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Background: With the rapid growth rate of newly sequenced genomes, species tree inference from genes sampled
throughout the whole genome has become a basic task in comparative and evolutionary biology. However,
substantial challenges remain in leveraging these large scale molecular data. One of the foremost challenges is to
develop efficient methods that can handle missing data. Popular distance-based methods, such as NJ (neighbor
joining) and UPGMA (unweighted pair group method with arithmetic mean) require complete distance matrices

Results: We introduce two highly accurate machine learning based distance imputation techniques. These methods
are based on matrix factorization and autoencoder based deep learning architectures. We evaluated these two
methods on a collection of simulated and biological datasets. Experimental results suggest that our proposed
methods match or improve upon the best alternate distance imputation techniques. Moreover, these methods are
scalable to large datasets with hundreds of taxa, and can handle a substantial amount of missing data.

Conclusions: This study shows, for the first time, the power and feasibility of applying deep learning techniques for
imputing distance matrices. Thus, this study advances the state-of-the-art in phylogenetic tree construction in the
presence of missing data. The proposed methods are available in open source form at https://github.com/Ananya-
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Background

Phylogenetic trees, also known as evolutionary trees, rep-
resent the evolutionary history of a group of entities (i.e.,
species, genes, etc.). Phylogenetic trees provide insights
into basic biology, including how life evolved, the mech-
anisms of evolution and how it modifies function and
structure. One of the ambitious goals of modern sci-
ence is to construct the “Tree of Life” — the evolutionary
relationships among all the organisms on earth. Central
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to assembling the tree of life is the ability to efficiently
analyze a vast amount of genomic data.

The field of phylogenetics has experienced tremendous
advancements over the last few decades. Sophisticated
and highly accurate statistical methods for reconstructing
gene trees and species trees are mostly based on maximum
likelihood or Markov Chain Monte Carlo (MCMC) meth-
ods, and probabilistic models of sequence evolution (see
[1] for example). Various coalescent-based species tree
methods — with statistical guarantees of returning the true
tree with high probability given a sufficiently large num-
ber of estimated gene trees that are error-free — have been
developed, and are increasingly popular [2—12]. However,
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many of these methods are not scalable to analyze phy-
logenomic datasets that contain hundreds or thousands
of genes and taxa [13, 14]. Therefore, developing fast yet
reasonably accurate methods is one of the foremost chal-
lenges in large-scale phylogenomic analyses. Distance-
based methods represent an attractive class of meth-
ods for large-scale analyses due to their computational
efficiency. Although these methods are generally not as
accurate as the computationally demanding Bayesian or
likelihood based methods, several studies [10, 11, 15-19]
have provided support for the ability of the distance-based
methods in estimating accurate phylogenetic trees. There-
fore, the trees estimated by distance-based methods can
be used as guide trees (also known as starting trees) for
other sophisticated methods as well as for divide-and-
conquer based boosting methods [14, 20—24]. Moreover,
under various challenging model conditions, distance-
based methods become the only viable option for con-
structing phylogenetic trees. Whole genome sequences
are one such case, where the traditional approach of mul-
tiple sequence alignments may not work [25]. Auch et al.
(2006) proposed a distance-based method to infer phy-
logeny from whole genome sequences and discussed the
potential risks associated with other approaches [26]. Gao
et al. (2007) also introduced a composite vector approach
for whole genome data, where distances are computed
based on the frequency of appearance of overlapping
oligopeptides [27]. Therefore, notable progress has been
made towards developing various distance-based meth-
ods [1, 10, 11, 16, 17, 19, 28-35]. Some of these methods
can also be used to analyze large-scale single nucleotide
polymorphism (SNP) data [36, 37].

Missing data is considered as one of the biggest chal-
lenges in phylogenomics [38—40]. Missing data can arise
from a combination of reasons, including data generation
protocols, failure of an experimental assay, approaches to
taxon and gene sampling, and gene birth and loss [36, 41].
The presence of taxa comprising a substantial amount
of missing (unknown) nucleotides may significantly
deteriorate the accuracy of the phylogenetic analysis
[40, 42, 43], and can affect branch length estimations in
traditional Bayesian methods [44]. Therefore, many stud-
ies avoid working with missing data and conduct exper-
iments on the available complete dataset [39]. Several
paleontology-oriented studies also suggest that missing
data can frequently result in poorly resolved phylogenetic
relationships [42, 45, 46].

Several widely used distance-based methods, includ-
ing NJ [16], UPGMA [28], and BioNJ [17] require that
the distance matrices do not contain any missing entries.
However, only a few studies have addressed the prob-
lem of imputing distance values [36, 47]. These works
mainly rely on two approaches, namely direct approach
and indirect approach. Direct approaches try to construct
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a tree directly from a partially filled distance matrix
[1, 48]. Indirect approaches, on the other hand, estimate
the missing entries, and subsequently construct a phy-
logenetic tree based on the complete distance matrix
[49, 50]. Some studies have tried to combine the advan-
tages of both approaches [43]. LASSO [36], which is a
heuristic approach for reconstructing phylogenetic trees
from distance matrices with missing values, tries to exploit
the redundancy in a distance matrix. This method, requir-
ing the molecular clock assumption (i.e., sequences evolve
at a constant rate over time and among different organ-
isms [51, 52]), has been shown to be relatively less accu-
rate by Xia et al. (2018), as significant differences were
observed between the original trees and the trees recon-
structed by LASSO from incomplete distance matrices
[47]. Xia et al. (2018) proposed a least square method with
multivariate optimization, which achieved a high accuracy
for estimating trees from distance matrices with missing
entries [47] .

In this paper, we propose two statistical and machine
learning (ML) based methods for imputing missing val-
ues in distant matrices. These methods do not require
any particular assumptions (e.g., molecular clock) and can
handle large numbers of missing entries. Our techniques
are based on matrix factorization (MF) [53] and autoen-
coders (AE) [54]. We assessed the performance of MF
and AE on a collection of real biological and simulated
datasets. MF and AE were compared with the methods
proposed by Xia et al. (2018) [47] (implemented in the
DAMBE software package [55, 56]) and Kettleborough et
al. (2015) [36] (implemented in the LASSO software pack-
age [57]). Experimental results suggest that MF and AE
are more accurate and robust than DAMBE and LASSO
under various model conditions, and can handle large
numbers of missing values.

Results

We compared our methods (MF and AE) with two of the
most accurate existing methods: 1) DAMBE (the impu-
tation method proposed by Xia et al. (2018) [47], and 2)
LASSO [36]. We used a collection of previously studied
simulated and biological datasets to evaluate the perfor-
mance of these methods. We compared the estimated
species trees to the model species tree (for the simulated
datasets) or to the trees estimated on the full data without
any missing entries (for the biological datasets), to eval-
uate the accuracy of various imputation techniques. We
have used normalized Robinson-Foulds (RF) distance [58]
to measure the tree error. The RF distance between two
trees is the sum of the bipartitions (splits) induced by one
tree but not by the other, and vice versa. Normalized RF
distance (RF rate) is obtained by dividing the RF distance
by the maximum possible RF distance. This error rate
accounts for the number of different bipartitions between
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the inferred and the true phylogenies, and hence relatively
lower error rates indicate better performance.

Similar to previous studies [47], we generated missing
entries in two ways: i) modifying the input sequences
in a way that results in missing entries in the dis-
tance matrix (indirect approach), and ii) directly deleting
entries from a given distance matrix (direct approach).
There are @ distance values in a complete distance
matrix of n taxa since the distance matrix is symmet-
ric. For the direct approach, similar to previous studies
[36, 47], we randomly removed some entries to create
partial distance matrices. See the “Datasets” section for
details on the indirect approach. We computed distances
from the sequences based on the MLCompositeTN93
(TN93) model [59]. TN93 model holds the assumption of
a complex but specific model of nucleotide substitution.
The distance formula is derived under the homogeneity
assumption, which means that the pattern of nucleotide
substitution has not changed in the evolutionary history
of the observed sequences [60, 61]. TN93 model accounts
for the difference between transitional substitution rates,
i.e., interchange of a purine nucleotide to another purine
(A < @), or a pyrimidine nucleotide to another pyrimi-
dine (C < T), and transversions (interchange of a single
purine to a pyrimidine, or vice versa). TN93 also differen-
tiates the two kinds of transitions (A <+ Gand C < T). In
addition to the TN93 model used in previous studies [47],
we also applied the LogDet method [62] to observe its
impact on the imputation process. The LogDet distance
dyy between two taxa x and y is defined as follows. Let F,
be a K x K (K = 4 for nucleotide sequences and K = 20
for amino acid sequences) divergence matrix where ij-th
entry is the proportion of sites in which taxa x and y have
character states i and j, respectively. Then, d, is calculated
using the following transformation [62, 63].

—In [ detF,,). (1)

We used MEGA-X [61, 64, 65] to compute distances
under the TN93 and LogDet models as well as to intro-
duce missing entries in the distance matrices. We used
FastME [19, 30] to construct trees from complete dis-
tance matrices. A schematic diagram of the experimental
pipeline used in this study is shown in Fig. 1.

dyy =

Datasets

We have used a set of mitochondrial COI and CytB
sequences from 10 Hawaiian katydid species in the genus
Banza along with four outgroup species. This dataset,
comprising 24 operational taxonomic units (OTUs) and
10 genes which evolved under the HKY85 model [66], was
previously studied in [47]. In order to evaluate the rela-
tive performance, we followed exactly the same process
used by Xia et al. (2018) [47] for modifying the sequences
to create missing entries in distance matrices. However,

Page 3 of 14

Xia et al. (2018) only generated 30 missing entries in
the matrix, whereas we analyzed a wide range of missing
entries (10 ~140).

We now explain how missing values were introduced
by modifying the sequences. The 24 OTUs dataset com-
prises a set of mitochondrial COI and CytB sequences. If
we remove the COI sequence from a taxon A and the CytB
sequence from another taxon B, then the (A, B) pair does
not share any homologous sites which results in a miss-
ing entry in the corresponding distance matrix. Thus, if
we remove the COI sequence from #; taxa and remove
the CytB sequence from a different set of ny taxa, the
corresponding distance matrix will have n; x ny missing
entries.

We used another set of simulated datasets based on
a biological dataset (37-taxon mammalian dataset [67])
which was generated and subsequently analyzed in prior
studies [9, 14, 68, 69]. This dataset was generated under
the multi-species coalescent model [70] with various
model conditions reflecting varying amounts of gene tree
discordance resulting from the incomplete lineage sort-
ing (ILS) [71]. This collection of datasets was simulated
by taking the species tree estimated by MP-EST [7] on the
biological dataset studied in Song et al. (2012) [67]. This
species tree had branch lengths in coalescent units that
were scaled (multiplying or dividing by two) to vary the
amount of ILS (shorter branch lengths result in more ILS).
The basic model condition with moderate amount of ILS
is referred to as 1X and the model conditions with higher
and lower amounts of ILS are denoted by 0.5X and 2X,
respectively. For each model condition, we used 10 repli-
cates of data each containing 37 sequences. We analyzed
a wide range of missing entries: 36 (6 x 6), 100 (10 x 10),
225 (15 x 15), and 342 (19 x 18).

In order to evaluate the performance of various methods
on relatively larger datasets, we used a dataset containing
201 taxa, which was simulated and used by [72]. We ana-
lyzed various numbers of missing entries: 400 (20 x20),
1,024 (32 x32), 2,500 (50 x50), 5,625 (75 x75), and 10,100
(101 x100).

We also analyzed three distance matrices, which were
computed from aligned sequences from Carnivores, Bac-
ulovirus, and mtDNAPri3F84SE, and were used in previ-
ous studies [73, 74]. The numbers of taxa in these matrices
range from 7 to 10. Various numbers of distance values
were randomly removed to introduce missing data.

For each model condition with a particular number
of missing entries, we generated 10 replicates of data,
and reported the average RF rate and standard error
over 10 replicates. However, we deliberately analyzed one
replicate of data on 24 OTUs dataset as was done in
Xia et al. (2018) [47] and removed the same entries that
were removed by [47] to compare the performance of our
proposed techniques with respect to the results reported
in [47].
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Fig. 1 An overview of the experimental pipeline of this study. The input is either a set of sequences, or a complete distance matrix. We generate
incomplete distance matrix from input sequences or input complete distance matrix by using various missingness mechanisms. Next, we apply
various imputation techniques to impute the missing entries in the incomplete distance matrix and thereby, generating (complete) imputed
distance matrices. Next, we estimate phylogenetic trees from the imputed distance matrices using FastME. Finally, we compare the estimated trees
with the model tree to evaluate the performance of various imputation techniques

Results on sequence input

Table 1 shows the results on 24 OTUs for a wide range
of missing entries (10 ~140). On this particular dataset,
MEF achieved superior performance on small to moderate
numbers of missing entries (0 ~40), LASSO matched or
improved upon the other methods for moderate to high
numbers of missing entries (50 ~110), and AE outper-
formed other methods in the presence of large numbers of
missing values (110 ~140).

Table 1 RF rates of different methods on the 24 taxa dataset
with varying numbers of missing entries. The best RF rates for
various model conditions are shown in boldface

#Taxa  #Entries  #Missing RF Rate
Entries DAMBE  LASSO  MF AE
10 0.0476 0.2857 0 0.0952
20 0.1429 03333 0.1905 0.2381
30 0.2381 03333  0.1905 0.2381
40 0.2857 03333  0.2857 03333
50 03333 01905 04286 03333
60 02857  0.2381 03333 0381
70 04286  0.2857 05714 0381

24 276 80 04762 0.381 0.6667 0.381
90 05714 0.5238 0.5238 0.5238
100 05714 0.5714 0.7143 0.6190
110 07143 0.6190 0.8571 0.6190
120 08095 07619  0.8571 0.7143
130 0.8571 0.7619 08095  0.7619
140 N/A N/A 0.7619 0.7619

For 30 missing entries (which was the case analyzed in
[47]), MF recovered 81% of the true bipartitions, whereas
DAMBE and LASSO recovered 76% and 67% bipartitions
respectively. Figure 2 shows the trees constructed by vari-
ous methods with 30 missing values. With 10 ~40 missing
entries, MF estimated tree was closer to the tree esti-
mated on the complete dataset than DAMBE and AE.
Notably, with 10 missing entries, MF was able to recon-
struct the tree on complete dataset, whereas DAMBE and
AE incurred 5% and 10% errors, respectively. However,
as we increase the number of missing entries, DAMBE
started to outperform MF, and AE started to outper-
form both DAMBE and MF. Moreover, with moderate
to high numbers of missing values (50 ~110), LASSO
achieved the best performance in recovering true bipar-
titions, although MF and AE were equally good in some
cases. When around one-third (90) of the entries in the
distance matrix were missing, LASSO, MF, and AE recov-
ered around 48% of the true bipartitions, and DAMBE
recovered 43% of the bipartitions. DAMBE can not impute
distances when more than 50% of the total entries are
missing. LASSO’s performance on these model conditions
with a relatively large amount of missing data is also not
satisfactory, since LASSO failed to construct a tree on the
full set of taxa, resulting in an incomplete tree. There-
fore, we did not consider DAMBE and LASSO when more
than 50% of the entries (i.e., 140 entries on this partic-
ular dataset) are missing. On the other hand, both MF
and AE were able to reconstruct around 25% of the true
bipartitions even when 140 (more than 50%) entries are
missing. Although, more than 50% missing entries in a dis-
tance matrix may not be a very common model condition,
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Fig. 2 Phylogenetic trees estimated on the full and incomplete dataset (30 missing entries) with 24 OTUs from 10 Hawaiian katydid species. a Tree
estimated from the full data (complete distance matrix), b - e trees reconstructed from incomplete distance matrix by DAMBE, LASSO, MF, and AE,
respectively. Red rectangles highlight the inconsistencies with the tree on the full dataset

(e)

the ability to handle arbitrarily large amounts of miss-
ing data advances the state-of-the-art in distance matrix
imputation.

Results on 37-taxon simulated dataset with varying
amounts of ILS, two different evolution models and vary-
ing numbers of missing values are shown in Table 2. MF
and AE were competitive with or better than DAMBE in
most of the cases. Unlike the 24 OTUs dataset, LASSO
performed poorly on this 37-taxon dataset, and achieved
the worst tree accuracy. As DAMBE and LASSO can not

handle distance matrices with more than 50% missing
entries, only MF and AE were able to run on the dis-
tance matrices with 342 (~50%) missing entries, albeit
the RF rates were very high (due to the lack of sufficient
phylogenetic information present in the highly incom-
plete distance matrix). MF could not recover any internal
branches on the 1X dataset with 342 missing entries. AE,
on the other hand, was able to reconstruct around 15%
bipartitions. Another observation, within the scope of the
experiments performed in this study, is that the amount
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Table 2 Average RF rates (& standard error) of different methods on the 37-taxon dataset for varying numbers of missing entries and
two different sequence evolution models. For each model condition, we show the average RF rate and standard error over 10
replicates. The best RF rates for various model conditions are shown in boldface

#Taxa #Entries Scaling Model #Missing Average RF Rate
Entries DAMBE LASSO MF AE
36 0.41£0.02 0.7240.03 0.33+0.03 0.4140.02
100 0.48+0.02 0.7240.03 0.46£0.02 0.45+0.02
TNO3 225 0.7240.03 0.784+0.03 0.62+0.01 0.7040.02
37 666 X 342 N/A N/A 0.99+0.02 0.86+0.01
36 0.41£0.02 0.7140.02 0.35:+0.03 0440.02
100 0.49£0.02 0.7240.02 0.540.03 0.46+0.02
LogDet 225 0.72+0.02 0.76£0.02 0.66+0.03 0.72£0.02
342 N/A N/A 1£0 0.86+0.02
36 0.4540.02 0.6940.02 0.35+0.02 0.4340.02
100 0.49:+0.03 0.7240.02 0.540.02 0.5440.03
TN93 225 0.66£0.02 0.76£0.02 0.62+0.01 0.71£0.02
37 666 0.5X 342 N/A N/A 1£0 0.84+0.02
36 0.45+0.02 0.6840.02 0.35:+0.02 0.4240.02
100 0.49+0.03 0.714£0.02 0.5240.02 0.5140.02
LogDet 225 0.64+0.02 0.76£0.01 0.66£0.02 0.7£0.02
342 N/A N/A 0.99+0.02 0.84+0.02
36 0.43£0.02 0.68+0.01 0.36+0.03 0.4240.02
100 0.5+0.01 0.6940.02 0.5240.02 0.5+0.02
TN93 225 0.66+0.02 0.73£0.02 0.71£0.02 0.69+£0.02
37 666 2X 342 N/A N/A 0.99+0.01 0.85+0.01
36 0.44£0.02 0.6310.02 0.36+0.02 0.440.01
100 0.51+0.02 0.6640.02 0.54£0.02 0.5240.02
LogDet 225 0.66+0.02 0.73£0.01 0.740.02 0.69+0.02
342 N/A N/A 0.99+0.01 0.86+0.02

of ILS does not have any significant impact on the perfor-
mance of various imputation techniques. However, more
experiments are required to further investigate the impact
of ILS.

We also analyzed the impact of two widely used
sequence evolution models (TN93 and LogDet) on the
performance of the proposed imputation techniques. MF
performed poorly on LogDet model compared to the
TN93 model, and produced higher error rates in 17 (out
of 24) cases on LogDet model than the TN93 model.
AE, on the other hand, showed similar (on 1X model)
or slightly better (on 0.5X and 2X models) performance
under the LogDet model. DAMBE achieved an improved
performance under the LogDet model (compared to the
TN93 model) only on the 0.5X model condition and the
opposite trend is observed on the 1X and 2X model con-
ditions, albeit the differences are very small (Table 2).
LASSO performed slightly better on LogDet model than
on TN93.

Finally, we applied our techniques on a large dataset
with 201 taxa (Table 3). As DAMBE was too computa-
tionally expensive to run on this large dataset (it did not
provide any result after 24 hours of computation), we
excluded DAMBE from this analysis. Both MF and AE
outperformed LASSO in all cases, and the improvements
are substantial. AE performed particularly well on this
dataset, as it achieved the lowest average RF rates under all
model conditions. MF also performed well, and achieved
comparable accuracies. The improvement of AE over MF
and LASSO increases as we increase the number of miss-
ing entries. Even with 10,100 (~50%) missing entries,
AE was able to recover 57% true bipartitions under both
sequence evolution models. LASSO consistently achieved
the highest average RF rate under various model condi-
tions. Even with only 400 (~2%) missing entries, LASSO
could not recover more than 41% true bipartitions, which
is worse than AE’s performance on a model condition with
10,100 (~50%) missing entries.
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Table 3 Average RF rates (+ standard error) of different methods on the 201-taxon dataset. The best RF rates for various model

conditions are shown in boldface

#Taxa #Entries Model #Missing Average RF Rate
Entries LASSO MF AE
400 0.6+0.02 0.36:+£0.04 0.36+0.01
1024 0.6140.02 0.440.05 0.39+0.04
TN93 2500 0.6240.02 0.4140.03 0.44+0.02
5625 0.63£0.03 0.4440.03 0.41+0.03
201 20100 10100 N/A 0.5940.02 0.43+0.01
400 0.5940.02 0.384+0.02 0.37+0.01
1024 0.6240.01 0.440.03 0.38+0.02
LogDet 2500 0.61£0.02 041£0.02 0.4+0.02
5625 0.62+0.02 0.46£0.03 0.43+0.02
10100 N/A 0.584+0.03 0.43+0.01
Results on distance matrix input was the fastest, which took only a second. Notably, unlike
Results on Carnivores, Baculovirus and mtD- MF and DAMBE, the running times of LASSO and AE do

NAPri3F84SE are shown in Tables 4, 5, and 6. On the
Carnivores dataset (Table 4), LASSO and AE produced
the best results. Even with 25 (more than 50%) missing
entries, AE was able to reconstruct more than 25% of the
true bipartitions. The performance of MF was worse than
LASSO, AE, and DAMBE. On the Baculovirus dataset,
MF achieved the lowest RF rates for relatively lower
numbers of missing entries. However, as we increase the
number of missing entries, LASSO and AE started to
outperform other methods. On the mtDNAPri3F84SE
dataset, these methods showed a mixed performance, and
no method consistently outperformed the others. How-
ever, DAMBE and LASSO achieved better performance
than MF and AE.

Running time

We performed the experiments on a computer with i5-
3230M, 2.6 GHz CPU with 12 GB RAM. The running
time of MF on the 24-taxon dataset ranges between 7 ~15
minutes for various numbers of missing entries. DAMBE
takes only a few seconds with 10 missing entries, but as we
increase the number of missing entries to 130, the running
time of DAMBE increases to 2 minutes. AE was faster,
requiring only around 30 seconds for this dataset. LASSO

not change much as we increase the number of missing
entries.

On the 37-taxon dataset, MF takes around 30 min-
utes while DAMBE takes 12 ~15 minutes. AE is faster
than MF and DAMBE, taking only around 45 seconds.
LASSO was the fastest method which took only a second.
On 201-taxon dataset, DAMBE was too computationally
expensive to run, and did not produce any result after
24 hours of computation. MF took 4 ~6 hours, whereas
AE took only 20 ~30 minutes. LASSO was the fastest
method which took only a second, although the accuracy
was substantially worse than both MF and AE.

For relatively smaller matrices (Carnivores, Baculovirus
and mtDNAPri3F84SE datasets), DAMBE is very fast, and
finished in a second. MF took around 45 seconds, and AE
took 20 seconds. Overall, AE and LASSO scale well to
large datasets and their running times are less sensitive to
the number of taxa and the number of missing entries.

Discussion

We extensively evaluated MF and AE on a collection of
real and simulated datasets. Previous studies [36, 47] lim-
ited their evaluation studies to a small number of datasets
with limited numbers of taxa. Moreover, previous studies

Table 4 Average RF rates (& standard error) of different methods on the Carnivores dataset. The best RF rates for various model

conditions are shown in boldface

#Taxa #Entries #Missing Average RF Rate
Entries DAMBE LASSO MF AE
5 0.2940.06 0.14+0.06 0.3740.1 0.234+0.07
10 0.640.03 0.231+0.07 0.71£0.06 0.23+0.07
10 45 15 0.63+0.07 0.26+0.02 0.83+0.09 0.5740.04
20 0.77£0.03 0.4+0.06 0.94£0.07 0.63£0.05
25 N/A N/A 0.9440.05 0.7410.05
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Table 5 Average RF rates (& standard error) of different methods on the Baculovirus dataset. The best RF rates for various model

conditions are shown in boldface

#Taxa #Entries #Missing Average RF Rate
Entries DAMBE LASSO MF AE
4 0.2740.08 0.29+0.03 0.17+0.15 0.394+0.04
8 0.5£0.11 0.33+0.08 0.5£0.1 0.39+0.08
9 36 12 0.7+£0.07 0.47+0.06 0.49+0.05 0.5+0
16 0.7+£0.06 0.5:£0.07 0.67+0.05 0.57+0.08
20 N/A N/A 0.67+0.11 0.67+0.11

did not explore the model conditions with more than 10%
missing values. We tried to address these issues by eval-
uating our methods on six different datasets with various
challenging model conditions. We analyzed a 201-taxon
dataset, whereas previous comparative studies were lim-
ited to less than 30 taxa. Furthermore, we analyzed the
impact of varying amounts of ILS on the performance of
various imputation techniques.

In general, MF and AE based methods produced more
accurate trees than the existing methods. DAMBE was
comparable to MF and AE when the numbers of miss-
ing entries were relatively small. However, DAMBE did
not perform well with moderate to high numbers of miss-
ing entries. Although LASSO was previously shown to be
less accurate than DAMBE [47], we found several cases
where LASSO performed better than DAMBE. For rel-
atively lower numbers of taxa, LASSO works very well,
even when 25 ~45% entries are missing. But on the 37-
taxon and 201-taxon datasets, LASSO consistently per-
formed poorly compared to other methods. On the other
hand, MF and AE achieved superior tree accuracy on
most of the model conditions. One prominent outcome
of this study is the introduction of methods that can
effectively analyze large datasets. While DAMBE failed to
produce any results after 24 hours of computation and
LASSO could not recover more than 40% true bipartitions
on the 201-taxon dataset, the AE-based method consis-
tently recovered around 60% bipartitions on this large
dataset under various model conditions. Even the MF-
based method, although less scalable than AE, showed

promising performance, especially with relatively lower
numbers of missing entries. The ability to analyze large
datasets with hundreds of taxa makes our proposed meth-
ods applicable to large scale phylogenomic analyses.

Another important aspect is that both DAMBE and
LASSO failed to handle distance matrices with more than
50% missing entries. However, MF and AE can handle an
arbitrarily large amount of missing data. Sequence data
may contain substantial amounts of missing information,
resulting in distance matrices with large numbers of miss-
ing entries. We note that the presence of a substantial
number of missing values in distance matrices may result
in inaccurate trees and researchers will tend to approach
these trees with care. However, the ability to construct
trees in the presence of arbitrarily large numbers of miss-
ing entries will help us estimate starting trees (guide trees)
on extremely challenging model conditions with high lev-
els of missing data. These guide trees can be improved by
further analysis (e.g., divide-and-conquer based boosting
techniques [14, 20-23]).

Our extensive experimental studies on six different
datasets suggest that AE-based method is more accurate
and robust than others under most of the model con-
ditions. Especially, on moderate to large-scale datasets
and in the presence of relatively higher levels of missing
data, AE is substantially better than the existing meth-
ods — making it a suitable candidate for large-scale phy-
logenomic analyses. This demonstrates the power of ML
based techniques in capturing the latent representations
in large-scale phylogenetic datasets, despite the presence

Table 6 Average RF (£ standard error) of different methods on the mtDNAPri3F84SE dataset. The best RF rates for various model

conditions are shown in boldface

#Taxa #Entries #Missing Average RF Rate
Entries DAMBE LASSO MF AE
2 0.05+0.05 0.140.04 04+£0.15 0.154+0.09
5 0.24+0.08 0.240.08 0.5540.08 0.5£0.1

7 21 7 044011 0.3+0.13 0.75£0.07 0.8+0.19
10 0.65£0.17 0.5+0.16 0.84+0.04 0.740.04
12 N/A N/A 0.9+0.05 0.85+0.05
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of missing data. However, future works will need to inves-
tigate how to help the researchers choose the right impu-
tation approaches on relatively small datasets as various
methods have shown mixed performance on very small
datasets (< 10 taxa).

Although we investigated a collection of datasets under
various practical model conditions, this study can be
extended in several directions. This study investigated rel-
atively long sequences (250 ~2600 bp); subsequent studies
should investigate the relative performance of various
methods on very short sequences. This study analyzed
small to large scale dataset (7 ~201 taxa). Ultra large
datasets with thousands of taxa need to be analyzed,
especially to demonstrate the power of ML based tech-
niques in leveraging the latent features of phylogenetic
data. Although we have appropriately adapted the MF
and AE based techniques for imputing distance matri-
ces, further parameter tuning and customization in the
underlying deep learning architecture may improve the
performance of our proposed techniques. We leave these
as future works.

Conclusions

In this study, we have presented two imputation tech-
niques, inspired from matrix factorization and deep learn-
ing architecture, to reconstruct phylogenetic trees from
partial distance matrices. Experimental results on both
simulated and real biological datasets show that our meth-
ods match or improve upon the alternate best techniques
under various model conditions with varying numbers of
taxa, sequence lengths, and amounts of gene tree discor-
dance. We also evaluated these methods using different
DNA sequence evolution models and missingness mech-
anisms.

Estimating phylogenetic trees in the presence of missing
data is sufficiently complex and hence existing meth-
ods cannot fully comprehend or predict the relationships
among the taxa from partial distance matrices. Thus, the
goal here should be the creation of an appropriate model
to capture the underlying data distribution; the model
should account for as much phylogenetic data as possi-
ble to impute the missing entries. This view emphasizes
the importance of ML for distance matrix imputation.
Moreover, we aimed to develop appropriate unsupervised
models. Unsupervised learning approaches have advan-
tages over supervised methods particularly when the data
are heterogeneous, which are often so with various phy-
logenetic dataset and therefore the supervised models
trained on distance matrices on a particular set of taxa
may not be generalizable to a new set of taxa.

We have shown that MF and AE are robust, and can
handle high amounts of missing data. Unlike other meth-
ods [36], MF and AE do not require the molecular clock
assumption. Moreover, deep learning based methods (e.g.,
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autoencoders) are able to automatically learn latent repre-
sentations and complex inter-variable associations, which
is not possible for heuristic based methods. Therefore,
this study lays a firm and broad foundation for applying
ML based techniques in various problems in phyloge-
nomics. Considering the rapidly increasing amount of
phylogenomic datasets, and the prevalence of accompany-
ing missing data, the timing of our proposed approaches
seems appropriate. We believe that the proposed impu-
tation techniques represent a major step towards solving
real world instances in phylogenomics.

Methods

Matrix factorization (MF)

Matrix factorization (MF) has become popular since 2006,
when one group of competitors for the Netflix Prize that
year used this technique [53, 75]. This method is usually
being applied in recommender systems [76], and is used
to discover latent features between two interacting enti-
ties. Matrix factorization is a class of collaborative filtering
algorithms [77], which predicts users’ future interest by
analyzing their past behavior.

Intuitively, there should be some latent features behind
how a certain user rates an item. For example, movie rat-
ings by users generally rely on many features, including
genre, actors, etc. If a certain individual gives high ratings
to action movies, we can expect him to do the same to
another action movie which is not yet rated by him. Dis-
covering the latent features will thus help predict users’
future preferences.

Matrix Factorization has previously been used in imput-
ing missing data in various domains of bioinformatics,
including analyzing scRNA-seq with missing data [78],
handling missing data in genome-wide association stud-
ies (GWAS) [79], and identifying cancerous genes [80]. In
this study, we have adapted this idea for imputing missing
entries in a distance matrix for phylogenetic estimation. If
the distance between two taxa A and B is not known, we
can predict the distance by analyzing their distances with
other taxa using the concept of matrix factorization (with
appropriate customization).

Let S be a set of N OTUs (operational taxonomic units).
Let R be an [N| x |N| distance matrix comprising the dis-
tances between any two OTUs. If we want to find K latent
features of distances, we need to find two matrices X and
Y, where the dimensions of X and Y are |[N| x K. We used
K = N in our implementation. The product of X and YT
will then approximate R as follows.

RXxYT =R 2
However, as matrix R (and R) are symmetric, meaning
that r; = r;; (and 7;; = 7;;), we only consider the lower

triangular portion of the matrix. We impute a distance 7
between two OTUs as follows.
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K
Py =) Xy ®3)
k=1

We randomly initialize X and Y and try to determine
the error between R and the product of X and Y. Then
we iteratively update X and Y so that the error is reduced.
We considered the squared error as the errors can be both
positive and negative. We used a regularization parame-
ter B to avoid overfitting. Thus, we calculate the error as
follows.

K
a2 P
e = oy —7)> + 5 D _(XIP+11Y11%)
k=1

K ﬂ K
= (= Y%y + 5 Y (XIP + Y1)
k=1 k=1

(4)

In order to minimize the error defined in Eqn. 4, the
directions for modifying x;x and y;; need to be identified.
This means we need to find the gradient at current values,
which we do by differentiating Eqn. 4 with respect to x;;
and yj; separately. Thus, we use the following update rules.

a
xix (updated) = xy + o 3 efj

Xik

= xix + o (ejyri — Bxik)

(5)

2

0
yij(updated) = yij + a Eezj = yij + o ejxix — Byiy)
j

(6)

In Eqns. 5 and 6, « is a constant which determines the
rate to approach the minimum error. We experimented
with a range of values (10~* ~ 107!) of @ and 8 from the
implementations in [81], and set « = 0.002 and 8 = 0.02 as
these values provided reliable performance. However, fur-
ther parameter tuning may improve both the accuracy and
convergence time. We perform these steps iteratively until
the total error E (= ) e; ) converges to a pre-specified
threshold value (107°) or 10,000 iterations take place.
Algorithm 1 shows our MF-based imputation process.

Autoencoder (AE)

An autoencoder (AE) is a type of artificial neural net-
work that learns to copy its input to its output. This is
achieved by learning efficient data codings in an unsuper-
vised manner to recreate the input. An autoencoder first
compresses the input into a latent space representation
and then reconstructs the output from that representa-
tion. It tries to learn a function g(f(x)) ~ x, where f(x)
encodes the input x and g(f(x)) reconstructs the input
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Algorithm 1 Imputation Method using Matrix Factoriza-
tion
1: R < Actual N x N distance matrix with missing
values
2: Randomly initialize matrices X and Y of dimen-
sions N x K

3: Initialze @ and 8

4: while iteration number < 10,000 do

5. for all known values r;; in R do

6 ek — (g — Yio xow)® + 5 i (X2 +
11Y11%)

7: fork =1toK do

8: xix(updated) < xy + a(2e;yry — Bxi)

yij(updated) < yi; + aejxy — Byr)

10: end for

11:  end for

12: Calculate Total Error E < ) e;

13:  if E < 107° then

14: break

150 end if

16: end while

17: Complete Distance Matrix Rjpyreq < X.Y r

18: Replace the missing values in R with the reconstructed
values in Rjyputed, leaving the non-missing entries in
R unchanged.

19: Return R

x using decoder. Figure 3a shows a general overview of
autoencoders.

Autoencoders have been used in integrative analyses
of biomedical big data. Its ability to reduce the dimen-
sion and extract non-linear features [82] have been lever-
aged by many studies. In one oncology study, autoen-
coders have been able to extract cellular features, which
can correlate with drug sensitivity involved with cancer
cell lines [83]. An autoencoder was also used to dis-
cover two liver cancer sub-types that had distinguishable
chances of survival [84]. Moreover, some recent successful
data imputation methods have been developed based on
autoencoders [85—-87]. Autoimpute [85] can be an exam-
ple which imputes single cell RNA-seq gene expression
data. Autoencoder-based methods such as [86] and [87]
have surpassed older ML techniques on various real life
datasets.

In this study, we developed an undercomplete autoen-
coder [54] to predict the missing values in a distance
matrix. The goal of an undercomplete autoencoder is
to learn the most salient features of data by putting a
constraint on the amount of information that can flow
through the network. We do not need any regularization
term here because an undercomplete autoencoder maxi-
mizes the probability of data rather than copying the input
to the output.
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Fig. 3 a General overview of an autoencoder. b A schematic of our proposed autoencoder model. The X's in the dropout layers symbolically denote

Our architecture has been inspired by an open source
library, Fancylmpute [88], which is a library for imputa-
tion algorithms and is implemented in Python language.
Our model has 3 hidden layers with ReLU (Rectified Lin-
ear Unit) activation functions [89]. The dropout rate is set
to 0.75, which appears to work better than other values.
A sigmoid function [90] is used as the activation func-
tion for output layer. Fancylmpute iteratively updates the
imputed values where a prediction from the previous iter-
ation is updated according to Eq. 7. We used the default
predefined weights from the FancyImpute library.

X=0A-wx+wp (7)

In Eq. 7, ' = updated value, x = old value, w = predefined
weight, and p = predicted value from the autoencoder.

Our model takes as input a distance matrix R with miss-
ing entries. First, the missing values in R are replaced
with random values. Next, using the architecture shown in
Fig. 3b, our model tries to fit the input (R) to output (R).
It tries to progressively improve the prediction by mini-
mizing the reconstruction error (loss function) where the
error is computed based on the non-missing entries of
the original matrix. We have used the mean squared error
(MSE) as the reconstruction error function L(R, R'), which
minimizes the difference between the input R and the
autoencoder’s output R’ considering only the non-missing
entries. Let N'M be the set of non-missing entries in R.
Then, L(R, R') is computed as follows.

LRR)= > |Ri—Rj
ieENM

®)
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Algorithm 2 Imputation Method using Autoencoder

1: Replace the missing entries in the distance matrix R
with random values
2. while iteration number # 10,000 do
3. Fit an autoencoder to the observed entries in the
original matrix by minimizing the reconstruction
error as shown in Eqn. 8

4:  Reconstruct output for the missing entries
5. Update the missing values using Eqn. 7

6:  if reconstruction error < 10~° then

7: break

8: endif

9. end while

10: Replace the missing values in R with the recon-
structed values, leaving the non-missing entries in R
unchanged

We replace the missing entries with the imputed values
and keep the original non-missing values unchanged once
a certain number of iterations (10,000) have taken place
or the reconstruction error has gone below a pre-specified
threshold value (10°). Algorithm 2 shows our AE-based
imputation process.

Software implementation
The proposed methods have been developed in Python 3.5
using various libraries, namely, easygui, pandas, numpy,
matplotlib, seaborn, tensorflow, and keras. The methods
have been developed as cross-platform applications.

The 201-taxon dataset is available at https://sites.
google.com/eng.ucsd.edu/datasets/astral/astral-ii [72].

The 37-taxon dataset is available at https://sites.google.
com/eng.ucsd.edu/datasets/binning [67].

The 24-taxon dataset is available at https://doi.org/10.
7717 /peerj.5321/supp-1 [47].

The 10-, 9-, and 7-taxon datasets are available in the
DAMBE software package (http://dambe.bio.uottawa.ca/
DAMBE/dambe.aspx) [56].
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