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Abstract: Dysregulated protease activity has long been implicated in the pathogenesis of chronic
lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive
pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation
of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-
obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection
and lung function decline. Some therapies exist for the treatment of these symptoms, but they
are unable to halt disease progression and patients may benefit from novel adjunct therapies. In
this review, we highlight how proteases act as multifunctional enzymes that are vital for normal
airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway
dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate
the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote
mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment
in the airways by mediating proinflammatory signalling, compromising host defence mechanisms
and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss
some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that,
especially in a combination therapy approach, proteases represent attractive therapeutic targets for
muco-obstructive lung diseases.

Keywords: chronic lung disease; proteases; antiproteases; mucus; muco-obstructive lung disease;
mucociliary clearance; mucosal immunity; inflammation

1. Introduction

Proteases are enzymes that catalyse the hydrolysis of peptide bonds within proteins,
facilitating their cleavage; this hydrolysis can either activate, inactivate, or modulate
the activity of the target protein. The identities of the amino acid residues that form
the catalytic site have been used to group human proteases into serine, cysteine, matrix
metallo-, aspartyl, and threonine protease classes. Within the lung, serine, cysteine and
metalloproteases have received the most attention to date [1,2]. In healthy cells and tissues,
both intracellular and extracellular protease activity is well managed by regulation at the
transcriptional and translational levels, as well as by inhibitory pro-domains, modulatory
factors (such as pH), and antiproteases at the protein level. However, higher-than-normal
protease levels and excessive protease activity are recognised as hallmarks in chronic lung
diseases (CLDs) and we continue to gain a greater appreciation of how the protease burden
contributes to pathology [3–5]. This review will focus on the contributions of proteases
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at the airway mucosal surface, including how they influence important aspects of airway
function including mucus characteristics, mucociliary clearance (MCC) and immune cell
recruitment and function.

Lung health is a product of many environmental and host factors, including exposure
to toxins, particulates or pathogens, the mounting of appropriate immune responses to
such stimuli, efficient ventilation mechanics and effective gas exchange. The mucosal
surfaces of the airways are important interfaces for environmental and host factors, and
alterations at this interface are a common feature in patients with CLD. The mucosal surface
of the airway is composed of epithelial cells, many of which are ciliated, and is coated with
a thin apical layer of mucus, resident and recruited immune cells, and the inhaled contents
of the airway lumen. In many CLDs, the most obvious clinical symptoms are related to
airway mucus, its excessive production, and an inability to clear it. MCC is a vital feature
of the innate immune system in the airways [6,7]. A number of processes are essential to
maintain effective MCC including regulation of ion channel activity, ciliary beat frequency
(CBF), mucin expression and secretion and mucus viscosity [8]. Mucus is a hydrogel
composed of water, salts, large mucin polymers, non-mucin proteins, lipids, and cellular
debris [9,10]. Under normal conditions, water makes up 97–98% of mucus, producing a
loose and mobile gel that ably protects the airway surface from inhaled pathogens and
toxins, which are removed from the airways by ciliary beat and cough. However, in many
CLDs, and especially the so-called ‘muco-obstructive’ lung diseases (chronic obstructive
pulmonary disease (COPD), cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and non-
CF bronchiectasis), mucus composition is radically altered, producing a hyper-concentrated
mucus layer [10–13]. The osmotic pressure of this hyper-concentrated mucus layer can
exceed that of the subjacent periciliary layer, causing compression and flattening of the
cilia, resulting in impaired ciliary beating and reduced mucus clearance. This leads to
mucostasis and the build-up of mucus plaques and plugs in the airway lumen, producing
muco-obstructive lung disease. The inciting causes of these original changes in the airways,
mucus composition and MCC, vary between the different muco-obstructive lung diseases
(environmental factors, recurrent infection, genetic mutations to ion channels etc.), but they
share pathological mechanisms, many of which are mediated or modulated by proteases.

2. Proteases and Mucus
2.1. Proteases and Ion Transport

Ion channel activity is critical to maintain the airway surface liquid (ASL) at an
appropriate height for effective MCC [14]. This is primarily achieved through the regulation
of Cl− secretion and Na+ absorption via the chloride channel, cystic fibrosis transmembrane
conductance regulator (CFTR) and the sodium channel, epithelial sodium channel (ENaC),
respectively [15]. Defects in airway ion transport result in the development of muco-
obstructive lung diseases, most notably with the loss of CFTR function in CF [16,17]. The
role of proteases in regulating airway ion transport has largely focused on the activation
of ENaC. ENaC undergoes maturation in the Golgi through the removal of an inhibitory
peptide in its α-subunit by furin-type convertases [18]. These processed channels are
classed as having intermediate open probability. However, release of a second inhibitory
peptide from the γ-subunit at the plasma membrane can result in ENaC channels with a
high open probability. This secondary cleavage is under the regulation of extracellular
proteases. A number of proteases have been shown to cleave γ-ENaC, increasing the open
probability of ENaC; these include serine proteases such as channel activating protease
(CAP)-1, neutrophil elastase (NE), trypsin, chymotrypsin, prostasin and transmembrane
protease serine 4 (TMPRSS4), as well as the cysteine proteases cathepsin B (CTSB) and
cathepsin S (CTSS) [19–24]. Indeed, inhibition of trypsin-like serine proteases using the
synthetic inhibitor ONO-3403 resulted in marked improvements in pulmonary dysfunction
and emphysema in a murine model of CLD, indicating the importance of this ENaC-
regulatory process [25]. Bacterial proteases including alkaline protease released from
Pseudomonas aeruginosa also cleave and activate ENaC [26]. This activation of ENaC by
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both human and bacterial proteases is highly relevant in CLD, particularly where bacterial
colonisation is prevalent. Increased ENaC activity is associated with severity in COPD and
was shown to cause muco-obstructive lung disease in mice [27–29]. Conversely, decreased
ENaC activity in patients with pseudohypoaldosteronism improved mucus clearance
rates [30].

Protease-dependent regulation of CFTR has also been observed. Unlike ENaC, CFTR is
not activated by proteolytic cleavage at the plasma membrane. However, the level of CFTR
present at the cell surface is under the regulation of the cysteine protease calpain, which
cleaves mature CFTR at the plasma membrane, allowing it to be internalised in vesicles
for degradation [31]. Increased calpain activity is observed in CF, resulting in instability
and reduced cell surface retention of CFTR that reaches the plasma membrane [32–34].
NE released from activated neutrophils, which are abundant in the chronically inflamed
lung, also induces proteolysis and internalisation of CFTR on airway epithelial cells via
the induction of this calpain-dependent degradation pathway [35]. Protease-dependent
CFTR dysfunction may be important in chronic lung conditions beyond CF [36]. Indeed,
CFTR function is associated with severity of emphysema in COPD [37]. There is also
increasing evidence that loss of CFTR function resulting from exposure to cigarette smoke
may promote smoking-associated lung disease [38,39]. These regulatory mechanisms
are highly valuable in allowing dynamic changes in salt and water reabsorption and
secretion in response to changing environments. However, in muco-obstructive lung
disease, with a loss in protease/antiprotease balance, increased protease activity could lead
to excessive Na+ absorption and/or loss of Cl− transport, with associated dehydration of
the airways. Acidification of the ASL as a result of CFTR dysfunction may also play a part,
stimulating the activity of cysteine cathepsins and further upregulating ENaC activity [40].
These studies highlight important roles for proteases in maintaining airway ion balance.
Additionally, they suggest that targeting proteases may aid in regulating and maintaining
effective ion transport and ASL height in muco-obstructive lung disease. The majority of
research into protease regulation of airway ion channel activity has used cell culture models
or Xenopus laevis oocytes. As such, there is currently little evidence for the direct therapeutic
benefit of using protease inhibitors to alter ion channel activity in muco-obstructive lung
disease, and this should be an area for future study.

2.2. Proteases and Ciliary Function

Cilia lining the epithelium of the airways play an important role in driving MCC;
beating in a synchronised fashion, they facilitate removal of pathogens and debris trapped
in the mucus layer. In the large airways, ciliated cells typically make up ~80% of the
epithelium [41]. In muco-obstructive lung disease, ciliary beating is hindered by airway
dehydration and increased mucus viscosity. Furthermore, as a result of goblet cell hy-
perplasia, the percentage of ciliated cells in the airway epithelium can drop as low as
20% [42]. The importance of proper ciliary function is evident in PCD, where abnormal
ciliary beating leads to mucus plugging and chronic infection [43]. Protease activity con-
tributes both directly and indirectly to the maintenance of ciliary stability and function.
Optimal CBF is required for MCC and is regulated by a number of factors including cyclic
adenosine monophosphate (cAMP)-dependent phosphorylation, intracellular Ca2+ levels
and pH [44–46]. Ciliary beating is powered by molecular motors known as dyneins, which
induce a series of contractions along the nine doublet microtubules making up the extracel-
lular cilia axoneme and in doing so, produce the ciliary beat [47]. As such, dynein is an
essential component of motile cilia. Cleavage of dynein by the serine proteases trypsin
and subtilisin results in a loss of ciliary motility [48]. In addition to these human proteases,
bacterial proteases are also capable of disrupting airway cilia by the same mechanism [48].
NE has also been shown to reduce CBF in vitro in human nasal bronchial epithelial cells.
However, this effect was only observed in cells that were treated with high concentrations
of NE [49]. Reductions in CBF in this case were likely a result of damage to the ciliated
cells rather than a mechanistic alteration to ciliary beat, as histological examination re-
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vealed epithelial disruption while the number and ultrastructure of the cilia appeared
normal [49]. This is still a significant finding because along with goblet cell metaplasia,
this protease-dependent cell damage may contribute to the significant reduction in ciliated
cells in the diseased airways. In contrast, while direct protease activity may lead to ciliated
cell disruption, activation of protease-activated receptor (PAR)-2 by proteases secreted
from airway neutrophils increases ciliary beating by 30–50% through the induction of Ca2+

signalling [50]. This could represent a clearance mechanism initiated during inflammation
to clear inflammatory stimuli from the airways.

In addition to altering cilia motility, proteases can also affect cilia stability. Increased
intracellular calpain activity is associated with diminished formation of cilia. Cilia require
anchoring to the cell cytoskeleton by a basal body from which the axoneme is assembled.
Calpain targets proteins in the basal body, resulting in a loss of anchoring and failed
cilia formation [51]. The specific substrate(s) of calpain in the basal body structure have
not been fully elucidated, though ezrin, a protein involved in plasma membrane/actin
cytoskeleton interactions, is localised to the basal body and, as a known substrate of calpain,
is a likely candidate [52]. These data present a varying effect of proteases on ciliary function.
Increased protease activity in the chronically inflamed lung leads to reduced ciliary stability
and motility and disruption of ciliated epithelial cells. Conversely, PAR-2 signalling may
increase CBF in those ciliated cells that remain intact.

2.3. Proteases and Mucus Properties

Sitting atop the periciliary layer is a layer of mucus that traps debris and pathogens
as it gradually moves from the distal to proximal airways along the mucociliary escalator.
This mucus layer consists primarily of water, but also contains large polymeric mucin
glycoproteins that determine the viscoelastic properties of the mucus layer [9]. These
mucins are separated into secreted and tethered mucins depending on their properties.
In the airways, the predominant secreted gel-forming mucins are mucin (MUC)-5AC
and MUC5B [53]. Maintaining a mucus layer with the right properties is important for
effective MCC and alterations in the composition of this mucus layer are associated with
the development of chronic airway diseases [54–56]. Regulation is achieved through
the maintenance of a number of factors including mucin expression and secretion, and
mucus viscosity, which is largely determined by mucus hydration and crosslinking of
mucins [10,57].

2.3.1. Mucin Expression

The role of proteases in the regulation of mucin gene expression has been examined in
several studies, largely focusing on the regulation of MUC5AC expression, with little assess-
ment of the regulation of MUC5B. This is likely a result of the current dogma that MUC5AC
upregulation is the driving force behind mucus phenotypes in CLDs, while MUC5B is
required for maintaining normal MCC [58]. The serine protease NE induces MUC5AC
messenger ribonucleic acid (mRNA) and protein in airway epithelial cells (AECs) through
increased mRNA stability or via a retinoic acid receptor-dependent mechanism [59,60].
Furthermore, induction of oxidative stress by NE has been shown to increase MUC5AC
expression [61,62]. Changes in MUC5AC expression were not observed upon exposure
of AECs to cysteine or metalloproteases in this study, suggesting these mechanisms may
be specific to serine proteases [60]. However, in a separate study, a disintegrin and met-
alloprotease 17 (ADAM-17) and matrix metalloprotease 9 (MMP-9) induced MUC5AC
expression through the activation of epidermal growth factor receptor (EGFR) [63]. An-
other serine protease, human airway trypsin-like protease (HAT) indirectly induced mucin
gene expression in AECs through a similar mechanism [64]. Treatment of AECs with HAT
induced expression and secretion of the EGFR ligand amphiregulin, leading to EGFR path-
way activation and increased MUC5AC expression [64]. Interestingly, protease-mediated
changed in CFTR and ENaC activity may also impact mucin production. For example,
changes in these ion channels have been shown to lower intracellular Zn2+ concentrations
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by inducing alternative splicing of the zinc importer, ZIP2, which in turn drives MUC5AC
hypersecretion [65].

In addition to human proteases, fungal proteases also regulate mucin expression.
Notably, proteases released by Aspergillus fumigatus, a fungus that is highly prevalent in
the early CF lung, induce MUC5AC expression [66,67]. A more recent study identified a
Ras/Raf1/extracellular signal-regulated kinase (ERK) signalling pathway through which
mucin expression was induced by fungal proteases [68]. Upregulation of MUC5AC by NE
and other proteases in CLD will alter the MUC5AC/MUC5B ratio in favour of MUC5AC.
This is important, as a higher MUC5AC/MUC5B ratio has been observed in pathogenic
conditions including asthma [69]. The reason for the more pathogenic nature of MUC5AC
is not fully understood. However, the tendency of MUC5AC to form sheets, and increased
tethering to the airway epithelium, may play a part in impairing MCC to promote dis-
ease [70,71]. Impairing MCC would also be of benefit to fungal species trying to colonise
the airway, giving an evolutionary advantage to those that induce MUC5AC expression.
Future studies providing a clearer understanding of how proteases regulate the expression
of MUC5B will be important not only in muco-obstructive lung disease, due to its role
in MCC [58], but also the wider field of CLD including in idiopathic pulmonary fibrosis
where a MUC5B promoter polymorphism and impaired MCC are associated with disease
development [72,73].

2.3.2. Mucin Secretion

Following translation, mucins are packaged in a dehydrated form in secretory granules.
Upon exocytosis the mucins are hydrated, absorbing more than 100 times their volume in
water and, in the process, expand and acquire the correct viscoelastic properties to allow
effective MCC [74]. Secretion of mucins is an incredibly rapid process occurring within
a few hundred milliseconds [75]. Additionally, this secretory process is highly inducible,
increasing over 1000-fold in response to certain stimuli [76,77]. Mucus hypersecretion
is a major component of muco-obstructive lung diseases associated with declining lung
function [78,79]. Metalloproteases including ADAM-10, meprin-α, and MMP-9, as well
as the neutrophil serine proteases NE, cathepsin G and proteinase 3, are potent mucus
secretagogues, inducing goblet cell degranulation and secretion of mucins from airway
submucosal glands [80–83]. The specific mechanisms through which proteases induce
mucin secretion are not fully understood. A number of key pathways have been highlighted
in the literature. A study by Takeyama et al. demonstrated that cell-bound NE, but not
free NE, could induce goblet cell degranulation, suggesting that a secondary signal may
be required from the intercellular adhesion molecule (ICAM)-1 on the neutrophil cell
surface to induce degranulation [84]. The intracellular signalling pathways that may be
involved in this process were not elucidated in this study. More recently, NE was shown
to induce mucin secretion via a protein kinase C (PKC)-dependent mechanism involving
phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS), a PKC target
and key regulator of mucin secretion [85]. Additionally, miR-146a negatively regulates NE-
induced MUC5AC secretion from AECs through the inactivation of c-Jun N-terminal kinase
(JNK) and nuclear factor kappa B (NF-κB) signaling [86]. Much like mucin expression, it
is not only human proteases that regulate mucin secretion. Bacterial proteases including
Pseudomonas elastase B, alkaline protease, and protease IV have all been shown to induce
mucin secretion [87].

2.3.3. Mucus Viscoelastic Properties

Once secreted, gel-forming mucins MUC5AC and MUC5B form part of the mucus gel
layer. The concentration of mucins in this layer contributes to its viscoelastic properties.
Healthy mucus contains approximately 3% solids, having the consistency of egg whites [9].
However, in chronic lung disease this can increase to up to 15% solids as a result of airway
dehydration coupled with increased mucin expression and hypersecretion [9]. However, it
is not only the solid content of mucus that determines its viscoelastic properties; a number
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of other factors influence mucus viscosity including pH, extracellular deoxyribonucleic
acid (DNA) content and the presence of mucin crosslinking, which occurs via the formation
of disulphide bonds between mucins during oxidative stress [40,57,88]. Besides regulating
mucin expression and secretion, proteases also regulate mucus viscoelastic properties
by directly acting on secreted mucin proteins. In vitro studies have demonstrated that
serine proteases are capable of degrading mucins [89]. While this would seem to suggest
that protease activity may decrease mucus viscosity, this has not been directly measured.
Importantly MUC5B is required for MCC and therefore its degradation could in fact
hinder airway clearance [58]. Furthermore, proteases regulate the release of neutrophil
extracellular traps (NETs) [90]. Induction of NET formation and subsequent increases
in extracellular DNA may contribute to increased mucus viscosity. NETs also provide
a protective lattice around proteases preventing access and inhibition by their natural
inhibitors [91,92]. Bacterial species in the airway use mucolytic proteases to promote
colonisation by inhibiting entrapment in the mucus layer and to gain access to the airway
epithelium. P. aeruginosa-derived elastase B (pseudolysin) degrades both MUC5AC and
MUC5B [89]. Mucins in the airways are highly sulphated, a mechanism to protect against
degradation from bacterial proteases. However, P. aeruginosa has evolved the ability to
secrete sulfatases, allowing it to bypass this protective barrier [93]. Fungal species including
A. fumigatus break down mucins, not only to promote colonisation, but also to utilise it
as a nutrient source [94]. A summary of the effects of proteases on mucus and MCC in
muco-obstructive lung disease can be found in Figure 1.
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Figure 1. The effect of proteases on mucus and mucociliary clearance in the chronically inflamed
airway. Proteases contribute to CLD pathogenesis through their impact on every step of the MCC
mechanism. Elevated protease activity leads to (A) activation of ENaC and (B) loss of CFTR at
the epithelial surface contributing to airway surface dehydration. (C) Protease-dependent damage
to ciliated epithelial cells and cleavage of ciliary proteins leads to ineffective mucus clearance.
This clearance defect is compounded by (D) protease-mediated increases in mucin expression and
secretion from goblet cells and submucosal glands resulting in a highly viscous mucus layer that can
no longer be cleared effectively. (E) Proteases can degrade mucins and (F) induce release of NETs,
which may further alter mucus viscoelastic properties. Together, protease-dependent mucin/mucus
hypersecretion and mucus dehydration produce highly viscous mucus, setting the stage for mucus
plugging in the airways of patients with muco-obstructive lung disease.
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3. Proteases and Mucosal Immunity
3.1. Mucus and Mucosal Immunity

The protease-mediated changes in mucus and MCC that occur in CLD do not occur in
a vacuum. Indeed, pathogenic changes in mucin expression, secretion, mucus composition
and the mucociliary apparatus itself have profound implications for mucosal immunity
and inflammation. This is due to increased pathogenic colonisation of the airways, but
also because of ‘sterile’ inflammation, caused by hypoxic epithelial cell necrosis within
and around mucus plugs, which may contribute to neutrophilic airway inflammation
via the release of IL-1α from necrotic cells [95]. The proinflammatory nature of mucus
obstruction in the lungs in the absence of bacterial infection has been revealed through
studies in pathogen-free ferrets with CF and mice that overexpress the β-subunit of ENaC
(βENaC-Tg) with CF-like disease, as well as in children with CF with no detectable bac-
terial infection [29,96–99]. In addition, it was shown that excess airway mucus triggers
an MMP-12 producing, activated macrophage phenotype in the βENaC-Tg model of
muco-obstructive lung disease [100]. Thus, mucus plugging per se can trigger airway
inflammation and it is well established that muco-obstructive lung conditions feature
expanded and phenotypically different cellular populations at the mucosal surface. In
this section we will introduce the key contributors to airways mucosal immunity and how
proteases affect their recruitment and function in muco-obstructive lung diseases.

Epithelial cells line the airways and present the basic cellular defensive barrier re-
sponsible for controlling the movement of host and external factors into and out of the
airway lumen. They also sense pathogens and toxins through an array of receptors,
and secrete, among others, mucus (as discussed above), antimicrobial peptides (AMPs),
and inflammatory mediators [101]. The signals originating from airway epithelial cells,
when alive or necrotic, result in the accumulation of immune cells in the airways. Of
the immune cells recruited to the muco-obstructed lung, neutrophils and macrophages
predominate. Neutrophils are primed and recruited from the vasculature in response
to cytokines, chemokines, lipid mediators, damage- and pathogen-associated molecular
patterns, growth factors, and activated endothelial cells [102]. A large pool of neutrophils
is present in the lung vasculature, facilitating exceedingly rapid transition into the airways.
Recruited neutrophils phagocytose pathogens and release a barrage of cytotoxic products
including proteases and reactive oxygen species, which may be complexed in NETs. Neu-
trophilia is common to most CLDs but studies examining the functionality of neutrophils
from patients with CLDs have demonstrated that, despite being present in high numbers,
neutrophil function is impaired or defective [103–105].

Lung-resident macrophages can be classified as alveolar macrophages or interstitial
macrophages and are phenotypically diverse and highly plastic. They perform a wide vari-
ety of functions including the effusive production of a wide range of signalling molecules,
efferocytosis, phagocytosis and antigen presentation [106]. The signalling molecules they
release also stimulate the release of bone marrow monocytes, which migrate, differen-
tiate, and supplement the resident macrophage population [107]. As with neutrophils,
macrophages from patients with CLDs display impaired function, preventing the efficient
clearance of pathogens and recruited neutrophils [108,109]. Most protease research in
the lung to date has centred on these particular cellular players and they are thought to
contribute most significantly to the protease burden in the inflamed lung. However, other
myeloid cells, including dendritic cells and eosinophils, and a collection of lymphoid cells,
including innate lymphoid cells (ILCs) and so-called unconventional T cells are also present
to varying degrees in CLD, and may contribute to protease-mediated disease develop-
ment, though their roles remain less well defined [110–113]. Indeed, understanding the
protease repertoire of these more uncommon cells, and the impact of proteases on these
cells, represents an important area for future work.
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3.2. Proteases as Regulators of Host Defence

One of the principal roles of these cellular players in the airway is to identify, slow,
trap and destroy potentially dangerous stimuli. It was long assumed that upon deployment
into the extracellular environment, proteases, and especially the neutrophil serine proteases
(NSPs), acted as important effectors of microbial killing. However, it appears that this is
not necessarily the case [114,115] and that the primary antimicrobial abilities of the NSPs
are against phagocytosed pathogens within the phagocytic vacuole [116], where NSP con-
centrations are much higher than in the extracellular environment during degranulation.
Indeed, at high concentrations, NSPs have demonstrated potent antimicrobial activity
against many respiratory pathogens including Streptococcus pneumoniae, Klebsiella pneumo-
niae and P. aeruginosa [117–119]. In macrophages, the mantle for intracellular pathogen
killing by non-oxidative means is also taken up by the lysosomal cathepsins [120,121].
Furthermore, the processing and trafficking of certain Toll-like receptors (TLRs), vital
receptors for the recognition of microbial membrane products and nucleic acids, appears to
be dependent on intracellular cathepsins and asparagine endopeptidase, also known as
legumain [122,123]. In macrophages and dendritic cells, cathepsins also assist the develop-
ment of adaptive immunity by generating antigenic peptides from lysosomally-degraded
pathogens for presentation to adaptive immune cells [124].

The airways in patients with CLDs are rich in proinflammatory signals, as the immune
system attempts to manage pathogenic insults. As part of the multi-layered control of
inflammatory signalling that the immune system employs, numerous proteases are known
to participate in the processing of cytokine and chemokines, modulating their function. In-
deed, it has been proposed that NSPs secreted following microbe phagocytosis are actually
more disposed towards escalating inflammatory responses by this method than extracel-
lular microbicidal activity [115]. This is thought to be mediated through the cleavage of
interleukin-1 (IL-1) family cytokines, generating an array of interleukins with modified
chemotactic abilities. Serine, cysteine and MMPs, all of which are present in the chronically
inflamed airway, share this ability and modify, among others, IL-8, CXCL5, CCL15 and
chemerin [125–129]. Growth factors and cytokines can also be liberated by proteases from
the extracellular matrix (ECM) of the lung and cellular membranes through ‘sheddase’
activity. This is a well-known ability of MMPs and ADAM proteases, and contributes to the
release of soluble tumour necrosis factor (TNF), TNFR and IL-6R [130], as well as chemoat-
tractant matrikine fragments like proline-glycine-proline, which can signal via CXCR1
and CXCR2 [131,132]. Extracellular proteases contribute substantially to ECM cleavage
and airway remodelling, in both normal and pathological settings, though a thorough
investigation of these aspects of protease function is beyond the scope of this review. For
further reading, the reader is directed towards the following reviews [131,133,134]. Overall,
proteases are important effectors of pathogen removal and act as intermediaries in the
escalation of appropriate immune responses to pathogenic stimuli in the airways.

Despite these abilities to facilitate and positively escalate the host response during
inflammation, dysregulated protease activity has also been shown to compromise host
defence. Numerous studies have demonstrated the ability of proteases to cleave AMPs like
lactoferrin, LL-37 and defensins, while also liberating iron from ferritin, providing nutrients
for bacterial outgrowth [135–137]. Surfactant proteins are also readily degraded by host
and bacterial proteases, compromising their pathogen-opsonising and direct antimicrobial
functions [138–141].

Respiratory viruses are thought to play an important part in the exacerbations that
punctuate the progressive decline of lung function in patients with CLD [142] and certain
respiratory viruses use host proteases to their advantage during infection. For example,
the influenza virus haemagglutinin precursor is cleaved by membrane-bound respiratory
trypsin-like serine proteases to its fusion-active form, allowing entry into, and spread
from, airway epithelial cells [143]. Likewise, human coronaviruses, including the severe
acute respiratory syndrome coronaviruses, appear to use host-derived serine and/or
cysteine proteases to prime the spike glycoprotein to facilitate viral invasion [144]. Thus,
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proteases appear to both assist the pathogenic side of the airways’ arms race and impede
the armouring of the host side.

3.3. Self-Perpetuating Protease Activity

Though proteases are generally well-regulated during health, a pro-proteolytic en-
vironment at the mucosal surface can be propagated by proteases, using at least two
mechanisms: degradation of endogenous protease inhibitors and activation of other pro-
teases. The major antiproteases for each class of protease are present at the airway surface
and exhibit protease inhibitory and host defence abilities. For example, secretory leukocyte
protease inhibitor (SLPI), elafin and α1-antitrypsin (A1-AT) inhibit NSPs but also variously
disrupt bacterial membranes by high cationicity, bind and neutralise bacteria, and demon-
strate potent anti-inflammatory effects independent of protease inhibition [4,145,146]. Simi-
lar anti-inflammatory effects have been reported for cysteine protease inhibitors (cystatins),
while tissue inhibitors of metalloproteinases (TIMPs) seem to possess some cytokine-like
signalling abilities [147,148]. Elevated levels of degraded antiproteases are present in lung
fluids from patients with CLD, intimating that proteases may participate in their own dereg-
ulation during disease. The cleavage of antiproteases that inhibit serine proteases is the best
studied and in different disease settings has been reported to be caused by NE, extracellular
proteasome, cathepsins B, L and S and MMP-9 [149–155]. NE also degrades TIMP-1 and
cystatin C [155,156]. Thus, in the inflamed lung, it is important to view increased levels of
proteases in the context of a diminished antiprotease shield, accentuating the imbalance. It
is also worth noting that, as has been mentioned, some proteases, including NE, cathepsin
G and MMP-12, are not exclusively present as free soluble forms [100,157,158], and as such,
can be shielded from their inhibitors by remaining membrane-associated or complexed
with extracellular molecules [91,159]. Shielded protease localisations are increasingly being
recognised in CLDs and assessing these inaccessible forms by, for example, fluorescence
resonance energy transfer (FRET)-based assays [160,161], may bring to light a more sub-
stantial protease burden than has been appreciated to date, as well as providing more
effective targeting strategies for pharmacological inhibitors.

Another in-built mechanism to prevent aberrant proteolysis is the synthesis of pro-
teases as inactive precursors that must be cleaved to become active. However, as with
antiproteases, inhibitory domains are readily degraded in an already protease-rich environ-
ment, allowing protease activity to stimulate more protease activity. This protease cascade
is illustrated elegantly in the multistep maturation of cathepsin C, the master regulator of
the NSPs, by cysteine cathepsins [162]. Once this is completed, activated cathepsin C is then
able to process NE [163], which goes on to facilitate the maturation of MMP-9 [155,164].
Thus, with this and other protease cascades, there is scope for rapid and uncontrolled
expansion of protease activity in the chronically inflamed lung.

3.4. Protease Signalling and Epithelial Integrity

Many reports have highlighted that proteases contribute to the recruitment of immune
cells to the airway and, as has been mentioned, this may be explained in part by the
activation of cytokines and chemokines. However, proteases also directly affect cellular
inflammatory pathways through PARs expressed on epithelial, endothelial, and immune
cells. PARs are comprised of an N-terminal ligand tethered to a seven transmembrane
domain G protein-coupled receptor. The tethered ligand can be cleaved at discrete sites
by proteases and subsequently binds to the receptor, initiating various signalling path-
ways [165]. Salient roles in pulmonary disease have been demonstrated for PAR1 and PAR2,
though the relevance of PAR3 and PAR4 in this context has yet to be established. PAR1
can be activated by a plethora of common CLD proteases including the NSPs and several
MMPs, while PAR2 is also activated by cathepsin S; both PAR1 and PAR2 are activated by
proteases of the coagulation cascade, such as thrombin, and the full gamut of proteases
responsible for PAR activation is not yet clear. An additional layer of complexity is added to
PAR signalling by the fact that some proteases ‘alternatively activate’ PARs, which can pro-
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duce different downstream signals, or render the receptor unresponsive to other proteases.
To date, pulmonary PAR research has focussed on acute lung injury and fibrosis [166–168].
In these contexts, PAR activation induces the release of potent inflammatory cytokines
and chemokines such as CCL2, IL-6 and TNF-α, and can also stimulate the upregulation
of inflammatory cell adhesion molecules like P-selectin and ICAM-1 [169,170]. However,
there is growing evidence of PAR-related chronic lung damage. In vivo blockade of PAR2
reduces pulmonary inflammation in the βENaC-Tg mouse model, an effect that may be
the result of diminished CTSS-PAR2 signalling [171]. MMP-12 is able to upregulate early
growth response factor 1 (Egr1) and placental growth factor (PGF) through activation of
PAR1 in bronchial epithelial cells and in vivo, triggering epithelial apoptosis [172]. NE has
also been shown to mediate epithelial apoptosis in a similar manner [173]. PAR signalling
is dynamic and is shaped by the proteases present and possibly the concentrations at which
they are present [174]. Therefore, the PAR-related pathways that are activated in the lungs
are likely to vary between CLDs and stages of disease, depending on proteolytic burden.

An additional way in which proteases may alter mucosal immunity is by weakening
the confluent epithelial cell structure of the airways. Epithelial barrier function relies on
tight junctions composed of claudins and occludins, which are selectively permeable to
allow the controlled movement of water and solutes to the exclusion of high molecular
weight proteins and oedema fluid [175]. Some proteases, and especially the meprin metal-
loproteases, cleave tight junction proteins, potentially aiding the transmigration of immune
cells across the epithelial barrier [176,177]. However, it is not clear whether proteases
contribute significantly to the loss of tight junction integrity in the context of CLD or if
changes in barrier function are mostly a response to inflammatory signals and fluid balance
across the epithelium [178].

4. Targeting Proteases in Muco-Obstructive Lung Disease

The use of recombinant or small molecule protease inhibitors as therapeutics in CLD
is not widely practiced. In spite of protease inhibitors demonstrating efficacy in pre-
clinical in vivo models of muco-obstructive lung disease, the translation of these in vivo
studies into the clinic has been disappointing [100,171,179–181]. With the exception of
A1-AT augmentation therapy, no protease inhibitors have been approved for clinical use in
treating CLD [182–184]. Protease inhibitors that have been tested in clinical trials against
muco-obstructive lung diseases are included in Table 1. There could be a number of
reasons for the observed poor clinical efficacy. As previously mentioned, the presence of
membrane-bound proteases in the chronically inflamed airways may limit antiprotease
efficacy. A number of studies have shown that cell surface or exosome-bound proteases
are resistant to inhibition [159,185,186]. Additionally, functional redundancy between
proteases in a subfamily means that inhibiting a single protease target may not always be
appropriate [187]. However, inhibition of whole protease subfamilies results in unwanted
side effects, as has been observed with broad spectrum-MMP inhibitors [188]. The use of
inhibitors that specifically target extracellular protease activity could mitigate undesirable
effects associated with intracellular protease inhibition.
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Table 1. Overview of clinical trials undertaken using protease inhibitors in patients with muco-obstructive lung diseases
including CF, COPD, and bronchiectasis.

Target Protease Inhibitor Disease Stage Outcome

NE

A1-AT

CF II Reduced inflammation, no effect on lung function [189,190]

Bronchiectasis I Results unpublished [191]

COPD/A1-AT
deficiency II/III Reduced serine protease levels, reduces elastin degradation in the

lung, reduced inflammation [192–194]

AZD9668

CF II Reduced inflammation, no effect on lung function [195]

COPD II No changes in lung function or inflammation [196,197]

Bronchiectasis II Improved lung function and reduced sputum inflammatory
biomarkers [198]

AZD6553 COPD I Terminated due to emerging PK profile that could not be aligned
to the known pharmaceutical properties of the IMP [199]

Alvelestat COPD II Currently recruiting [200]

POL6014 CF I No serious adverse effects noted [201,202]

CHF6333 CF + non-CF
bronchiectasis I Results unpublished [203]

BI 1323495 Bronchiectasis I Currently recruiting [204]

BAY85-8501 Bronchiectasis II No changes in lung function or inflammation [205,206]

MMP-9/-12 AZD1236 COPD II No clinical efficacy observed [207]

Cathepsin C Brensocatib Bronchiectasis II Improved clinical outcomes with reduced NE activity, reduced
time to first exacerbation [208]

Determining the role of specific proteases in particular pathways of interest will be key,
though the complex interplay between proteases in the chronically inflamed airways makes
this a difficult task. Interestingly, even single protease inhibition strategies have effects
on the wider protease web. For instance, NE has been shown to regulate the expression
of cysteine proteases (CTSB) and MMPs (MMP-2) in a murine Pseudomonas infection
model and in human macrophages [209]. In subsequent studies, NE inhibition by A1-AT
rescued this effect, diminishing cathepsin and MMP-mediated cleavage of AMPs [210].
Understanding such protease hierarchies (including those mentioned in Section 3.3) has
important implications for choosing specific proteases to target: can the bulk of the protease
burden be efficiently reduced by targeting a single, or very few proteases? Can we identify
beforehand which proteases will be impacted by an inhibitor therapy, and hence, predict
potential side effects?

Additionally, careful consideration of trial design will also be important, including
study length and outcomes. Short-term changes in inflammation and lung function may
be less relevant than the long-term impacts of protease inhibition. The ability of protease
inhibitors to improve MCC in clinical trials has not yet been examined. With preclinical
data demonstrating a role for proteases in multiple stages of the MCC mechanism, they
represent an interesting alternative to currently available mucoactive drugs. Mucolytic
drugs, such as dornase alfa and hypertonic saline have demonstrated efficacy in CF,
however, studies in other muco-obstructive lung conditions including COPD and non-CF
bronchiectasis have shown mixed results [211–215]. Heterogeneity in these conditions
may be an issue; stratification or recruitment of specific disease sub-phenotypes that
suffer from chronic cough and sputum production may help to uncover efficacy in these
conditions. Mucoactive drugs may provide a benefit beyond their own direct efficacy. An
ever-present challenge in muco-obstructive lung disease is delivery of a drug to a target
that is surrounded by a complex mucus barrier [216]. As such, mucolytics given in tandem
with other treatments could improve delivery of the drug to its target, potentially bolstering
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effects. In this context, clinical studies undertaking combination therapies with protease
inhibitors and mucoactive drugs may represent an interesting future direction.

5. Conclusions

The pathogenesis of muco-obstructive lung diseases is complex and is heavily influ-
enced by mucus dynamics, host defence mechanisms and inflammatory responses in the
airways. In this review we have discussed the involvement of proteases in controlling these
factors and highlighted the importance and therapeutic potential of limiting excessive
proteolytic activity in the airways. Considering the limited therapeutic options available
for patients with progressive and, as yet irreversible chronic lung diseases like COPD, CF
and non-CF bronchiectasis, therapies that target proteases or protease-mediated pathways
may have a valuable future as adjuncts to current approaches.
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Abbreviations

A1-AT α1-antitrypsin
ADAM A disintegrin and a metalloprotease
AEC Airway epithelial cell
AMP Antimicrobial peptide
ASL Airway surface liquid
βENaC-Tg Transgenic mouse overexpressing the β-subunit of epithelial sodium channel
cAMP Cyclic adenosine monophosphate
CAP Channel-activating protease
CBF Ciliary beat frequency
CF Cystic fibrosis
CFTR Cystic fibrosis transmembrane conductance regulator
CLD Chronic lung disease
COPD Chronic obstructive pulmonary disease
CTSB Cathepsin B
CTSS Cathepsin S
DNA Deoxyribonucleic acid
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
Egr Early growth response
ENaC Epithelial sodium channel
ERK Extracellular receptor kinase
FRET Fluorescence resonance energy transfer
HAT Human airway trypsin-like protease
ICAM Intercellular adhesion molecule
IMP Investigational medical product
JNK c-Jun N-terminal kinase
MARCKS Myristoylated alanine-rich C kinase substrate
MCC Mucociliary clearance
MMP Matrix metalloprotease
mRNA Messenger ribonucleic acid
NE Neutrophil elastase
NET Neutrophil extracellular trap
NF-κB Nuclear factor κB
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NSP Neutrophil serine protease
PAR Protease-activated receptor
PCD Primary ciliary dyskinesia
PK Pharmacokinetic
PKC Protein kinase C
PGF Placental growth factor
SLPI Secretory leukocyte protease inhibitor
TIMP Tissue inhibitor of metalloproteinases
TLR Toll-like receptor
TMPRSS Transmembrane protease, serine
TNF Tumour necrosis factor
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