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Abstract
With microarray technology becoming more prevalent in recent years, it is now
common for several laboratories to employ the same microarray technology to identify
differentially expressed genes that are related to the same phenomenon in the same
species. Although experimental specifics may be similar, each laboratory will typically
produce a slightly different list of statistically significant genes, which calls into
question the validity of each gene list (i.e. which list is best). A statistically-based
meta-analytic approach to microarray analysis systematically combines results from
the different laboratories to provide a single estimate of the degree of differential
expression for each gene. This approach provides a more precise view of genes
that are of significant interest, while simultaneously allowing for differences between
laboratories. The widely-used Affymetrix oligonucleotide array and its software are
of particular interest because the results are naturally suited to a meta-analysis.
A simulation model based on the Affymetrix platform is developed to examine the
adaptive nature of the meta-analytic approach and to illustrate the utility of such
an approach in combining microarray results across laboratories. Copyright  2005
John Wiley & Sons, Ltd.
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Introduction

When a laboratory employs microarray technol-
ogy to identify genes related to a specific disease
or condition of interest, the published result is
most often a list of candidate genes determined
to be statistically significant. This claim of sig-
nificance is usually based on some consideration
of a measure of differential expression between a
control (non-diseased) sample and a treatment (dis-
eased) sample, and should be based on a statistical
test to account for variability in the experimen-
tal data. Although there are numerous measures
of differential expression and statistical tests found
in an ever-growing body of literature [7–9,16],
the results are often vastly different. Even when
multiple laboratories investigating the genetic basis
of the same biological phenomenon in the same
organism, using essentially the same experimental

design and microarray platform, report differential
expression using the same measure and statistical
test, the lists of candidate genes from each labora-
tory may differ considerably.

In an attempt to draw together the results from
each laboratory while acknowledging their differ-
ences, we applied a meta-analytic approach [24],
which considers each laboratory as a separate study
investigating the same effect. The results from each
laboratory are combined in a systematic manner
to arrive at a more precise understanding of each
gene’s true relationship to the phenomenon of inter-
est. Where the term ‘analysis’ is used to describe
the quantitative approaches to draw useful informa-
tion from raw data, the term ‘meta-analysis’ [13]
refers to the approaches used to draw useful infor-
mation from the results of previous analyses. Such
approaches have particular utility with the results
from Affymetrix GeneChip microarrays and other
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fabricated arrays, because these results are given
in a uniform format and readily lend themselves to
comparisons between labs. Of greatest interest are
the meta-analytic approaches that yield not only a
list of candidate genes based on statistical tests, but
also an estimate (and associated standard error) of
the degree or magnitude of differential expression.
This information is useful not only in identifying
which genes are differentially expressed, but also
in making statements about the degree to which
they are differentially expressed between the tested
conditions.

Recently, several applications of meta-analysis
to microarray data have appeared in the literature
[5,12,17–21,26]. Most of these approaches have
focused on combining significant results rather
than on providing estimates of the magnitude of
differential expression. Those that have provided
quantitative estimates focused on combining results
across platforms without fully accounting for the
technological differences. An approach that com-
bines the results from microarray experiments to
produce a single estimate of the degree or mag-
nitude of differential expression for each gene is
presented here.

Differential expression with Affymetrix
microarray technology

The Affymetrix GeneChip microarray [1] is cur-
rently one of the most widely-used platforms
for gene expression experiments. Affymetrix has
developed statistical algorithms [23] that employ
individual spot intensities on the microarray for
the purpose of estimating the true expression lev-
els of individual genes in single samples. Fur-
thermore, the Affymetrix software MAS 5.0 [2]
compares gene expression levels in two differ-
ent tissues (samples or treatment conditions) and
reports a ‘signal log ratio’ (SLR) with 95% confi-
dence bounds. The signal log ratio is the signed
log2 of the signed fold change (FC) familiar to
biologists [25], i.e. FC = 2SLR if SLR > 0 and
FC = (−1)2−SLR if SLR < 0.

If we let θ̃i ,k denote the estimate of the SLR
θi ,k for gene k in lab i , and θ̃

upper
i ,k be the upper

bound for the 95% confidence interval, then both
θ̃i ,k and θ̃

upper
i ,k are reported by the Affymetrix soft-

ware. The Affymetrix documentation [23] gives
the estimated standard error of θ̃i ,k as si ,k =

(θ̃
upper
i ,k − θ̃i ,k )/t (0.975)

i ,k , where t (0.975)

i ,k is the upper
0.025 critical value of the t distribution with dfi ,k =
max(0.7(ni ,k − 1), 1) degrees of freedom, where
ni ,k represents the number of probe pairs represent-
ing gene k on each array in study i . Based on this,
lab i may declare gene k significantly differentially
expressed if zero is not within the confidence inter-
val θ̃i ,k ± si ,k t1−α/2

i ,k , with α appropriately selected
to adjust for multiple comparisons. The estimated
variance of the SLR estimate θ̃i ,k is vi ,k = s2

i ,k .
In order to be combined across studies, quan-

titative estimates must address the same measure
or quantity, be standardized to the same scale, and
include some measure of variability [14]. The SLR
satisfies these criteria. Specifically, the SLR for
a given gene represents the degree of differential
expression between two conditions and is directly
comparable between labs, since it estimates the
same physical quantity. The SLR from Affymetrix
is standardized in the sense that a SLR of zero
means no differential expression is observed, and
the algorithms used to produce the SLR place all
SLR estimates on the same scale. A variance for
the SLR estimate is provided by the Affymetrix
algorithms. In fact, the Affymetrix software MAS
5.0 [2,23] gives the results from each laboratory in
a uniform format, providing the necessary compo-
nents for a meta-analysis: a quantitative estimate
(θ̃i ,k ) and the associated measure of variability
(vi ,k ).

Random effects meta-analysis

Three main meta-analytic approaches exist [6]:
fixed effects, random effects and hierarchical
Bayes. The first two will be summarized here,
focusing on the random effects model [10]; the
third is beyond the scope of this review. The basic
meta-analytic model can be represented as:

θ̃i ,k = θi ,k + εi ,k = θk + δi ,k + εi ,k

where θ̃i ,k is the observed SLR estimate for gene
k from experiment i (i = 1, . . . , n), and εi ,k is the
within-experiment sampling error. Here, θk is the
quantity that experiment i is expected to measure
(the true underlying SLR for gene k ), but due
to the random deviation δi ,k , experiment i is in
fact measuring θi ,k . That is, there is a true SLR
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(θk ) for gene k but, due to random deviation, the
SLR in each experiment (θi ,k in experiment i ) is
slightly different. It is typically assumed that δi ,k is
normally distributed with mean zero and variance
�2

k , and εi ,k is normally distributed with mean zero
and variance σ 2

i ,k . The variance σ 2
i ,k is estimated by

vi ,k , the estimated variance of the observed SLR.
The fixed effects meta-analysis model carries the

additional assumption that �2
k = 0. This assump-

tion, referred to as the homogeneity assumption,
has the interpretation of assuming that gene k is
expressed the same in all experiments, and that
observed differences are due to sampling error
only. In practice, the fixed effects model tends to be
overly simplistic and will not be considered further
in this review.

The quantity of interest in this model is θk ,
the underlying ‘true’ SLR value for gene k . The
method of moments [6] can be used to estimate �2

k
and then θk by following a generalized least squares
approach [22]. First, let Qk = ∑

wi ,k (θ̃i ,k − θ∗
k )2,

where wi ,k = 1/vi ,k and θ∗
k = ∑

wi ,k θ̃i ,k/
∑

wi ,k .
Note that θ∗

k is a weighted average of the observed
SLR estimates θ̃i ,k , with weights wi ,k selected to
minimize the variance of θ∗

k . Then estimate �2
k by

[10]:

�̂2
k = max


0,

∑
wi ,k (Qk − n + 1)

(∑
wi ,k

)2 −
∑

w2
i ,k




and compute adjusted weights w̃i ,k = (vi ,k +
�̂2

k )
−1.

The estimate of θk is θ̂k = ∑
w̃i ,k θ̃i ,k/

∑
w̃i ,k

with estimated variance v̂k = (∑
w̃i ,k

)−1
. To test

the significance (i.e. the significant differential
expression) of gene k , the test statistic Zk =
θ̂k/

√
v̂k is employed. Under H0,k : θk = 0, Zk

approximately follows the standard normal distri-
bution, therefore gene k can be assigned a P value,
Pk = 2(1 − �(|Zk |)), where � is the cumulative
distribution function of the standard normal distri-
bution. The meta-analysis declares gene k signifi-
cantly differentially expressed at significance level
α if Pk < α, where α may be appropriately adjusted
for multiple comparisons.

Simulation model

In order to evaluate the utility and power of
the proposed meta-analytic approach, a simple
simulation study was conducted. It is useful to use
the results from a simulation study to compare with
the true simulation setting, or the ‘truth’, for the
purpose of assessing how well the method works
(i.e. in this case, the meta-analysis). Specifically,
the adaptive nature of the meta-analytic approach
can be illustrated by comparing the ‘true’ SLR
values with the estimates from each simulated lab
and from the meta-analysis.

‘Raw’ probe-level data were generated from a
model assuming that mismatch intensities (MM)
are random background noise, which is an under-
lying assumption of the Affymetrix approach [23].
Specifically, the model assumes that the mismatch
(MM ) intensity for probe l of gene k under treat-
ment j in experiment i followed a gamma dis-
tribution: MMijkl ∼ �(α, β). Once the background
mismatch intensities were obtained, the perfect
match (PM ) intensities were generated via the
model:

log2(PMijkl − MMijkl ) = µ + Li + Gk

+ P(G)(k)l + LGik

+ ρk (Tj + LTij + TGjk

+ LTGijk + TP(G)j (k)l )

+ ε(ijk)l .

Six experiments were considered with each using
the same two treatments (control and experimen-
tal). The term ρk ∼ Bernoulli(p) is 1 if gene k
is differentially expressed between conditions j =
1 and j = 2, and is 0 otherwise. The parame-
ter p corresponds to the percentage of genes that
are differentially expressed, with higher values
resulting in more differentially expressed genes.
In this model, Li is the effect of lab i , Tj is the
effect of treatment j , Gk is the effect of gene
k , P(G)(k)l is the effect of probe l of gene k ,
ε(ijk)l is a random error term, and the other terms
are interaction effects. To introduce more between-
lab variability, the error variance was allowed
to be different in each lab. Various sources of
variability in the ‘observed’ simulated data can
be introduced by adjusting the parameters in this
model.
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Results

Both the simulation and the meta-analysis were
conducted using R software [15,25], as well as the
affy package [11] from the BioConductor project
[4,25]. The simulation was performed based on
the Affymetrix rat neuro-chip RN U34, with model
parameter settings selected to produce a distribu-
tion of MM intensities similar to that observed
in real data (Figure 1a, b) and to produce sig-
nal log ratio (SLR) estimates within a reasonable
range and with some variation between laboratories
(Figure 1c, d).

A random effects meta-analysis combined the
SLR estimates from the six simulated labs to
arrive at a single SLR estimate for each gene.
The test of significance H0,k : θk = 0 was per-
formed for all 1322 genes, and the P -values for
each of the genes were summarized in a histogram
of significance P -values (Figure 2a). If there were
no differentially expressed genes (i.e., if H0,k :
θk = 0 were true for all genes k ), then this his-
togram should be relatively flat. The abundance of
smaller P -values is indicative of a larger number
of significant genes. These smaller P -values tended
to correspond to the largest meta-analysis SLR
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Figure 1. Summary of results from simulated labs. The simulation parameters were selected to force the simulated
mismatch (MM) intensities (b) to have a distribution similar to that observed in real data (a). The SLR estimates from each
lab (c) tended to be close to zero, with deviations from zero indicating differential expression. The simulated results from
different labs (d) tended to be similar but also exhibited noticeable differences

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2005; 6: 116–122.



120 J. R. Stevens and R. W. Doerge

(a) Random Effects Meta-Analysis
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Figure 2. Summary of random effects meta-analysis. If there were no differentially expressed genes, the histogram of
significance P values (a) would be expected to be relatively flat. The excess of small P values here indicates a large number
of differentially expressed genes. Those genes with larger SLR estimates tended to have smaller significance P values
(b) because larger SLR values are indicative of differential expression. The horizontal reference line in (b) represents the P
value threshold to control the FDR at 0.05. The standard errors of the random effects meta-analysis SLR estimates (c) tend
to be lower overall than the standard errors from any single lab (Figure 1c), particularly for genes with SLR values away
from zero

estimates (Figure 2b). Similar to the results from
a single lab (Figure 1c), most meta-analysis SLR
estimates were close to zero (Figure 2c; indicative
of non-differential expression), but the standard
errors were slightly lower overall for the meta-
analysis estimates, after combining the SLR esti-
mates across labs.

Under a random effects meta-analysis with
the false discovery rate (FDR) [3] controlled
at 0.05, 72 of the 1322 genes were declared

significantly differentially expressed (i.e. H0,k :
θk = 0 is rejected). Individually, the six labs iden-
tified between 44 and 58 significantly differentially
expressed genes (controlling the FDR at 0.05 for
each lab) (Table 1). For each lab, most (but not all)
of its significant genes were declared significant by
the random effects meta-analysis.

The results from this small simulation demon-
strate how a meta-analysis handles discrepancies
between labs. The meta-analytic approach proved
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Table 1. A summary of the number of common genes
that are declared significantly differentially expressed by
simulated labs 1–6 and the random effects meta-analysis

Simulated lab

1 2 3 4 5 6 R T

1 46 33 34 34 31 31 35 35
2 49 34 37 31 34 39 38
3 54 34 32 36 41 41
4 51 30 35 38 39
5 44 32 37 37
6 58 40 41
R 72 56
T 70

The (i, j)th element of this table is the number of genes declared
significant by both lab i and lab j. R represents the results from a
random effects meta-analysis, and T represents the ‘true’ number of
genes that are differentially expressed. Each lab (including R) had the
false discovery rate (FDR) controlled at 0.05.

useful in identifying genes that were statistically
significantly differentially expressed, while tak-
ing into account the additional variation from
the contributing labs. It did so without being
overly influenced by any one lab that had poten-
tial to declare significance due to random varia-
tion. Rather than considering the union of all genes

declared significant by any of the labs, and rather
than simply taking the intersection of the lists of
significant genes from each lab, the random effects
meta-analysis combined information across all six
labs in a well-structured manner and declared 72
genes significantly differentially expressed.

In order to gain an understanding of the success
rate and power of the meta-analysis, a compari-
son of the results with the ‘truth’, or simulation
parameters is performed. The numbers of correctly
identified differentially expressed genes do not vary
drastically between the individual labs (Table 1),
but the meta-analysis tends to correctly identify
a higher number of differentially expressed genes.
In addition, the meta-analysis SLR estimates tend
to be much closer to the true SLR values than
do the estimates from individual labs (Figure 3).
This demonstrates that the meta-analysis combines
results from multiple labs to arrive at a more pre-
cise view of the ‘true’ degree of differential expres-
sion for each gene.

Discussion

Using information from different laboratories inter-
ested in the same biological event, we have com-
bined Affymetrix oligonucleotide arrays and the
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Figure 3. Comparison of SLR estimates with the ‘true’ SLR values. The SLR estimates from each lab (a) tend to
approximate the true SLR values overall, but there is more deviation from the truth in each lab than there is in the random
effects meta-analysis SLR estimates (b). Green squares represent type I errors, genes incorrectly claimed as differentially
expressed. Red triangles represent type II errors, genes incorrectly claimed to be not significantly differentially expressed.
There are fewer errors in the random effects meta-analysis results than there are in any given lab, and the random effects
meta-analysis results tend to more closely approximate the true underlying degree of differential expression for each gene
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results gained from Affymetrix software MAS 5.0
[2] for testing differential expression to demon-
strate the utility and power of a meta-analytic
approach. The signal log ratio (SLR), automatically
reported by MAS 5.0 [2,23], is naturally suited to
serve as an effect size estimate in a meta-analysis.
The simulation example illustrated how the final
SLR estimates from the meta-analysis models tend
to be much closer to the ‘true’ SLR values than do
the SLR estimates from any single lab. The appli-
cation of meta-analytic approaches to microarray
results provides a systematic method to combine
results from different laboratories, with the purpose
of gaining clearer insight into the true degree of
differential expression for each gene. The random
effects approach presented here can be extended to
incorporate prior knowledge in a Bayesian frame-
work, to account for known differences between
experiments by use of covariates, and to adjust for
possible dependencies between experiments. These
extensions are the subject of ongoing and future
work.
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