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Inflammation plays an important role in chimeric antigen receptor (CAR) T-cell therapy,

especially in the pathophysiology of cytokine-release syndrome (CRS) and immune

effector cell–associated neurotoxicity syndrome (ICANS). Clonal hematopoiesis of

indetermined potential (CHIP) has also been associated with chronic inflammation. The

relevance of CHIP in the context of CAR T-cell treatment is widely unknown. We

evaluated the prevalence of CHIP, using a targeted deep sequencing approach, in a cohort

of patients with relapsed/refractory (r/r) B-cell non-Hodgkin lymphoma before and after

CAR T-cell treatment. The aim was to define the prevalence and variation of CHIP over

time and to assess the influence on clinical inflammation syndromes (CRS/ICANS),

cytopenia, and outcome. Overall, 32 patients were included. CHIP was found in 11 of 32

patients (34%) before CAR T-cell therapy. CHIP progression was commonly detected in

the later course. Patients with CHIP showed a comparable response rate to CAR T-cell

treatment but had an improved overall survival (not reached vs 265 days, P 5 .003). No

significant difference was observed in terms of the occurrence and severity of CRS/ICANS,

therapeutic use of tocilizumab and glucocorticosteroids, paraclinical markers of

inflammation (with the exception of ferritin), or dynamics of hematopoietic recovery.

CHIP is commonly observed in patients undergoing CD19-directed CAR T-cell therapy and

is not associated with an inferior outcome.

Introduction

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 are approved for the treatment of
patients with certain relapsed/refractory (r/r) aggressive B-cell lymphomas. In addition to relapse, the
commonly observed adverse events include cytokine release syndrome (CRS), immune effector
cell–associated neurotoxicity syndrome (ICANS), and protracted cytopenia. CRS represents a prototypic
inflammatory state that is induced by hyperactivation of diverse immune cells, including the myeloid line-
age.1 The pathophysiology of ICANS and prolonged cytopenia remains a matter of debate; however,
inflammation has also been suggested to play a decisive role.2-4

Submitted 14 July 2021; accepted 20 December 2021; prepublished online on Blood
Advances First Edition 10 January 2022; final version published online 21 March 2022.
DOI 10.1182/bloodadvances.2021005747.

Requests for data sharing may be submitted to Raphael Teipel (raphael.teipel@
ukdd.de).

The full-text version of this article contains a data supplement.

© 2022 by The American Society of Hematology. Licensed under Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0),
permitting only noncommercial, nonderivative use with attribution. All other rights
reserved.

Key Points

� CHIP is frequently
observed in patients
with r/r lymphoma
undergoing CD19-
directed CAR T-cell
therapy.

� CHIP does not
negatively influence
the outcome of
CD19-directed CAR
T-cell therapy.
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Clonal hematopoiesis evolves from a somatically mutated hematopoi-
etic stem cell and its progeny. Clonal hematopoiesis of indeterminate
potential (CHIP) is defined as the presence of cancer-associated
driver mutations with a variant allele frequency (VAF) $ 2% in
subjects without hematologic abnormalities.5 The prevalence of
CHIP in individuals .65 years of age is .10%. CHIP has been
associated with an increased risk for transformation to acute myeloid
leukemia (AML)/myelodysplastic syndrome (MDS), as well as with
the occurrence of chronic inflammatory disorders, especially cardio-
vascular diseases.6 Preclinical data suggest that inflammation is
driven by CHIP-affected monocytic cells7,8 and that inflammation
even promotes clonal expansion, leading to a vicious circle.9,10

The relevance of CHIP in the context of CAR T-cell treatment is
widely unknown.11,12 Therefore, we longitudinally evaluated the
prevalence of CHIP in patients with r/r B-cell non-Hodgkin lym-
phoma undergoing CAR T-cell treatment and assessed the influ-
ence on clinical inflammation syndromes (CRS/ICANS), cytopenia
after CAR T-cell therapy, and outcome.

Methods

This study included 32 patients who were consecutively treated
with CD19-directed CAR T-cells for r/r B-cell non-Hodgkin lym-
phoma between October of 2019 and August of 2021 (institutional
approval number: BO-EK-266062020). All patients gave written
informed consent. The prevalence of CHIP was analyzed before lym-
phodepleting chemotherapy to assess the impact of CHIP on CRS,
ICANS, cytopenia, and outcome after CAR T-cell infusion. A possi-
ble mutual interference was evaluated by sequential CHIP assess-
ment after CAR T-cell treatment. Therefore, an established targeted
deep sequencing approach was used as previously described and
outlined in supplemental Methods.13 For better understanding, the
term “CHIP” is uniformly used throughout the article, formally
neglecting peripheral blood count criteria. The statistical methods
used are outlined in detail in supplemental Methods.

Results and discussion

The median patient age was 62 years (range, 37-82 years). Most
patients were extensively pretreated at the time of CAR T-cell infu-
sion (median 4 lines of prior therapy). Only 40% of the patients
achieved an objective response (partial or complete remission) to
the last therapy before CAR T-cell infusion (Table 1).

Of the patients, 84% developed CRS (any grade), including 46%
with grade $ 2 CRS. In addition, grade $ 2 ICANS was observed
in 27% of patients (Table 1).

Most patients developed profound and prolonged cytopenia after
CAR T-cell treatment. The prevalence of severe thrombocytopenia
(platelets , 50 3 109 per liter) was 70% and 47% at days 128
and 156, respectively, and severe neutropenia (neutrophils , 1 3

109 per liter) was seen in 63% and 39% of the patients at days
128 and 156, respectively.

Somatic mutations in peripheral blood, indicative of CHIP, were
found in 11 of 32 patients (34%) before CAR T-cell therapy (Figure 1).
The prevalence of CHIP was not influenced by the lines of prior
therapy. The exact mutational pattern is displayed in supplemental
Table 1.

The patient cohort was divided according to the presence of CHIP
(CHIP group, n 5 11) or its absence (non-CHIP group, n 5 21)
before lymphodepletion (Table 1). Patients in the CHIP group were
older (69 vs 58 years, P 5 .014). No significant difference was
observed between the 2 groups in terms of the occurrence and
severity of CRS and ICANS or the therapeutic use of tocilizumab
and glucocorticosteroids. Paraclinical markers of inflammation did
not differ, with the exception of ferritin, which was higher in non-
CHIP patients. Furthermore, the dynamics of hematopoietic recovery
was indistinguishable between patients in the CHIP and non-CHIP
groups (Table 1; supplemental Figure 2).The overall response rate
after CAR T-cell therapy did not depend on the CHIP status (CHIP
vs non-CHIP: 90% vs 80%; P 5 .3; Table 1) and was not influ-
enced by the VAF of the CHIP lesions (supplemental Figure 3).
After a median follow-up of 213 days (range, 9-714 days), 64% of
the patients in the CHIP group had an ongoing response compared
with 35% of the patients in the non-CHIP group (median event-free
survival: not reached vs 77 days; P 5 .061; supplemental Figure
1A). This converts into a median overall survival of not reached vs
265 days (P 5 .003; supplemental Figure 1B).

CHIP progression, defined by the occurrence of new mutations or
an increase in the VAF of preexisting clones, was commonly
detected in the course of follow-up. Notably, CHIP progression was
not associated with the occurrence of severe CRS (grade $ 2).

Thus far, the potential impact of CHIP on adverse events and clini-
cal outcomes of CAR T-cell therapy has not been studied in
depth.12 The prevalence of CHIP is generally known to be
increased in older individuals and patients with prior exposure to
cytotoxic agents.14 Therefore, patients with r/r disease are likely to
have an increased prevalence of CHIP at the time of CAR T-cell
treatment. This was confirmed in the current cohort; CHIP was
detected in 34% of the patients before CAR T-cell therapy.

The presence of CHIP has been associated with various inflamma-
tory conditions (eg, cardiovascular disease or autoinflammatory syn-
dromes). Preclinical studies in TET2-mutant mice have suggested
an interleukin-6–dependent inflammation pathway,9 a cytokine that
is also known to be involved in the inflammatory adverse events
associated with CAR T-cell therapy. Thus, the presence of CHIP
may potentiate adverse events of CAR T-cell therapy, especially
CRS or prolonged cytopenia. However, we did not observe any
association between the presence of CHIP and increased clinical
inflammation or delayed hematopoietic recovery in the current
cohort, which could be explained, in part, by the small sample size.
Furthermore, the clinical definition of CRS represents the inflamma-
tion storm immediately after CAR T-cell infusion, which is usually lim-
ited to a few days. In contrast, CHIP may maintain a subclinical
CRS with a long-lasting and ongoing chronic inflammatory micromi-
lieu similar to what is termed “inflammaging” in older people.15

Interestingly, trends toward a better event-free survival and a pro-
longed overall survival after CAR T-cell therapy were found in
patients in the CHIP group. In this context, few genes that are fre-
quently found to be mutated in CHIP are the main regulators of lym-
phocyte activity and, therefore, may influence the effectiveness of
CAR T cells, which has been reported in murine models and a clini-
cal case study.16,17 Furthermore, clonal expansion was observed in
most patients with ongoing responses in the follow-up after CAR
T-cell therapy. Therefore, an important question will be whether
CHIP progression related to CAR T-cell therapy further enhances
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Table 1. Patient characteristics, CAR T-cell treatment, and response of the entire cohort and subgroups separated by the presence of

CHIP before CAR T-cell therapy

Variable All patients (N 5 32) CHIP group (n 5 11) Non-CHIP group (n 5 21) P

Sex 1.00

Male 19/32 (59) 7/11 (64) 12/21 (57)

Female 13/32 (41) 4/11 (36) 9/21 (43)

Age, median (range), y 62 (37-82) 69 (56-82) 58 (37-77) .01

IPI, median 2 2 3 .20

Prior lines of therapy, median (range), n 4 (2-6) 3 (2-6) 4 (2-6) .36

Remission before CAR T-cell treatment .11

CR 2/32 (6) 2/11 (18) 0/21 (0)

PR 11/32 (34) 5/11 (46) 6/21 (28)

SD 6/32 (19) 1/11 (9) 5/21 (24)

PD 13/32 (41) 3/11 (27) 10/21 (48)

CAR T-cell product .35

Axicabtagene ciloleucel 20/32 (62) 5/11 (45) 15/21 (71)

Tisagenlecleucel 8/32 (25) 4/11 (36) 4/21 (19)

Other 4/32 (13) 2/11 (19) 2/21 (10)

CRS maximum* .37

0 5/32 (16) 3/11 (27) 2/21 (10)

1 12/32 (38) 5/11 (45) 7/21 (33)

2 11/32 (34) 2/11 (19) 9/21 (43)

3 4/32 (12) 1/11 (9) 3/21 (14)

4 0/32 (0) 0/11 (0) 0/21 (0)

ICANS, maximum* .58

0 17/32 (53) 8/11 (73) 9/21 (43)

1 6/32 (19) 1/11 (9) 5/21 (24)

2 4/32 (12) 1/11 (9) 3/21 (14)

3 1/32 (4) 0/11 (0) 1/21 (5)

4 4/32 (12) 1/11 (9) 3/21 (14)

Use of tocilizumab 22/32 (69) 6/11 (55) 16/21 (76) .39

Use of steroids 15/32 (47) 3/11 (27) 12/21 (57) .22

Transfusion support after day 128

Red blood cells 18/30 (60) 3/10 (30) 15/20 (75) .05

Platelets 19/29 (66) 3/9 (33) 16/20 (80) .04

Best response to CAR T-cell treatment† .30

CR 9/31 (29) 5/11 (45) 4/20 (20)

PR 17/31 (55) 5/11 (45) 12/20 (60)

SD 3/31 (10) 0/11 (0) 3/20 (15)

PD 2/31 (6) 1/11 (9) 1/20 (5)

Response at last follow-up† .36

CR 5/31 (16) 3/11 (27) 2/20 (10)

PR 9/31 (29) 4/11 (36) 5/20 (25)

SD 2/31 (6) 0/11 (0) 2/20 (10)

PD 15/31 (48) 4/11 (36) 11/20 (55)

Death after CAR T-cell treatment 11/32 (34) 0/11 (0) 11/21 (5) .01

Unless otherwise noted, data are n/N (%).
CR, complete response; IPI, International Prognostic Index; PD, progressive disease; PR, partial remission; SD, stable disease.
*Assessment according to the American Society for Transplantation and Cellular Therapy grading system.19

†Response was evaluated according to Lugano criteria.
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the risk of developing therapy-related myeloid neoplasms.18 Thus
far, in our cohort 1 patient developed a clinically relevant myelodys-
plastic syndrome. This patient received an allogeneic stem cell
transplantation in the later course.

Our data have to be interpreted with caution and can only serve
as a hypothesis-generating study, especially because of the
small number of patients included. Other variables with a known
influence on outcome in this patient cohort might also affect sur-
vival and influence the results of this study, reflecting the natural
limitations of a univariate analysis. Nevertheless, other cellular
therapies in patients with lymphoma were reported to be influ-
enced negatively by CHIP, which we did not observe.11 In the
future, larger studies with longitudinal single-cell analysis of vari-
ous immune cells, including the CAR T cells themselves, are
necessary to perform reliable multivariate analyses and to eluci-
date the influence of CHIP-associated somatic mutations on the
outcome of CAR T-cell treatment.
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