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Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV
energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at
steady-state value, and dynamics of the tracking algorithm.Thus, this paper proposes a new random forest (RF) model to improve
MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as
irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-
120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is
modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is
then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of
the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system
algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared
with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability.

1. Introduction

Solar energy is inexhaustible, free, and clean and is considered
as the core of renewable energy (RE) in recent times primarily
because of the depletion of fossil fuels and environmental
pollution [1]. Among various RE resources, photovoltaic
(PV) systems are gaining popularity in a wide range of
applications, from small building integrated systems to large-
scale utility systems [2]. However, PV systems have the issue
of intermittent power generation under different weather
conditions [3]. Moreover, the amount of generated power
from a solar cell depends on the nonlinear power-voltage (P-
V) and current-voltage (I-V) characteristics that vary with
irradiance (𝐺) and temperature (𝑇) [4]. Regardless of the size
and type, the crucial issue for any PV system is the efficiency

of the algorithm used to track the maximum power point
(MPP). Thus, interest in improving maximum power point
tracking (MPPT) algorithms is gaining itsmomentumamong
PV research communities [5]. The MPPT is a unique point
on the P-V curves, where maximum power is provided [6].
Many MPPT methods were proposed in the literature since
the 1960s. These methods can be grouped into two types,
namely, conventionalMPPT approaches and soft computing-
based MPPT approaches.

Among conventional approaches, the most dominant
methods are Incremental Conductance (IC) [7], Hill Climb-
ing (HC) [8, 9], and Perturb and Observe (P&O) [10, 11]
methods. The P&O method presents a perturbation (B) in
the operating current and voltage of a PV system and then
observes the change in power in the system. The idea is to
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observe whether the converter power is increasing toward the
MPP and in the next step, while the reference current/voltage
is increased by the amount of B. The P&O method depends
on the applied step size for the current/voltage reference.
However, oscillations occur around the MPP, which leads
to power loss. To avoid large oscillations, [12] suggested
minimizing the applied step compromising the response
time of the method. Meanwhile, the HC technique is highly
comparable with P&O.The difference between P&O and HC
methods is that the latter updates the operating point for
the PV system by perturbing the duty cycle instead of the
current/voltage. If the direction of the power is increasing,
updating at the operating point is achieved by perturbing
the duty cycle through the applied step size. Otherwise, the
tracking is indicated asmoving away from theMPP.However,
HC is prone to failure in cases of large changes in irradiance
[13]. To overcome some of the limitations of the P&O and
HC methods, the IC approach was proposed under the con-
ventional MPPT category. The idea behind the IC operation
is to determine the MPP by tracking the PV panel power
against the voltage curve [14].Thismethod improves dynamic
performance and tracking accuracy under rapidly changing
environment conditions. However, the ICmethod also suffers
from some oscillation around the MPP, aside from power
losses caused by noise andmeasurement errors. Furthermore,
the IC method has higher computational burdens than the
P&O method.

In the soft computing-based MPPT category, the most
talked about approaches are Fuzzy Logic Control (FLC) [15],
artificial neural network (ANN) [16], and other Computa-
tional Intelligence (CI) [17] methods. The main advantage
of FLC-based methods is that a mathematical model for
the system is not required. Thus, the FLC-based MPPT has
been frequently implementedwith PV systems in recent years
[18, 19]. However, the performance of FLC depends on the
rule basis, number of rules, and membership function [20].
These variables are determined by a trial and error procedure,
which is time-consuming. Another well-known approach in
this category is ANN. In the MPPT application, ANN is
applied to estimate and recognize unknown parameters [21]
such as reference current/voltage or duty cycles. However,
weights associated with the neurons should be accurately
determined by a training process before they are used to
supply the reference current (𝐼MPP) or reference voltage
(𝑉MPP) to the MPPT controller. Besides, the ANN requires
large training data before the method can be trained and
implemented in the MPPT system. Another popular soft
computing method for MPPT is based on CI methods
which are nature-inspired computational methodologies that
address complex real-world problems. These methods can
be divided into two groups: swarm intelligence algorithms
(SAs) and evolutionary algorithms (EAs). The most popular
SAs are particle swarm optimization (PSO) [22], artificial bee
colony (ABC) [23], and ant colony optimization (ACO) [24].
The most popular EAs are the genetic algorithm (GA) [25],
differential evolution [26], and lightning search algorithm
[27]. PSO has been used to optimize a nine-rule FLC for
MPPT in a grid-connected PV inverter in which the FLC
generates aDCbus voltage reference forMPPT [28]. A hybrid

GA-ANN MPPT is proposed in [29]. In this approach, the
optimized values for the array voltage and power are obtained
by GA for different irradiance and temperature conditions.
Similarly, the authors in [30] used GA to optimize the FLC-
based MPPT. However, CI methods have limiting factors
such as trapping in local minima and premature conver-
gence. Among the aforementioned methods, most have been
criticized for being inefficient because of the inability of
the detector to fully differentiate the accurate MPP. Current
challenges in detecting accurate MPP lie in the adaptation
of algorithms in fast-changing environmental conditions,
efficiency, accuracy at steady state, and the response speed
of the tracking algorithm. In a number of previous studies,
actual environmental condition problemswere not addressed
fully. Hence, the aforementioned methods do not have an
integrated solution to address all of the problems in real
environment conditions and are therefore inadequate in
producing an effective MPPT system.

Recently, a new soft computing approach known as
random forest (RF) approach received attention in many
applications. The authors in [31] present a supervised clas-
sification method based on the RF to identify the layer
from where groundwater samples were extracted, and they
reported that the results by the RF approach were much
better than those by linear discriminant analysis and deci-
sion tree-supervised classification methods. Ash Booth et
al. in [32] proposed an expert system that uses novel RF
machine learning techniques to predict the price return
over seasonal events, and then these predictions are used
to develop a profitable trading strategy. The results show
that the RF approach produces superior results in terms of
both profitability and prediction accuracy compared with
those of other ensemble techniques. The RF method was also
applied in other applications such as in improving rainfall rate
assignment [33], assessing visual attention [34], resampling
field spectra [35], and quantification of aboveground biomass
[36]. In these applications, the authors concluded that the RF
model has higher stability and robustness and better success
rates with the use of proper training parameters than those
of other models.Therefore, a better outcome will be obtained
with the implementation of the RF approach inMPPT for PV
systems.

This paper attempts to design and implement the RF
method to track MPP accurately for the PV system, by
considering the problems of the fast-changing environmental
conditions. The system is modeled in the MATLAB envi-
ronment to demonstrate the performance of the proposed
controller.

2. PV Model and Maximum Power Point

The power output of the PV system depends on its voltage
and current characteristics. However, solar irradiation and
temperature are the two main parameters responsible for the
operating point of the PV panel, hence, the MPP [37]. The
equivalent electrical circuit for the PV is shown in Figure 1,
which is used to obtain the characteristics of a PV cell. The
electrical circuit contains a diode, a serial resistor, a parallel-
connected resistor, and a current source. The mathematical
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Table 1: PV module characteristics.
PV module type: SolarTIFSTF-120P6
Number of modules in series 25
Number of modules in parallel 1
Maximum power (𝑃MPP) 3 kW
Open circuit voltage (𝑉oc) 537.5 V
Short circuit current (𝐼sc) 7.63A
Voltage at maximum power (𝑉MPP) 435V
Current at maximum power (𝐼MPP) 6.89A
Current temperature coefficient (𝛼) 6.928mA/∘C
Voltage temperature coefficient (𝛽) −0.068V/∘C

D

Lo
ad

G

T

PV cell

ID

IPh

Rs

Rsh

IPV

VPV

+

−

Figure 1: Electrical equivalent circuit of PV cell.

model of the circuit, which represents the output of the cell
current 𝐼, can be expressed as follows [38]:

𝐼PV = 𝐼ph − 𝐼𝑜 (𝑒(𝑞(𝑉+𝐼⋅𝑅s)/(𝑛⋅𝐾𝐵⋅𝑇)) − 1) − 𝑉 + 𝐼 ⋅ 𝑅s𝑅sh , (1)

where 𝐼PV is cell output current (A), 𝐼ph is the light-generated
current (A), 𝐼𝑜 is the cell reverse saturation current or dark
current (A), 𝑞 is the electronic charge (1.6 ∗ 10−19 C), V is
the cell output voltage (V), 𝑛 is the ideality factor, 𝐾𝐵 is the
Boltzmann’s constant (1.38 ∗ 10−23 J/K), and T is the cell
temperature (K).

The light-generated current extracted from the photo-
voltaic cell, 𝐼ph, is directly proportional to the solar irradiance,𝐺, and temperature, T. Assuming the nominal condition for𝐺 and 𝑇 denoted by 𝐺𝑛 and 𝑇𝑛, respectively, 𝐼ph at other
conditions can be calculated as follows [38]:

𝐼ph = [𝐼sc,𝑛 + 𝛼 (𝑇 − 𝑇𝑛)] 𝐺𝐺𝑛 , (2)

where 𝐼sc,𝑛 is short-circuit current at the nominal condition
and 𝛼 is short-circuit current temperature coefficient which
are provided by the manufacture’s datasheet as shown in
Table 1.

Since electric power is the product of current and voltage,
therefore a power-voltage (P-V) characteristic curve of a solar
cell can be obtained for a given radiation level as shown
in Figure 2. From the figure, at the maximum short-circuit
current, the voltage is zero and thus the power is also zero.
The situation for current and voltage is reversed at the open-
circuit point, so again the power here is zero. However, there
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Figure 2: Current-voltage (I-V) and power-voltage (P-V) charac-
teristic curves of a solar cell.
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Figure 3: General MPPT algorithm.

is one particular point at which the solar cell can deliver
maximum power for a given radiation intensity, and this
operating point is called the maximum power point (MPP)
point. From (1) and (2), the cell output current is shown to
be nonlinear and dependent on irradiation and temperature.
These equations can be used to calculate reference current
(𝐼MPP) which eventually provides MPP by considering the
cell output voltage. If the number of PV cells is known,
the same relationship can be used to obtain MPP in a
PV module or a system. However, the main drawback of
this mathematical model is the time-consuming and iter-
ative process required to calculate the cell output current,
which hinders the utilization of the model in high-speed
tracking.

Thus, in general, most of the MPPT algorithms usually
start by sensing 𝐼PV and 𝑉PV, from the PV system terminals.
Then the MPPT algorithm implements its own procedures
(e.g., P&O) to find 𝐼MPP or 𝑉MPP to extract maximum power𝑃PV from the PV systems as shown in Figure 3, where 𝑃PV
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Irradiance sensor Temperature sensor

Figure 4:The studied 25 rooftopPVmodules of SolarTIFSTF-120P6
PV with irradiance sensor and temperature sensor installed at the
Universiti Kebangsaan Malaysia.

is the product of 𝐼MPP and 𝑉MPP. It should be noted that the
MPPT algorithmonly provides a reference to the controller of
the DC-DC converter of a PV system [5]. It does not directly
generate the duty ratio required for the converter to produce
maximum power.

3. Characteristics of the Studied PV System

In this study, 25 SolarTIFSTF-120P6 PV modules are used
with the capacity of 3 kW peak to supply the load, as shown
in Figure 4. The modules are arranged in series-connected
configuration, which produces a DC output voltage of 435V.𝐺 and 𝑇 are measured using a solar pyranometer sensor and
a temperature sensor, respectively, as shown in Figure 4.

3.1. Sensors Characteristics. As mentioned earlier, two high-
speed sensors are required to measure the irradiance and
temperature. The irradiance sensor (S-LIB-M003) contains
a silicon photodiode to measure solar power per unit area
(W/m2). This silicon pyranometer smart sensor is designed
to work with the HOBO� Weather Station Logger via its
plug-in modular connector. In addition, all the calibration
parameters are stored inside the S-LIB-M003 sensor, which
automatically communicates configuration information to
the logger without the need for any programming, calibra-
tion, or extensive setup.

Similarly, for temperature measurements, the smart sen-
sor (S-TMB-M006) temperature is used. The stainless steel
tip and a robust cable allow the S-TMB-M006 sensor to be
immersed in water up to 50∘C for 1 year. Thus, it is suitable
for PV system conditionmonitoring. It can also automatically
communicate configuration data information to the HOBO
Weather Station without any programming, calibration, or
extensive user setup. The silicon pyranometer smart sensor
S-LIB-M003 uses the first channel and S-TMB-M006 smart
sensor temperature uses the second channel out of 15 available
channels of HOBOWeather Station.

3.2. PV Characteristics. The characteristics of this PV mod-
ule are depicted in Table 1, and the I-V and P-V curves
obtained from (1) and (2), with varying irradiation and

temperature values, for the SolarTIFSTF-120P6 module are
exhibited in Figure 5. After a proper mathematical model
is obtained, a suitable MPPT method is required to achieve
better performance for the overall system. This is because
the mathematical model cannot be directly used to generate
reference currents due to computational burdens. Thus, in
this study a newMPPTmethod is proposed as detailed in the
succeeding section.

4. Proposed Random Forests MPPT Approach

Unlike most of the MPPT algorithms such as IC, P&O, and
HC, the proposed method uses 𝐺 and 𝑇 as inputs because
these two measurements are commonly integrated in many
modern PV systems for monitoring purposes as shown in
Figure 4. Considering 𝐺 and 𝑇 are available as inputs, a
recently developed RF soft computing approach is suggested
to process the two inputs to generate the required reference
current, 𝐼MPP, to the controller of the PV system as shown
in Figure 6. Thus, this paper seeks development of a proper
RF-based MPPT algorithm utilizing historical 𝐺 and 𝑇 data
and target 𝐼MPP values obtained from mathematical model
described by (1). However, the designing of efficient control
routine and the DC-DC converter is not the main focus
of this work. An overview and adoption of RF to MPPT
and in revaluation procedures are described in the following
subsections.

4.1. Overview of Random Forests. RF is an ensemble learning
method for classification, regression, and other tasks, which
operates by constructing a multitude of decision trees at
training time and generating the class that is the mode of
the classes (classification) or mean prediction (regression) of
the individual trees. RF corrects the habit of decision trees
in overfitting their training set. The training algorithm for
RF applies the general technique of bootstrap aggregating
or bagging to tree learners. The RF illustrated in Figure 7
classifies or predicts the value of a variable for an (𝑥) input
vector by building a number (𝐾) of regression trees and
averaging the results. After 𝐾 and trees {𝑇(𝑥)}𝐾1 are grown,
the RF regression predictor is derived as

𝑓𝐾RF = 1𝐾
𝐾∑
𝑛=1

𝑇 (𝑥) . (3)

In general, the RF algorithm for regression works as follows:

(i) ntree bootstrap samples 𝑋𝑖 (𝑖 = bootstrap iteration)
are randomly drawn with replacement from the orig-
inal dataset, with each containing approximately one-
third of the elements of the calibration dataset X. The
elements not included in 𝑋𝑖 are referred to as out-
of-bag (OOB) data for the corresponding bootstrap
sample.

(ii) A regression tree for each of the bootstrap samples
is grown (resulting in ntree trees) with the following
modification: at each node, a subset of the predictor
variables (mtry) is selected randomly to create the
binary rule. In other words,mtry specifies the number
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Figure 5: I-V and P-V characteristics of the SolarTIFSTF-120P6 PV panel: (a) I-V curves at 𝑇 = 43.6∘C, (b) I-V curves at 𝐺 = 1000W/m2,
(c) P-V curves at 𝑇 = 43.6∘C, and (d) P-V curves at 𝐺 = 1000W/m2.
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Figure 6: RF-based MPPT algorithm for controlling PV output power.

of randomly chosen variables, upon which the deci-
sion for the best split at each node is made. Variable
selection is based on the residual sum of squares;
that is, the predictor with the lowest residual sum of

squares is chosen for the split. mtry is held constant
during the forest growing process.

(iii) Each of the ntree trees is grown to the largest extent
possible. No pruning is conducted.
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Figure 7: Random forests.

(iv) Lastly, predictions are calculated by placing eachOOB
observation or observation of the test data for each
of the ntree trees. The predictions of all regression
trees are then averaged to produce the final estimate
[39].

The OOB error is an important feature of RF. As mentioned
previously, each tree is built on a bootstrap sample that
comprises roughly two-thirds of the training data. The
remaining one-third (OOB) of the training data is not
included in the learning sample for this tree and can be
used in testing. Therefore, the RF model is applied to the
OOB data. The deviations between predicted and reference
values are then used to calculate the OOB error, which is
the mean square error (MSE) for the regression. These OOB
elements can be used by the nth tree to evaluate performance
[40].

To avoid the correlation among the different trees, RF
increases the diversity of the trees bymaking them grow from
different bootstrap samples created by a procedure called
bagging (bagging = mtry = number of predictors) [35]. This
procedure increases generality, makes the regression more
robust at slight variations in the training data, and generally
increases overall prediction accuracy [39]. When RF reflects
the growth of a tree, the best split based on a number of
randomly sampled predictor variables is used. If all variables
were used for each tree, the trees would become identical
and therefore highly correlated [39]. Thus, the randomly
chosen subsets of predictor variables at each split of each
tree ensure lower correlation between trees, which in turn
increases model robustness.

RF is efficient to apply for MPPT prediction for PV
systems because it involves a combination of robust charac-
teristics. The approach does not require the specification of
an underlying PV system model, and it offers the ability to
capture nonlinear association of patterns between predictors,
such as irradiance and temperature, to determine accurate
reference current (𝐼MPP) and calculate MPP. The approach
is also able to handle highly correlated predictor variables.
Moreover, the approach offers the flexibility to perform a
number of statistical data analyses and is computationally
lighter than other tree ensemble methods [33, 39, 41].

4.2. Random Forests Training. In this study, a RF-based
MPPT system is considered for the 3 kW PV system, with

the use of SolarTIFSTF-120P6 PV modules described in Sec-
tion 2. The input data samples that correspond to irradiance
(𝐺) and temperature (𝑇) are generated using (4) and (5),
respectively, and the derived values are used to obtain the
target data for training using the parameters given in Table 1
and (1).

𝐺𝑖 = rand ∗ (𝐺max − 𝐺min) + 𝐺min, (4)

𝑇𝑖 = rand ∗ (𝑇max − 𝑇min) + 𝑇min, (5)

where i is the number of data samples, from 1 to number of
data samples (𝑚).

The minimum and maximum limits for the 𝐺 and 𝑇 are
selected based on historical data. In Malaysia, 𝐺 typically
varies between 0W/m2 and 1200W/m2, while 𝑇 fluctuates
from 20∘C to 35∘C [42]. Therefore, 𝐺min, 𝐺max, 𝑇min, and𝑇max in (4) and (5) are identified as 0W/m2, 1500W/m2,
0∘C, and 45∘C, respectively, to ensure that the generated data
cover the typical and historical data range. Since the studied
system is small, effect of partial shading on some modules of
the system is not considered in this work in tracking MPPT.
Table 2 shows some of the data samples which are used for
training.

In general, two parameters must be adjusted in RF:
the overall number of trees in a forest (ntree) and the
number of data samples (m). The tuning is based on the
performance of OOB data. An important consideration is
to determine how many trees should be grown according to
the RFmodel. Breiman [39] suggested that the generalization
error converges as the number of trees increases. Adding an
increasing number of trees to the model does not result in
overadjustment.Themain limitation of increasing ntree is the
additional computation time.

To assess the optimal value of ntree and the optimal
value of the number of data samples (m), four RF models
are created using 500 trees with different numbers of data
samples. The MSE values are then averaged. Figure 8 shows
how the error rates (2.582𝐸 − 5, 1.148𝐸 − 5, 7.38𝐸 − 6, and5.60𝐸−6) changewith the number of trees, whendata samples
used are equal to 100,000, 200,000, 300,000, and 400,000,
respectively. From approximately 200 trees, the MSE of each
dataset stabilizes, and increasing the number of trees neither
increases nor decreases the MSE. Therefore, 200 trees in the
RF can be regarded as sufficient. As shown in Figure 8, the
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Table 2: Training data samples.

Sample
number G from (4) T from (5) 𝐼MPP from (1)

1 426.988 11.170 2.103
2 654.855 43.278 4.405
3 624.986 41.217 4.128
4 51.2322 7.3070 0.170
5 726.523 33.586 4.577
6 657.228 22.346 3.753
7 821.156 25.784 4.899
8 332.130 19.744 1.712
9 191.898 21.386 0.891
10 828.676 33.751 5.268... ... ... ...
399990 1043.98 1.6760 5.072
399991 228.114 1.0788 0.885
399992 623.211 11.358 3.207
399993 606.037 28.896 3.631
399994 225.997 24.816 1.133
399995 98.2440 42.387 0.437
399996 241.430 3.9415 0.985
399997 972.252 9.7257 5.089
399998 538.437 25.532 3.105
399999 673.546 15.412 3.624
400000 700.615 7.5407 3.510

values for MSE for the 300,000 and 400,000 data samples
slightly differ. Hence, 300,000 data samples are used because
increasing the data samples beyond 300,000 leads to an
increase in computation time, which will not be beneficial.
After the RF is trained, the approach can be used to generate
reference current, 𝐼MPP, and calculate MPP with new input
data as shown in Figure 9. It should be noted from Figure 9
that the trained RF only estimate the reference current, 𝐼MPP,
and MPP is then calculated simply by multiplying 𝐼MPP and𝑉MPP, where 𝑉MPP is the system voltage at 𝐼MPP as shown in
Figure 2.

4.3. Performance Evaluation. The main concern in forecast-
ing is to test the performance of the developed forecasting
technique for its suitability and accuracy. For this purpose,
the Bland–Altman test is conducted first. The Bland–Altman
test is a type of statistical analysis typically used to compare
measured values and a reference value. If the differences
between the RF-based MPP and the reference MPP are
within the 𝜇 ± 2𝜎 (95%) limits of acceptability, the proposed
method is considered as an accurate model [43–45]. In the
above expression, 𝜇 is the mean difference (bias) of the
power measurements between the proposed system and the
reference and 𝜎 is the standard deviation for the difference of
the power measurements.
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Figure 8: Training error rates based on the RF-based MPPT.

To evaluate the performance of the various MPPT meth-
ods, namely, ANFIS, ANN, and the proposed RF-based
method, three standard error measurements are used: mean
error (ME),mean square error (MSE), and standard deviation
of the error (𝜎). These indices are given by [33]

ME = 1𝑁
𝑁∑
𝑖=1

(𝑃math𝑖 − 𝑃RF𝑖) ,
MSE = 1𝑁

𝑁∑
𝑖=1

(𝑃math𝑖 − 𝑃RF𝑖)2 ,

𝜎 = √ 1𝑁
𝑁∑
𝑖=1

(𝑃math𝑖 − 𝜇)2,
(6)

where 𝑃RF𝑖 is the ith power measured using RF, 𝑃math𝑖 is the𝑖th reference power based mathematical model, and 𝜇 is the
average of the measured values.

5. Results and Discussion

To validate the MPPT algorithms, the developed and trained
RF-based MPPT is verified using the actual SolarTIFSTF-
120P6 PVmodules output data instead of testing based on the
slow change ofmetrological conditions (ramp) or step change
implemented in previous research. The data were obtained
from a 3 kW rooftop PV system at Universiti Kebangsaan
Malaysia from March 1, 2013, to February 15, 2014, using a
high sampling data logger at a sampling rate of 30 seconds. 𝐺
and 𝑇 are measured using a solar pyranometer sensor S-LIB-
M003 and a temperature sensor S-TMB-M006, respectively,
as explained in Section 3.

Figures 10–17 show the meteorological operation condi-
tions (𝐺 and 𝑇) and the output maximum electrical power
(𝑃PV = 𝑃MPP = 𝑉MPP ∗ 𝐼MPP) extracted from the developed
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Figure 9: Block diagram of the trained RF-based MPPT algorithm with external MPP calculation.

RF-based MPPT (RF model) for selected days that have
varying patterns. From these figures, the output power of the
system is shown to be highly dependent on𝐺 and follows the
same pattern.

Figures 10–17 do not clearly show how close themeasured
MPP based RF (RF model) is from the reference MPP based
mathematicalmodel (mathmodel) which have been obtained
using the data given in Table 1 and (1). Therefore, to show
the difference or symmetry between the powers measured
using RF-based MPPT (RF model) and the reference power
basedmathematical model (mathmodel), the Bland–Altman
test is conducted. For the selected days, the corresponding
Bland–Altman test plots are exhibited in Figures 18–25. In
these figures, a regression line is added to the plots as a dotted
line to show the limit of acceptability between the proposed
MPP and the reference MPP. From the figures, most of the
data fall within the 𝜇 ± 2𝜎 (95%) limits of acceptability [43–
45]. This observation indicates that the proposed RF-based
MPPT is accurate and effective.

To show the reliability of the proposed MPPT algorithm,
tests were conducted for an entire year. Measurement data
and results of the Bland–Altman test conducted at the
beginning and at the end of each month are shown in
Table 3. As shown in this table, most of the measured data
from the proposed MPP tracker and the reference power
lie between 95% and 96.83% limits of acceptability. These
statistical results support and promote the validity of the
measurement of the power of the proposed MPP tracker
relative to the reference power.

5.1. Performance Comparison. For a fair comparison and to
show the superiority of the RF-basedMPPTmethod, the new
MPPT methods are compared with well-known approaches,
namely, ANN and ANFIS-based MPPT methods. For the
appraisal of the techniques, three indices mentioned in
Section 4.3 are calculated.

The first indices, where mean error (ME) is calculated for
the proposed RF model, ANN, and ANFIS for 24 days from
March 1, 2013, to February 15, 2014, are shown in Table 4.The
best performance is boldfaced, which clearly shows that the
RF approach provides better results with very low ME values
than those of ANN and ANFIS models. For RF-basedMPPT,
the bestME result obtained was 0.002985 on January 15, 2014,
and the worst result recorded was 0.005087 onMay 1, 2013. In
the 24 days, the average ME values for RF, ANN, and ANFIS
were 0.00439, 0.03083, and 0.89843, respectively.These values
clearly indicate that the proposed method outperformed the
other methods in terms of ME.

The second index compares the performances of MSE
of various MPPT methods. MSE is inversely proportional to
the quality of the signal. A decrease in MSE value means an
increase in the quality of the signal. In other words, a decrease
in the MSE value means the output is closer to the reference
MPP, whereas an increase in the MSE value implies that the
output is spread out from the true MPP. The performance
of RF, ANN, and ANFIS-based MPPT methods in terms of
MSE is listed in Table 5. The MSE value for the RF model
decreases from 3.445𝐸 − 05 on January 15, 2014, to 0.000109
onMay 1, 2013. In the 24 days, the average MSE values for RF,
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Table 3: Bland–Altman test.

Number Date 𝜇 𝜇 + 2𝜎 𝜇 − 2𝜎 Bland–Altman (limits of agreement%)
1 March 1, 2013 −0.004958 0.012704 −0.022622 96.33
2 March 15, 2013 −0.005070 0.010587 −0.020727 95.00
3 April 1, 2013 −0.004392 0.010761 −0.019546 96.17
4 April 15, 2013 −0.004566 0.009402 −0.018535 95.67
5 May 1, 2013 −0.005087 0.013169 −0.023345 95.83
6 May 15, 2013 −0.003066 0.008015 −0.014149 95.33
7 June 1, 2013 −0.004477 0.009100 −0.018054 95.42
8 June 15, 2013 −0.005004 0.012168 −0.022177 96.08
9 July 1, 2013 −0.003603 0.008422 −0.015630 95.58
10 July 15, 2013 −0.004724 0.011462 −0.020911 96.33
11 August 1, 2013 −0.003698 0.009993 −0.017389 96.25
12 August 15, 2013 −0.004407 0.008342 −0.017157 96.08
13 September 1, 2013 −0.004319 0.012757 −0.021397 96.67
14 September 15, 2013 −0.003915 0.009265 −0.017096 95.42
15 October 1, 2013 −0.004564 0.008303 −0.017431 95.33
16 October 15, 2013 −0.004691 0.008997 −0.018379 95.83
17 November 1, 2013 −0.004458 0.009226 −0.018142 95.17
18 November 15, 2013 −0.004125 0.008517 −0.016768 95.83
19 December 1, 2013 −0.004573 0.013109 −0.022256 96.33
20 December 15, 2013 −0.004813 0.010291 −0.019918 95.08
21 January 1, 2014 −0.004755 0.011843 −0.021353 95.92
22 January 15, 2014 −0.002985 0.007125 −0.013096 95.42
23 February 1, 2014 −0.004661 0.009694 −0.019016 95.08
24 February 15, 2014 -0.004487 0.012655 -0.021630 96.83

Table 4: Mean error.

Number Date RF ANN ANFIS
1 March 1, 2013 0.004958 0.016018 0.463951
2 March 15, 2013 0.005070 0.019042 0.664193
3 April 1, 2013 0.004392 0.028661 0.574925
4 April 15, 2013 0.004566 0.009100 0.254380
5 May 1, 2013 0.005087 0.023952 0.796137
6 May 15, 2013 0.003066 0.048598 1.494458
7 June 1, 2013 0.004477 0.013066 0.310572
8 June 15, 2013 0.005004 0.033858 0.872664
9 July 1, 2013 0.003603 0.049649 1.280312
10 July 15, 2013 0.004724 0.030334 1.215951
11 August 1, 2013 0.003698 0.057225 1.321636
12 August 15, 2013 0.004407 0.026956 0.828955
13 September 1, 2013 0.004319 0.042546 1.334692
14 September 15, 2013 0.003915 0.040017 1.592547
15 October 1, 2013 0.004564 0.041882 1.311885
16 October 15, 2013 0.004691 0.020095 0.804006
17 November 1, 2013 0.004458 0.024107 0.541576
18 November 15, 2013 0.004125 0.032625 0.805526
19 December 1, 2013 0.004573 0.052986 1.609900
20 December 15, 2013 0.004813 0.020999 0.680179
21 January 1, 2014 0.004755 0.026556 0.843890
22 January 15, 2014 0.002985 0.052114 0.929768
23 February 1, 2014 0.004661 0.010587 0.264384
24 February 15, 2014 0.004487 0.018884 0.765933

Average 0.004392 0.030827 0.898434

Table 5: Mean square error.

Number Date RF ANN ANFIS
1 March 1, 2013 0.000102 0.001797 2.049067
2 March 15, 2013 8.694E − 05 0.002061 3.576209
3 April 1, 2013 7.665E − 05 0.005982 2.722844
4 April 15, 2013 6.959E − 05 0.001079 1.132424
5 May 1, 2013 0.000109 0.002648 4.146236
6 May 15, 2013 4.008E − 05 0.007295 6.589908
7 June 1, 2013 6.609E − 05 0.001242 1.738047
8 June 15, 2013 9.871E − 05 0.003777 4.251256
9 July 1, 2013 4.911E − 05 0.008876 6.470000
10 July 15, 2013 8.777E − 05 0.004461 7.752110
11 August 1, 2013 6.050E − 05 0.012030 7.113411
12 August 15, 2013 6.003E − 05 0.003355 3.285035
13 September 1, 2013 9.151E − 05 0.008465 7.505080
14 September 15, 2013 5.872E − 05 0.007030 9.549102
15 October 1, 2013 6.218E − 05 0.007597 7.358378
16 October 15, 2013 6.881E − 05 0.002194 3.970052
17 November 1, 2013 6.665E − 05 0.002759 2.345395
18 November 15, 2013 5.694E − 05 0.006170 4.068883
19 December 1, 2013 9.902E − 05 0.008211 8.435125
20 December 15, 2013 8.016E − 05 0.003226 3.616879
21 January 1, 2014 9.143E − 05 0.004822 4.820838
22 January 15, 2014 3.445E − 05 0.009134 4.257238
23 February 1, 2014 7.320E − 05 0.001236 1.057766
24 February 15, 2014 9.358E − 05 0.001975 4.748613

Average 7.432E − 05 0.004893 4.689996
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Figure 10: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on March 1, 2013.
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Figure 11: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on June 1, 2013.
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Figure 12: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on July 1, 2013.
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Figure 13: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on August 15, 2013.
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Figure 14: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on October 15, 2013.
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Figure 15: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on December 1, 2013.
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Figure 16: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on January 15, 2014.
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Figure 17: Performance of RF-based MPPT method: (a) metro-
logical conditions, (b) estimated 𝐼MPP, and (c) extracted maximum
electrical power on February 15, 2014.
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Figure 18: Bland–Altman test for power measurements onMarch 1,
2013.
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Figure 19: Bland–Altman test for power measurements on June 1,
2013.
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Figure 20: Bland–Altman test for power measurements on July 1,
2013.
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Figure 21: Bland–Altman test for power measurements on August
15, 2013.
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Figure 22: Bland–Altman test for power measurements on October
15, 2013.
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Figure 23: Bland–Altman test for power measurements on Decem-
ber 1, 2013.
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Figure 24: Bland–Altman test for power measurements on January
15, 2014.
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Figure 25: Bland–Altman test for powermeasurements onFebruary
15, 2014.

ANN, and ANFIS were 7.432𝐸− 05, 0.004893, and 4.689996,
respectively. The results again show that the RF-based MPPT
achieves better results than the other techniques.

The third index compares the standard deviations, 𝜎, of
the various MPPT methods. 𝜎 evaluates the rate of variation
against the average value. A low standard deviation indicates
that the data points are near the mean, while a greater𝜎 indicates that the data points are scattered in a wide
surrounding range from the mean. The calculated standard
deviations of the RF model, ANN, and ANFIS for 24 days,
from March 1, 2013, to February 15, 2014, are depicted in
Table 6. Table 6 clearly shows that the RF-based MPPT
performs better than the other methods at varying 𝜎 between
0.005054 on January 15, 2014, and 0.009126 on May 1, 2013.
In the 24 days, the average 𝜎 values for RF, ANN, and ANFIS
were 0.007295, 0.059747, and 1.878943, respectively.

Table 6: Standard deviation.

Number Date RF ANN ANFIS
1 March 1, 2013 0.008829 0.039252 1.354749
2 March 15, 2013 0.007826 0.041222 1.770712
3 April 1, 2013 0.007574 0.071872 1.546796
4 April 15, 2013 0.006982 0.031564 1.033328
5 May 1, 2013 0.009126 0.045551 1.874281
6 May 15, 2013 0.005539 0.070252 2.087669
7 June 1, 2013 0.006787 0.032738 1.281277
8 June 15, 2013 0.008584 0.051308 1.868246
9 July 1, 2013 0.006011 0.080083 2.198218
10 July 15, 2013 0.008091 0.059517 2.504955
11 August 1, 2013 0.006843 0.093587 2.316925
12 August 15, 2013 0.006373 0.051277 1.611967
13 September 1, 2013 0.008536 0.081591 2.392730
14 September 15, 2013 0.006588 0.073689 2.648585
15 October 1, 2013 0.006432 0.076453 2.374608
16 October 15, 2013 0.006840 0.046676 1.432597
17 November 1, 2013 0.006320 0.071462 1.849473
18 November 15, 2013 0.006320 0.071462 1.849473
19 December 1, 2013 0.008838 0.073528 2.417747
20 December 15, 2013 0.007550 0.052777 1.776125
21 January 1, 2014 0.008296 0.064166 2.027135
22 January 15, 2014 0.005054 0.080129 1.842142
23 February 1, 2014 0.007175 0.033526 0.993944
24 February 15, 2014 0.008571 0.040242 2.040938

Average 0.007295 0.059747 1.878943

6. Conclusion

This paper introduced a new and effective MPPT algorithm
based on RF for a 3 kW peak PV system composed of 25
SolarTIFSTF-120P6 PV modules. With the bootstrapping
method used in the training procedures and proper param-
eter selection of the random forests, better MPPT model
performance was achieved. To evaluate the reliability and
efficiency of the proposed algorithm, the RFmodel was tested
using actual data obtained from March 1, 2013, to February
15, 2014, every 15th of the month, and the performance of
the proposed RF technique was compared with that of ANN
and ANFIS methods. The performance of the proposed RF
model was evaluated based on the Bland–Altman test results
and on the obtained ME, MSE, and 𝜎 values. The results
showed that the RF-based MPPT passed the Bland–Altman
test with more than 95% limits of acceptability in all tested
cases. Furthermore, comparative analysis reveals that the
proposedMPPTmethod outperforms both ANN andANFIS
algorithms in terms of ME, MSE, and 𝜎 by a significant
margin when tested under the same strict meteorological
and technical conditions. Finally, the proposed method is
found to respond quickly to fast-changing environmental
conditions; thus the method can be adopted for real-time
MPPT. The extension of this work is under way to develop a
DC-to-DC boost converter hardware based on the proposed
MPPT algorithm.
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