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The cellular cytoskeleton self-organizes by specific monomer–monomer interactions
resulting in the polymerization of filaments. While we have long thought about the role of
polymerization in cytoskeleton formation, we have only begun to consider the role of con-
densation in cytoskeletal organization. In this review, we highlight how the interplay
between polymerization and condensation leads to the formation of the cytoskeleton.

Introduction
The cellular cytoskeleton is a dynamic structure consisting of filaments that constantly exchange
monomers with the cytoplasm by nucleation, polymerization and depolymerization. Despite extensive
studies over the past 100 years, our understanding of the dynamic nature of the cytoskeleton and its
regulation in cells and tissues is far from complete. Recent work has implicated biomolecular conden-
sates in the regulation of the cytoskeleton [1–3]. For instance, the increased concentration of cytoskel-
etal monomers and control over the stoichiometry of regulators can affect the local rates of nucleation
and growth of filaments [1,2,4–6]. Unlike polymers, whose formation is promoted by well-defined
interactions of components, the formation of condensates is promoted by ensembles of configurations
and variability in possible interactions (Box 1). The interaction between condensates and filaments
opens up a multitude of questions. How does condensation facilitate the self-organization of filament-
ous networks at the right time at the right place? How do filament networks control the spatial organ-
ization of condensates? What effects do mechanical forces exerted by filaments and condensates have
on each other? How do polymerization reactions of cytoskeletal filaments regulate the dynamic assem-
bly and disassembly of condensates? In this review, we describe recent experiments and theory that
show how the combined features of structural properties of filaments and conformational flexibility of
condensates, provide new insights into the regulation of the cytoskeleton.

Condensates serve as reaction containers for
nucleation and growth of cytoskeletal filaments
In this section, we describe how concepts inherent to condensation provide potential mechanisms to
modulate the biochemistry of cytoskeletal systems. In vitro, high concentrations of cytoskeletal mono-
mers and dimers alone are sufficient to spontaneously assemble cytoskeletal filaments (Figure 1a).
Because condensates locally increase protein concentration, one possibility is that nucleation and
growth of filaments could be driven by selective recruitment and concentration of monomers in con-
densates [40]. A classic example of condensate-mediated fiber formation is the condensation of tro-
poelastin, which precedes the assembly of elastin as part of the extracellular matrix fibers [41]. The
formation of actin filaments [42] and microtubules [6] can be driven inside the condensates of
actin-associated and microtubule-associated proteins (Figure 1b,c). However, condensates not only
modulate the concentration of monomers, but also change the local environment. For instance, other
solutes, the different stoichiometry of regulators or sorting of factors can have an impact on the poly-
merization dynamics of polymers inside condensates [2,5]. A key feature of condensates is their
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Box 1. Material properties of cytoskeletal filaments
versus condensates

Cytoskeletal filaments Condensates

Molecular components Actin monomers and αβ-tubulin are structured, globular
proteins; intermediate filaments are α-helical rods with
disordered tail domains.

Biomolecular condensates are multicomponent
structures of various proteins and nucleic acids. Many of
the proteins are long, contain disordered domains and
feature multivalent binding, such as the cytoskeletal
regulators WASP, tau or filaggrin [7].

Intermolecular interactions The molecular interactions between the monomeric,
structured proteins are strong (binding constants in the
mM–nM range [8]) and of specific orientation.

The macromolecules comprising a condensate form
multivalent and often transient or weak interactions (e.g.
electrostatic or cation-π) [9,10]. The affinity of a molecule
towards a condensate is, therefore, expressed in terms
of partition coefficients that are in the order of 10–1000
(concentration inside versus outside condensed phase)
rather than by monovalent binding constants.

Assembly The monomeric proteins self-assemble via polarized
growth in one dimension. Nucleation and growth of
globular actin and αβ-tubulin into filaments is an active
process consuming ATP/GTP, while the assembly of
intermediate filaments is passive. In vivo, assembly of
cytoskeletal filaments is controlled by regulators that limit
or facilitate the nucleation of new filaments. Their length
results from the on- and off-binding kinetics and
capping structures that terminate filament growth.

In vitro and in initial descriptions of cellular phenomena
[11], the formation of condensates has been explored
analogous to passive phase separation, which does not
require the consumption of a chemical energy source
such as ATP. However, active processes triggering the
formation and alternative condensation mechanisms,
e.g. on intracellular surfaces receive more and more
attention [12–15].

Higher order structure Cytoskeletal filaments with periodic lattices may be
several micrometers long and are discerned by their
diameter into actin filaments (d = 7 nm), intermediate
filaments (d = 8–12 nm) and microtubules (d = 25 nm).
Despite similar dimensions the filaments show striking
differences in flexibility, which is described by the
persistence length LP. Filamentous actin (LP∼ 10 mm)
[16] and intermediate filaments (LP∼ 1 mm) [17] can be
deformed in the size range of organelles. Microtubules
on the other hand are remarkably stiff (LP∼ 5 mm) and
individual filaments can span throughout the cytoplasm
and cellular protrusions [18]. Higher order structures
such as the mitotic spindle [19] and cytoskeletal
networks emerge through cross-linking and bundling of
filaments, even between different types [20], via
regulators and molecular motors.

Many condensates do not display a dominant structure,
i.e. are amorphous [21,22]. They are rather comprised
of a dynamic rearrangement of macromolecules with
short persistence lengths of ∼0.6–0.9 nm for proteins
with disordered domains [23] and ∼50/70 nm for
double-stranded DNA/RNA [24]. Thus, the structural
unit of a condensate is purely defined by the increased
concentration of a respective molecule above the dilute
surrounding. In vitro, the enrichment of a protein or
nucleic acid is associated with a higher density. In the
complex environment of the cytosol or nucleosol,
however, the local density of total macromolecules does
not necessarily change through the redistribution of
certain molecular species [25]. Nonetheless, exclusion
of particles bigger than a few nanometers from cellular
condensates [26] and gravitational effects of
condensates in the nucleosol of big oocytes [27]
provide in vivo examples of dense structures compared
with the surrounding.

Turnover dynamics Despite the strong interactions between the monomers,
cytoskeletal filaments are dynamic, i.e. they constantly
assemble and disassemble, e.g. in the actin cortex the
half-time of actin turnover is in the order of 10 s [28].

The dynamic interactions between the molecules of the
dense phase define their diffusion within the condensate
as well as the exchange rate with molecules in the
surrounding dilute phase. Depending on the viscosity,
half-times from 2.5 s to >100 s have been reported for
the turnover of molecules in cellular condensates [1,29].
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switch-like formation above a saturation concentration. This allows for biological information processing and
filters noise, e.g. originating from varying expression levels [43], which could help to reliably trigger the poly-
merization of cytoskeletal filaments in space and time (Figure 1d).

Actin dynamics can be modulated by condensates
Recent work suggests that actin dynamics are likely modulated by the interaction of actin and its regulators
with condensates. A good example is the role of neuronal Wiskott–Aldrich syndrome protein (N-WASP), its
adaptor protein Nck, and the transmembrane protein nephrin that selectively bind and thereby control local
arp2/3-mediated actin assembly in kidney cells [45–47]. In their landmark study Li et al. [2] showcased how
such multivalent signaling proteins form phase-separated compartments depending on the phosphorylation
state of nephrin. Above the saturation concentration for condensation, the activity of regulators increases
sharply and actin polymerization is nonlinearly enhanced. Clusters of Nck on membranes in living cells have
been related to localized actin polymerization [48,49]. Following up on this observation, Case et al. [5] revealed
that the stoichiometry of N-WASP/Nck/nephrin, which can be independently controlled inside condensates,
defines the dwell times of regulators and thereby increases the actin assembly kinetics. Other examples of

Box 1. Material properties of cytoskeletal filaments
versus condensates

Cytoskeletal filaments Condensates

Response to force The rheological response of the cytoskeleton depends
on the frequency at which it is probed. On very short
timescales (<ms) the viscous response of individual
filament dynamics and surrounding cytoplasm dominate
[30]. On short timescales (∼s) highly cross-linked
networks, such as the actin cortex, are mainly elastic.
This provides mechanical support for cells as they resist
applied forces. On longer scales in the order of bond
lifetimes of cross-linkers and turnover of the filaments
(∼min) the networks can rearrange and viscous
properties emerge [31]. Thereby they either adopt the
imposed shapes or enforce the network through extra
connections. Furthermore, many biopolymer networks
exhibit the property of strain-stiffening, a stiffness that
increases non-linearly for large strains; this may also
protect the integrity of the polymer network from
assault. The absolute strength of the cytoskeletal
structure of interest highly depends on the adaptor
proteins and degree of cross-linking. While the storage
and loss moduli of cytosolic networks have been
quantified in the 101–104 Pa range [31,32], nuclear actin
appears much softer ∼10−1 Pa [33].

Initially, biomolecular condensates have been described
to behave as liquids with features known from everyday
life such as dripping or fusion of drops [11]. From a
physical point of view, the simplest type of liquid is that
of a Newtonian fluid, in which the force required to
deform the material depends linearly on the deformation
rate (viscous). Protein condensates, however, do not
behave purely viscous but also exhibit elastic properties.
For a completely elastic material, the force required to
deform the material depends on the deformation not on
the rate of deformation. The mechanical response of in
vitro protein droplets has been found to be
predominantly viscous, but dominated by elastic
response at short interaction times (<0.1 s) with loss
moduli and storage moduli in the order of 100–101 Pa,
respectively [34]. Furthermore, the attractive interactions
between the molecules holding the drops together
cause a surface tension. As the system tries to minimize
its energy arising from these forces, it will reduce its
surface area and create spherical condensates. When
an entire condensate, including its surface, is deformed,
surface tension can lead to an apparent elastic
response at long time scales.

Complex material
properties

Additional to the passive and active response to forces
the polymerizing filaments and network contractions
through motor proteins, such as myosin or kinesin,
apply forces themselves. Biomolecules or whole
organelles are transported along the filaments and
deformation of the networks induces cell shape
changes. Taking the complex mechanical behavior
together the cytoskeleton has been described as active
gel with viscoelastic behavior [35].

The material properties of cellular condensates vary
widely and in vitro the properties have been found to
depend on the composition, temperature, salt
concentration and age [9,34]. Hardened condensates
can withstand higher forces, e.g. those applied by
spindle microtubules during mitotic chromosome
segregation [36] and could protect biochemical
components under stress conditions [37]. However, the
liquid-to-solid transition is also often associated with
gelation [38] or aggregation of proteins, which results in
pathological fiber formation as seen, e.g. for FUS [39].
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Figure 1. Nucleation of cytoskeletal filaments can be triggered by condensates.

(a) The critical concentration for spontaneous nucleation of microtubules from purified tubulin is ∼21 mM, determined by increased absorbance at 350 nm. Modified with permission

from [44]. (b) In vitro condensates of tau concentrate tubulin ∼10-fold. When GTP is added, this triggers the nucleation of microtubules, which grow out and deform the tau drops.

Modified with permission from [6] and images kindly provided by Amayra Hernández-Vega. (c) In C. elegans embryos the cytosolic tubulin concentration is ∼47 mM, but the growth of

microtubules is hindered by regulatory proteins. In centrosomes soluble tubulin is concentrated to peak values of 470 mM, which may partly explain the nucleation of spindle

microtubules. Modified with permission from [1]. (d) In a homogeneous cytoplasm, cytoskeletal monomers or dimers (magenta dots) are randomly distributed. Upon condensation of

cytoskeletal regulators (green), the monomers get concentrated in the droplets. The higher local concentration may be sufficient to exceed the critical concentration for nucleation.

Note that the emerging filaments are another molecular species with distinct partitioning coefficients. Condensates could thus act as sink for monomers.
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condensates enhancing actin polymerization include activated T-cell receptors [3] and postsynaptic densities
found in neurons. In vitro reconstituted postsynaptic densities enrich the actin regulatory protein cortactin and
actin monomers, which promotes actin filament assembly and bundle formation [50]. Sequestration of regula-
tors upon condensation can further result in the reduction in actin polymerization, which was observed for
actin nucleation factors in yeast. Under stress conditions, these factors assemble in transient condensates, that
inhibit their interaction with regulatory proteins at the tip-localized polarisome complex [51]. Thereby the
normal assembly of actin cables is halted, which is necessary for polarized yeast growth.
Taken together, ample evidence is accumulating that condensates can regulate the biochemistry of actin poly-

merization by increasing the monomer concentration, defining the stoichiometry of regulators and sequestering
regulators. More generally, the actin cytoskeleton provides a good example of how the weak multivalent interac-
tions that drive condensate formation, collaborate with higher affinity interactions and defined binding con-
stants, to spatio-temporally modulate biochemistry.

Microtubule dynamics can be modulated by condensates
Studies on the regulation of microtubule nucleation provide important evidence for nucleation driven by con-
densate formation. The classical viewpoint suggests that microtubule nucleation is mainly mediated by the
gamma-tubulin ring complex (γ-TuRC) [52] and the polymerase XMAP215 [53]. The nucleators are further
recruited to specific microtubule-organizing centers, e.g. centrosomes at distinct cellular locations. However,
genetic evidence for the roles of these nucleators, especially in mitosis, are unclear. For instance, depletion of
γ-tubulin in Caenorhabditis elegans embryos by RNAi does not prevent the formation of a robust microtubule
aster [54]. Furthermore, the mechanisms by which cells that lack centrosomes can locally nucleate microtubules
remain an open question. One idea would be a gradient of regulating proteins, but this requires constant
energy and could be difficult to maintain in a stirred system [55–57].
Recent evidence suggests that the concentration of tubulin in condensates, could provide a mechanism for

microtubule nucleation. Pioneering work from Jiang et al. [4] found the evolutionarily conserved Xenopus
lamin-B spindle matrix protein BuGZ can form liquid condensates in vitro, which concentrate tubulin. Further
evidence for nucleation of microtubules by concentration in condensates came from studying model conden-
sates formed by the microtubule-associated protein tau. In vitro, tau phase separates under crowding conditions
and concentrates tubulin, which can thereby surpass the nucleation threshold and polymerize microtubule
bundles [6] (Figure 1b). Studies in C. elegans provide strong in vivo support for the role of condensates in
centrosome nucleation (see review [36] for details). The C. elegans centrosome scaffold protein SPD-5 was
shown to phase separate in vitro and recruits clients like microtubule polymerases and stabilizing proteins (e.g.
homologs of XMAP215, TPX2 and Polo Kinase) [1]. Tubulin was concentrated 4-fold in this recombinant peri-
centriolar material, which is sufficient to nucleate microtubule asters that extrude out of the condensates.
Supporting evidence comes from work in vivo showing that soluble tubulin concentrates ∼10 fold with peak
values of 470 mM in C. elegans centrosomes over the surrounding cytosolic concentration (Figure 1c). This is
about an order of magnitude higher than the concentration required for spontaneous nucleation of tubulin in a
test tube, providing strong evidence for concentration-enhanced microtubule nucleation at centrosomes [58]. In
acentrosomal oocytes, the regulatory kinase aurora A (AURA), its substrate TACC3 and the clathrin heavy
chain CHC17 (both binding microtubules) have been identified to form a liquid-like meiotic spindle domain
[59]. However, in contrast with centrosomes, tubulin is not significantly enriched within these condensates.
Nonetheless the concentration of microtubule regulatory factors enhances the microtubule growth rates and
ensures proper spindle assembly.
More recent work has shown that microtubule-dependent nucleation of new filaments (known as branching)

can also be condensate driven. The spindle microtubule regulator TPX2 and tubulin co-condense in vitro,
which promotes branching microtubule polymerization [60]. TPX2 condensates preferentially form on existing
microtubules (as we will discuss in section ‘condensates of regulators can wet cytoskeletal filaments’), which
opens up the exciting idea that regulation of condensate formation might play a key role in spindle assembly.
It is important to point out that it has long been known that acentrosomal spindles have liquid-like meso-

scale properties, as shown with the fusion of two ex vivo assembled spindles [61]. Relaxation of their shape
thereby depends on the dynamic turnover of microtubules aligning along a common axis [36], which can be
theoretically described in the framework of liquid crystals [62].
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Condensates can interact with other cytoskeletal proteins
As it emerges that condensation can serve as general regulator for biochemical reactions it is not surprising to
find further examples of ‘condensate assisted’ cytoskeletal assembly. For instance, the bacterial tubulin homolog
FtsZ with its multivalent interaction partners SlmASBS undergoes phase separation in vitro and FtsZ filaments
emerge from the dynamic condensates upon GTP addition [63].
We speculate that likewise intermediate filaments could be regulated from condensates. Cytoplasmic inter-

mediate filaments are comprised of central alpha-helices and a head region, that form the filaments, and disor-
dered tail domains, that mediate protein–protein interactions. Toxic proline–arginine poly-dipeptides, which
are expanded in amyothrophic lateral sclerosis (ALS) patients, were found to bind the tail regions of vimentin
and condense along the filaments [64].
Mutations in the disordered regions of intermediate filaments have been associated with cellular pathologies

[65] and neuronal filaments have been found abnormally accumulated in the cytoplasm and axons of motor
neurons in neurodegenerative diseases such as Alzheimers [66,67]. Also, overexpression of the neuronal fila-
ment peripherin leads to spheroids in axons [68]. Hence, like other pathological amyloids such as tau and FUS
[69,70], aberrant phase transitions of intermediate filaments might be linked to an increased risk of
aggregation.

Biophysical interactions with cytoskeletal filaments can
influence condensate dynamics
On a larger scale, beyond individual biochemical reactions, the physical interactions of cytoskeletal filaments
and condensates can influence each other’s dynamics, size and shape. Furthermore, the combination of these
cellular entities can give rise to such complex higher-order structures as the mitotic spindle. In the following
paragraph, we describe how condensates and the cytoskeleton could arrange themselves in the spatially limited
cytosol and what effects their mutual interactions can have.

Material properties of condensates define their response to cytoskeletal
forces
While liquid-like condensates are often associated with fast diffusion, allowing unhindered biochemical reac-
tions, some condensates have slow internal dynamics, and are better described as glasses or gels. They have
been suggested to emerge from liquid-like condensates through hardening [90]. It is likely that the regulation
of the material properties of condensates plays an important role in the organization of the cytoskeleton.
Indeed, in vitro condensates of pericentriolar material solidify rapidly and no longer possess internal rearrange-
ments [1], like centrosomes in metaphase-arrested C. elegans embryos [91]. This might hamper microtubule
growth inside the pericentriolar material at later stages, and the solidifying matrix pushes longer filaments
outward. Consistently, a combination of fluorescence microscopy and electron tomography revealed only short
microtubule filaments in the center of mitotic centrosomes [58], while in the periphery longer filaments origin-
ate that protrude out of the pericentriolar material [54,92]. Hardening was also considered important for the
mechanical stability of the centrosomes to anchor microtubules and withstand their pulling forces [93].
Inactivation of the stabilizing proteins during mitotic exit then weakens the centrosome again, enabling its
force-mediated disassembly [73]. We anticipate that many aspects of condensate/cytoskeletal interaction will
depend on the material properties of condensates (Figure 2a).
When liquid condensates of proteins susceptible to aggregation harden, irreversible protein aggregates may

be formed, which could be associated with cellular pathologies. This transition could be induced and acceler-
ated by shear forces (on the order of the forces acting during axonal transport) acting on the condensates [74].
This is because the shear forces provide energy, allowing molecule rearrangements. However, it is early days for
the exploration of liquid-to-solid transitions and further work is needed to distinguish what drives these
changes in material properties.

Condensates are embedded in viscoelastic cytoskeletal networks
Condensates with an increased density over their surrounding can be prevented from gravitational sedimenta-
tion by cytoskeletal networks. Due to the small dimensions of cells, however, gravitational effects only come to
play for the largest entities. In big oocytes, such as the >1 mm Xenopus laevis eggs, the nuclear actin scaffold
was found to keep nucleoli from sinking due to gravity and coalescing [27]. While the actin network shows the
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viscoelastic response to force, beyond timescales where polymerization/depolymerization take place it reacts
predominantly viscous (Box 1). In fact, older oocytes (several weeks) show larger and fewer nucleoli as the
actin network creeps and makes room for their fusion, which seems to limit the overall lifetime of oocytes [33].
Also, at shorter time and length scales cytoskeletal networks can stabilize condensates and keep them from
fusing by caging or fencing individual drops apart from each other (Figure 2b). This was recently shown for
keratohyalin granules embedded in a dense keratin network in keratinocytes [75]. These observations strongly
suggest that the cytoskeleton suppresses the coalescence of condensates by providing a spatial separation.
However, trapped condensates that cannot fuse can still grow through Ostwald ripening. This thermodynam-

ically driven process describes the growth of bigger condensates on the expense of smaller ones via the diffusive
exchange of material [94]. It turns out, that the elastic properties of a surrounding network, such as the

Figure 2. Biophysical interactions of condensates and cytoskeletal filaments.

(a) The material properties of condensates influence their physical interactions with cytoskeletal filaments. While liquid-like condensates can be

easily deformed and dragged by filaments [34,71,72], more solid-like condensates withstand higher forces (~F) [73]. Such forces exerted by the

cytoskeleton could further lead to internal rearrangements and promote the aggregation of proteins [74]. (b) A dense cytoskeletal network can

restrict the movement of embedded condensates and thereby hindering their fusion [27,75]. Furthermore, the growth of condensates can be

controlled via elastic ripening, which is the growth of condensates in a soft environment on the expense of condensates in stiff networks [76–78].

(c) Directed polymerization and contraction of filaments can deform [71], drag [79,80], assemble [81,82] or disrupt interacting condensates [72] and

thereby control their spatiotemporal dynamics. (d) Wetting phenomena can arise when proteins condense at a filament, which can occur below the

saturation concentration of bulk phase separation (prewetting) or above (wetting) [14,15,83–85]. Surface tension can further drive pearling of a

viscous fluid bound to a filament as described by the Rayleigh–Plateau instability. The resulting droplets, e.g. bound to microtubules [86], appear

like water dewdrops on a spider web. (e) Polymerization of actin and microtubule filaments is a chemical reaction consuming ATP/GTP. This drives

the system out of equilibrium, which could impact the dynamic assembly and disassembly of condensates, e.g. limiting their size [87–89].
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cytoskeleton, can further regulate ripening. When condensates grow, they can push the network outwards,
which in turn applies a counterforce on the drops. This limits their growth and thereby narrows the size distri-
bution of condensates [76]. Furthermore, the elastic energy can tune the nucleation and ripening of conden-
sates. Since it is energetically favorable for condensates to grow in areas of low elastic counterforce, the stiffness
of cytoskeletal networks can regulate condensate formation. So-called ‘elastic ripening’ has been observed in
polymer networks where condensates shrink in areas of high stiffness at the expense of growth in areas of low
stiffness [78]. This effect opposes Ostwald ripening and controls the dynamics of condensates by the stiffness
of the local environment [77]. Similar to the observations that nuclear condensates grow preferentially in low-
density euchromatic regions [95], growth of condensates in the cytosol are likely to be affected by the mechan-
ical resistance of cytoskeletal networks, e.g. cellular pressure waves exerted by cortical actin have recently been
correlated with decreased levels of nuclear condensates [96]. Together, membraneless compartments inter-
spersed with cytoskeletal filaments can considerably crowd the cytoplasm and thus exert mechanical pressure
on other organelles, the consequences of which are still to be investigated.

Cytoskeletal forces can deform and rupture condensates
As we know from in vitro experiments, protein condensates can be deformed or even dissolved by externally
applied forces such as shear forces from harsh pipetting of a phase-separated protein solution [25,72] or opto-
mechanical deformation of condensates by optical tweezers [34].
Such forces can also be transduced by the cytoskeleton and are not, as discussed above, limited to the elastic

energy of the network, but can be actively generated from inside the condensates. The contraction and oriented
polymerization of cytoskeletal filaments generates mechanical forces that can actively deform and translocate
condensates (Figure 2c). In fact, it has been found that condensates of the actin regulators nephrin/NCK/
N-WASP deform upon actin polymerization in vitro on supported lipid bilayers [71], as well as in HeLa cells,
where they move rapidly across the basal membrane as the actomyosin network contracts [79]. Another
example is the elongated shape of the mitotic centrosomes in C. elegans, which was found to be induced by
microtubule-based forces, since treatment with the microtubule polymerization inhibitor nocodazole relaxed
the elongated shape [72]. The polymerization and pulling forces induced by the cytoskeletal filaments could
thereby serve as negative feedback mechanism to dynamically disassemble the condensates, e.g. for centrosomes
during mitotic exit [72]. To further investigate how condensates are deformed by internal forces, a novel tool
called ‘ActuAtor’ can help, which triggers localized actin polymerization in cells in response to chemical or
optical stimuli [97]. Actin localized to stress granule proteins polymerizes within these stress granules and dis-
perses the anchor proteins of the ‘ActuAtor’. Until now, it has been difficult to discern the effect of actin poly-
merization forces on the dynamics of condensates in vivo, e.g. the disruption of actin filaments by small
molecule inhibitors observed within nucleoli leads to their fusion, but also influences the scaffolding function
of actin networks [98]. Thus, this method can be of great value to follow the effect of actin forces on preformed
condensates.
The assembly (not only deformation/disruption) of condensates can also be driven by the dynamics and

forces of the cytoskeleton. Tight junctions assemble through phase separation of zona occludens proteins in the
cytosol and their recruitment to the membrane via a retrograde flow driven by the actomyosin cortex [81].
Actin filaments are enriched within the condensates and transduce cortical tension on the tight junctions, pre-
sumably controlling their distribution along the cell membrane. After depolymerization of actin in MDCK-II
monolayers, the tight junction layer was disrupted and buckled up into individual droplets [82]. It has also
been suggested that the formation of micrometric stress granules depends on cytoskeletal dynamics to over-
come the time constraints of hindered diffusion. Microtubules thereby promote the coalescence of small stress
granules via pushing, pulling or sliding along the filaments [80] (Figure 2c).
A further aspect of how forces can promote the phase separation of membrane proteins was proposed via

the membrane-coupled cytoskeleton [99]. As Veksler and Gov argue, the force balance in a passive system
between the attractive forces of the molecules versus the entropic penalty for compositional heterogeneity intro-
duced by phase separation and membrane curvature can be broken by actin polymerization forces. Indeed, the
addition of actin can shift the condensation temperature and cause phase separation of membrane components
in model lipid bilayers [100]. This effect is counteracted by the observation that a tightly membrane-bound
actin network can prevent the formation of macroscopic phase separation in model membranes, as predicted
by the ‘picket fence’ model [101]. It will, therefore, be interesting to distinguish the effects of mechanical forces
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on membrane protein condensates in many in vivo scenarios such as the immune synapse, tight junctions or
lamellipodia.

Condensates of regulators can wet cytoskeletal filaments
A physical phenomenon that has been observed or proposed to arise from attractive interactions between con-
densates and cytoskeletal filaments resembles similarities with the wetting of dewdrops on a spider web. Several
studies suggest a form of surface-assisted condensation at intracellular interfaces [71,102] and cytoskeletal fila-
ments [14,15,86].
One of the ways that could induce microphases on intracellular surfaces is by prewetting phenomena

described in soft matter physics [83]. Binding of proteins on a filament locally increases their concentrations
and a phase transition on the surface can take place below the protein’s saturation concentration in bulk
(Figure 2d). It has been reported that microtubules induce phase separation of components of the inner centro-
mere under conditions where they alone are in a homogenous phase [85]. Another example could be tau
‘islands’ on microtubules [14,15]. The microtubule-bound condensates share similarities to phase-separated tau
drops in solution such as fusion and dissolution. However, the tau islands do not grow in 3D, as expected from
condensates as protein concentration increases, and might be explained by other phenomena such as coopera-
tive binding. The role of tau-decorated microtubules could be to protect against severing factors, which were
found to be excluded from the tau-coated areas. Interestingly, the interaction of microtubules with molecular
motors can influence the attached tau islands and ultimately lead to their displacement [15]. Further work will
be required to clarify the mechanisms of tau islands formation and to closely monitor the condensation of
other regulators on cytoskeletal fibers.
In the saturated regime, where proteins phase separate in bulk, interactions with cytoskeletal filaments can

lead to partial or complete wetting (Figure 2d). Depending on the surface tension, a condensed film on fila-
ments can also drive the pearling of drops, which is described by the Rayleigh–Plateau instability. The micro-
tubule nucleation regulator TPX2 has recently been proposed to coat microtubules in vitro at physiological
concentrations (0.1 mM) before breaking up into sub-diffractive condensates [86] (preprint). This hydro-
dynamic instability leads to confined regions along microtubules, which cluster regulators and γ-tubulin
[60,103] and thereby facilitate nucleation of branched microtubules from existing filaments [104].
It remains unclear how e.g. posttranslational modifications of tubulin [105] can affect the condensation of

regulators. Inhomogeneities along the filaments and the disordered domains in intermediate filaments could
further serve as nucleation center of condensates [64]. To better understand the diverse modes of interaction of
condensates and the cytoskeleton, it will be important in future studies to quantify protein concentration in the
local cellular environment and the growth dynamics of the condensates.

Polymerization reactions of cytoskeletal proteins can
influence condensate dynamics
The reduced complexity of in vitro systems tends to lack the dynamics of protein condensates observed in vivo.
In cells, condensate assembly appears to be faster, the size and the distribution of condensates is often smaller
and narrower and their material properties are notoriously difficult to assess in vivo [106]. In addition, conden-
sates also disassemble under physiological conditions, which is rarely achieved in vitro without the usage of dis-
ruptive solvents. Multiple components such as the complexity of protein mixtures, different isoforms and
phosphorylation states [107] or small hydrotope-like molecules such as ATP [108] certainly play a role. But,
most importantly, in vivo biochemical reactions drive the condensates away from thermodynamic equilibrium.
Reactions that change the solubility of a protein can actively regulate the growth and size of the condensates
[89,109] (Figure 2e). For instance, the growth of bigger condensates through Ostwald ripening can be sup-
pressed as predicted for first-order reactions [87].
Polymerization and cross-linking of cytoskeletal proteins consuming ATP/GTP can be such a reaction,

which renders the condensates ‘active’ [88]. The conversion of monomers to filaments within condensates can
further stimulate an influx of monomers through concentration-dependent fluxes [40]. This gradually changes
the composition, which in turn can affect condensate growth and disassembly rates. Viscoelastic networks add-
itionally prevent unhindered diffusion and fusion of condensates within cells (as discussed in ‘condensates are
embedded in viscoelastic cytoskeletal networks’ section). Thus, the cytoskeleton could effectively prevent con-
densates from coarsening and counteract the thermodynamic equilibrium of one big drop as observed in vitro.
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For example, the observation that actin polymerization reorganizes nephrin clusters [71] or lipid organization
[110] in model membranes could be partly explained by chemical activity, in addition to the forces arising
from the cytoskeletal assembly as discussed above (section ‘cytoskeletal forces can deform and rupture conden-
sates’). However, clear experimental evidence for the role of cytoskeletal reactions on the thermodynamics and
thus on the regulation of growth and size of membraneless compartments is missing to date. Furthermore, bio-
chemically active condensates are predicted to divide [111], which can also control their size. It will be interest-
ing to see instances of cytoskeletal proteins controlling the assembly and disassembly of condensates in future
studies.

Condensates can promote the formation of cytoskeletal
structures
The question how condensation can contribute to the bundling of cytoskeletal filaments remains relatively
unexplored. Bundling of individual filaments substantially increases the mechanical strength and controls
various physiological processes, e.g. adhesion [112] and morphogenesis [113]. Similar to the pulling of DNA
strands by surface-tension driven coalescence of light-induced CasDrops in the nucleus [114,115], cytoskeletal
filaments could be mechanically brought together by the capillary forces of condensates [116] (Figure 3a).
However, the persistence length of cytoskeletal filaments is orders of magnitude higher than that of nucleic
acids (Box 1). Condensation-driven bundling would, therefore, only be effective if the sum of the low-affinity
forces condensing the proteins exceeds the force required to deform the network. It might be thus limited to
individual intermediate and actin filaments or short microtubules as these are more flexible than long and
highly cross-linked structures [117]. Pulling of the filaments could be achieved through multivalent interactions
of adaptor proteins with long disordered domains such as tau [20], CLIP1 or epsin [7]. Since the multivalent
interactions confine the diffusion of the proteins, this can give rise to an entropic force that could further drive
sliding of the filaments (as discussed in a recent opinion [118]). In vitro, it has been observed that BugZ and
tau condensates promote the formation of microtubule bundles [4,6], in vivo to date such evidence is lacking.
Another process that could be explained by the physical chemistry of condensation is the assembly of entire

cytoskeletal structures during development. While different isoforms and actin regulators are commonly dis-
cussed for the generation of different actin structures, little attention has been given to what limits their spatial
expansion. We propose that the actin cortex, which is only a few nanometers in thickness [119], could be
formed by condensation of actin regulators on the membrane (Figure 3b). Note, that the formation of the
cortex has been suggested to be driven by the wetting of an active gel before, but neglecting the role of

Figure 3. Possible effects of condensates on the organization of the cytoskeleton.

(a) Wetting of cytoskeletal fibers could promote sliding and bundle formation through the effect of surface tension. (b) Formation of the actin cortex

could be partially driven by condensation of regulators on the plasma membrane. This would promote actin polymerization near the membrane and

thereby control the spatial expansion of the cortex.
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cytoskeletal regulators [35,120]. Condensation of regulators can facilitate the formation of the cortex by localiz-
ing actin nucleation close to the membrane.

Conclusions and perspectives
The interactions between the cytoskeleton and condensates are numerous. While we currently have little evi-
dence that cytoskeletal proteins themselves form biomolecular condensates, they can partition as clients into
condensates that assemble from regulators, with striking consequences for cytoskeletal biochemistry. The con-
centration of cytoskeletal monomers and regulators through a jump-like onset of condensation provides an
additional mechanism to regulate the assembly of cytoskeletal filaments besides biochemical pathways. As the
field progresses, we will likely see more examples where cytoskeletal structures assemble or disassemble in
response to stress or environmental changes that trigger the formation of condensates. Besides promoting the
formation of cytoskeletal structures, filaments and networks formed by cytoskeletal proteins can directly impact
the assembly, deformation and degradation of condensates. Although in its infancy, the idea that elastic proper-
ties of the surrounding networks can regulate and limit the dynamics of condensates presents a wide cell bio-
logical scope. Future work will reveal the generality of these interactions and their importance to life.

Summary
• Biomolecular condensates and cytoskeletal filaments regulate each other.

• Cytoskeletal monomers do not typically phase separate but many condensates concentrate cyto-
skeletal monomers and regulators.

• Thereby the dynamic assembly of cytoskeletal structures can be spatio-temporally regulated by
means of condensation.

• Large scale interactions with the cytoskeleton can control the formation, shape and site of
condensates.

• Non-trivial forms of condensation at intracellular surfaces such as cytoskeletal filaments could be
a major route for the formation of condensates in vivo.
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