariate analyses assess-

ing OS (including 17p13 deletions, presence of

chromothripsis, and genomic complexity [>6

CNAs]), only deletions of 17p13 (HR 3.5; 95% CI:

1.7–7.2; P 5 0.001) showed independent prognos-

tic impact. CNA in CLL patients analyzed by

qChipVR Hemo array could recapitulate the genetic

model of CLL originally developed by Dohner

et al., 2000 based on FISH results (P< 0.001) with

increasing survival times according to five genetic

categories (17p loss, 11q loss, trisomy 12, no

alterations, and 13q loss) (Supporting Information

Fig. S8).

DISCUSSION

During the last decade, FISH has represented a

powerful tool to assess the main four genomic

alterations in CLL and has also been a very useful

technique to predict the patient’s outcome (Doh-

ner et al., 2000). More recently, it has been used

to guide therapy in a subset of patients (Hallek

et al., 2008). Karyotype analysis can identify trans-

locations and high genomic complexity in addition

to common chromosomal losses, but has the limi-

tation of the low mitotic rate of the CLL cells in

culture. Several recent reports have shown that

low and high resolution arrays are able to detect

characteristic CLL alterations and to provide addi-

tional prognostic information compared with

standard FISH using four markers (deletion of

11q, 13q, and 17p, and trisomy 12) (Chapiro et al.,

2010; Gunnarsson et al., 2010, 2011; Edelmann
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et al., 2012; Mian et al., 2013). Moreover, Mian

et al., 2013 found that large alterations could also

further predict the outcome in the substantial sub-

group (20%) of CLL patients with a normal FISH

for the 11q22-q23, 13q14, chromosome 12, and

17p13 regions. In addition, several studies show

that the presence of genomic complexity in CLL

is important for identifying high-risk patients,

which could have been missed or misclassified by

using the standard FISH CLL panel alone. In that

sense, the array that we have developed has been

able to detect the more frequent regions altered in

CLL genomes, with expected frequencies as well

as other more focal alterations. Moreover, 11q

losses and the presence of two or more CNAs

detected by the array were related to shorter

TTT, whereas 17p loss, increased genomic com-

plexity, and chromothripsis were associated with

shorter overall survival. Furthermore, as has been

previously reported (Dicker et al., 2009; Delgado

et al., 2014), CLL cases with 17p13 alterations

more frequently have complex karyotypes and

poor overall survival. Interestingly, in the present

study, we demonstrate that patients with 17p loss

detected only by FISH in minor subpopulations

(<17%), but not detected by array, behave simi-

larly to patients without 17p loss. This suggests

that the lower sensitivity of the array compared to

FISH in detecting these small subclones with

alteration may not have a direct impact on worse

survival.

We here show that qChipVR Hemo array data are

concordant with FISH and high density array data,

and moreover, that this array can detect other

alterations (not covered by the FISH panel) with

prognostic significance and also complex patterns

Figure 3. Overall survival (OS) analysis of CLL patients using the
qChipVR Hemo array. (A) Patients with 17p loss had a significantly
shorter OS compared with patients without the 17p deletion. (B)
Patients with 17p deletion detected by array had shorter OS com-
pared with patients with 17p deletion detected only by FISH (10–17%
cells in all cases), and patients without 17p deletion. (C) Patients with

chromothripsis show significantly shorter OS compared with cases
without. (D) Kaplan–Meier plot of OS of CLL patients according to
increasing number of CNAs (0–3, vs. 4–6 vs. >6 alterations).
(*P< 0.05; **P< 0.01; ***P< 0.001). CT, chromothripsis; D, deceased;
N, number; WT, wild-type (not deleted). [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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of alterations in single chromosomes (suggestive of

chromothripsis) that cannot be detected by FISH.

This phenomenon was detected in eight cases of

the present study (4.4% incidence) and was

related to poor overall survival. Chromothripsis

was initially reported in two CLL cases by whole-

genome sequencing (Campbell et al., 2010; Bassa-

ganyas et al., 2013) and has been recently reported

to identify a subset of CLL patients with worse

prognosis (Edelmann et al., 2012). Of note, three

of the cases with a chromothripsis-like pattern

showed a highly altered 5p arm including gains of

TERT. This gene at 5p13.33 encodes the telomer-

ase reverse-transcriptase TERT that is rarely tar-

geted by somatic chromosomal translocations and

amplifications in B-cell neoplasms (Nagel et al.,

2010). These data and our findings suggest that

deregulation of the TERT gene by chromosomal

abnormalities leading to increased telomerase

activity might contribute to B-cell lymphomagene-

sis or even to catastrophic chromosomal reorgan-

izations. However, further functional experiments

will be needed to address this hypothesis. Note-

worthy, alterations in the composition of telomeric

proteins (including TERT) have been reported to

be involved in the pathogenesis of CLL (Poncet

et al., 2008). Moreover, susceptibility SNPs in the

TERT and POT1 genes, both involved in telomere

function, have been described in a large series of

CLL patients (Speedy et al., 2014).

Previous reports of targeted CN arrays for the

analysis of CLL have not been applied in a clini-

cal setting mainly because they did not fully

achieve the goal of targeting the main CLL alter-

ations. In 2004 and 2007, the first BAC/PAC

array-CGH CLL platforms for clinical purposes

were developed (Schwaenen et al., 2004; Patel

et al., 2008). Despite their low resolution, both

platforms showed high sensitivity and specificity

compared with FISH. In 2009, a customized Agi-

lent 4*44K array targeting 15 CLL commonly

altered regions was reported (Sargent et al., 2009)

with an average spacing of 5-11 kb in CLL

regions. Another BAC array was reported in 2011

(Kolquist et al., 2011; Schultz et al., 2011). How-

ever, the major drawback for the clinical utility of

this array was the lack of sufficient resolution to

identify 13q14.3 and ATM losses. Recently, a new

CLL customized Agilent 4*44K has been devel-

oped (Houldsworth et al., 2014), including 20

regions recurrently showing imbalances in CLL.

The application of this platform to a large series

of CLL cases revealed that gains of 2p, 3q, and

8q and losses of 8p have prognostic significance.

However, this array has not been compared with

FISH data.

The qChipVR Hemo array that we have designed

and tested allows an exhaustive study of CNAs in

a single experiment requiring only 300–600 ng of

tumor DNA, without the need of cell culture,

and can analyze, in a single experiment, genome-

wide alterations. The qChipVR Hemo array is also

a less time-consuming and subjective technique

compared with FISH. Additionally, with the

introduction of a set of SNP probes in the latest

version of the qChipVR Hemo array also CNN-

LOH could be assessed. Finally, the data

reported herein support the qChipVR Hemo as a

cost-effective tool that could replace FISH in a

clinical setting of patients with CLL or other B-

cell neoplasms.

In conclusion, the present platform constitutes a

robust, sensitive, and standardized tool based on a

microarray that is able to detect recurrent CNAs in

CLL and to properly capture their potential clini-

cal impact. The similar overall performance, easier

workflow, dramatic reduction of specialized hands-

on time (crucial in cost calculations), and the

whole-genome screening capacity make

qChipVR Hemo highly applicable for molecular

testing of CLL, with the possibility to detect 17p

and 11q losses, and also additional alterations with

clinical impact (i.e, loss of 6q or 8p, gain of 2p of

8q, presence of high genomic complexity, and

chromothripsis). The information provided by the

array can be useful in the clinical setting by pro-

viding the clinicians objective and rapid informa-

tion of genomic alterations. Risk-adapted therapy

of CLL cases stratified based on their genomic

alterations may be applied, with the option to vary

the therapeutic strategy. However, the prognostic

impact of new, focal and less frequent alterations,

as well as chromothripsis, would require further

studies in prospective clinical trials as well as the

implementation of information about mutations of

driver genes (i.e. NOTCH1, SF3B1, and TP53)

with potential prognostic relevance.
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