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ABSTRACT Reconstructing microbial genomes from metagenomic short-read data can
be challenging due to the unknown and uneven complexity of microbial communities.
This complexity encompasses highly diverse populations, which often includes strain
variants. Reconstructing high-quality genomes is a crucial part of the metagenomic
workflow, as subsequent ecological and metabolic inferences depend on their accuracy,
quality, and completeness. In contrast to microbial communities in other ecosystems,
there has been no systematic assessment of genome-centric metagenomic workflows
for drinking water microbiomes. In this study, we assessed the performance of a combi-
nation of assembly and binning strategies for time series drinking water metagenomes
that were collected over 6 months. The goal of this study was to identify the combina-
tion of assembly and binning approaches that result in high-quality and -quantity meta-
genome-assembled genomes (MAGs), representing most of the sequenced metage-
nome. Our findings suggest that the metaSPAdes coassembly strategies had the best
performance, as they resulted in larger and less fragmented assemblies, with at least
85% of the sequence data mapping to contigs greater than 1 kbp. Furthermore, a com-
bination of metaSPAdes coassembly strategies and MetaBAT2 produced the highest
number of medium-quality MAGs while capturing at least 70% of the metagenomes
based on read recruitment. Utilizing different assembly/binning approaches also assists
in the reconstruction of unique MAGs from closely related species that would have oth-
erwise collapsed into a single MAG using a single workflow. Overall, our study suggests
that leveraging multiple binning approaches with different metaSPAdes coassembly
strategies may be required to maximize the recovery of good-quality MAGs.

IMPORTANCE Drinking water contains phylogenetic diverse groups of bacteria, archaea,
and eukarya that affect the esthetic quality of water, water infrastructure, and public
health. Taxonomic, metabolic, and ecological inferences of the drinking water micro-
biome depend on the accuracy, quality, and completeness of genomes that are recon-
structed through the application of genome-resolved metagenomics. Using time series
metagenomic data, we present reproducible genome-centric metagenomic workflows
that result in high-quality and -quantity genomes, which more accurately signifies the
sequenced drinking water microbiome. These genome-centric metagenomic workflows
will allow for improved taxonomic and functional potential analysis that offers enhanced
insights into the stability and dynamics of drinking water microbial communities.

KEYWORDS drinking water, longitudinal (time series) dataset, genome-resolved
metagenomics

Advances in high-throughput sequencing technologies have enabled characteriza-
tion of microbial communities without the need for cultivation (1). This has greatly

facilitated our understanding of microbial communities that inhabit a range of natural
and engineered ecosystems. Two high-throughput sequencing technologies commonly
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used to characterize microbial communities includes gene-targeted assays that use uni-
versal genes/regions (i.e., 16S rRNA, 18S rRNA, and internal transcribed spacer region for
bacteria/archaea, eukaryotes, and fungi, respectively) and short-read shotgun DNA
sequencing (i.e., metagenomics) (1–4). Other emerging sequencing approaches includes
synthetic- and single-molecule long-read sequencing for both gene-targeted and meta-
genomic assays (5, 6). Gene-targeted assays provide valuable insights into the composi-
tional and structural profiles of microbial communities in a fast and cost-effective man-
ner; however, this approach is limited by challenges related to primer selection and
amplification bias (7). Furthermore, taxonomic classification in gene-targeted assays is
based on a fragment of a singular conserved universal marker gene that permits little re-
solution beyond the genus level and does not allow for the direct analysis of a microbial
community’s metabolic capabilities (8). In some instances, putative functional assign-
ment is possible when using gene-targeted assays; however, this requires the availability
of curated taxonomic databases and classification beyond the genus level (9).
Limitations of gene-targeted assays can be overcome by utilizing genome-resolved
metagenomics (10, 11). Genome-resolved metagenomics encompasses de novo assem-
bly of short high-throughput paired-end reads into longer contiguous sequences (con-
tigs) and subsequent reconstruction of metagenome-assembled genomes (MAGs)
through clustering (or binning) of contigs based on nucleotide composition and differ-
ential coverage (12, 13). This approach offers improved taxonomic and functional poten-
tial analysis, as well as the characterization of novel microorganisms using phylogenetic
analysis (14).

De novo assembly and reconstruction of MAGs from short-read metagenomic data
can be challenging due to sequencing errors, repeats, depth of sequencing coverage,
and the presence of strain variants (15, 16). These challenges influence the perform-
ance of assemblers, as it creates unresolved ambiguities in the reconstructed contigs,
leading to erroneous and/or fragmented assemblies. Reconstructing high-quality
MAGs is a crucial part of the genome-centric metagenomic workflow, as subsequent
taxonomic, metabolic, and ecological inferences depend on the accuracy, quality, and
completeness of genomes. Studies have attempted to optimize the recovery of high-
quality assemblies and MAGs by benchmarking metagenomic software for assembly,
binning, and taxonomic classification (16–19) as well as integrating metagenomic soft-
ware in a modular workflow (i.e., MetaWRAP) and utilizing multiple binning algorithms
(i.e., DAS Tool) to optimize the recovery of nonredundant, high-quality genomes (19,
20). However, owing to the unknown complexity of various environmental sample
types, systematic evaluation of metagenomic workflows is required, as tool selection
depends on the complexity of the biological sample and the availability of computa-
tional recourses (17, 21).

Genomes are often reconstructed by assembling all the samples together (coassem-
bly) or creating individual assemblies. Coassembly is a computationally intensive
approach that involves the pooling of multiple metagenomes, which allows for greater
sequence depth and coverage as well as leveraging differential coverage of microor-
ganisms across genomes for genome binning. While this assembly approach can facili-
tate the identification of populations that are present at lower abundances, it can also
result in ambiguous and/or fragmented assemblies when strain-level variability is high
(22, 23). In contrast, single-sample assemblies are computationally less intensive and
are often used to reconstruct genomes of larger data sets and to preserve strain varia-
tion between different samples (24). It has also been shown that single-sample assem-
bly produces more nonredundant high-quality MAGs and enables the reconstructions
of genomes with similar phylogenetic placement to coassembled genomes (14).
However, lower sequence depth and, thus, lower coverage resulting from single-sam-
ple assembly, in addition to the lack of differential coverage information, make ge-
nome reconstruction difficult when using this assembly approach, as coverage heuris-
tics that are used to accurately disentangle repetitive sequences and differentiate
between strain variants cannot be properly applied.
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Microbial ecosystems within the urban water cycle are of relevance, given their
impact on infrastructure as well as environmental and public health (25). Advances in
our understanding of the drinking water microbiome have been greatly facilitated by
the application of genome-resolved metagenomics (26–29). Drinking water systems
(DWS) consist of diverse and complex indigenous microbial communities, with cell
concentrations ranging between 103 to 105 cells/ml (30). Drinking water microbial
communities are constantly adapting to environmental change and are influenced by
seasonal fluctuations, water chemistry (i.e., disinfectant residuals), and infrastructure
(i.e., pipe materials) (26, 31–34). From an environmental and public health perspective,
insight into the compositional profile of microbial communities inhabiting DWS is of
particular importance given their association with processes like nitrification that affect
the quality of drinking water (27) and emerging contaminants (i.e., antibiotic-resistant
genes [ARGs]) (35, 36) and proliferation of opportunistic pathogens that affect its safety
(37–39).

Establishing a genome-centric metagenomic workflow for DWS is important to
accurately characterize microbial species and elucidate their ecological relevance and
functional potential. DWS harbors several log units fewer cells than other aquatic eco-
systems (e.g., surface water and wastewater) (30), which makes it a difficult matrix for
genome-resolved metagenomics, specifically because DNA yields are low, which is
attributed to lower sequence depths that influence assembly and binning software in
genome-centric metagenomic workflows. In addition to this, inferences of microbial
community dynamics in DWS have been restrained by the limited availability of longi-
tudinal metagenomic data sets, as most previous work was done utilizing gene-tar-
geted assays in studies that were short (i.e., few time points), gapped (i.e., missing time
points), and/or implemented over multiple spatiotemporal scales (31, 32, 40).
Longitudinal data sets are preferred over cross-sectional studies (1), as they offer
unique insights into the stability and dynamics of microbial communities. This is
because information leveraged from these data sets can reveal periodic patterns that
can be used in predictive modeling, describe irregularities in response to abrupt envi-
ronmental perturbations, and capture temporal variation of microbial interactions (41).

Currently, there is little work on how to best leverage the unique properties of time
series metagenomic data for DWS. Thus, the overall objective of this study was to eval-
uate the performance of a combination of de novo assembly and binning algorithms
for time series metagenomic data for drinking water microbial communities. Our goal
was to identify an ideal combination of assembly and binning strategies that can allow
for high-quality metagenomic assemblies and MAGs that maximally capture the
sequenced metagenomes. To evaluate the performance of the tested genome-centric
metagenomic workflows, we utilized different measures of quality at the assembly and
MAG levels. To assess the performance of assembly strategy and assembler, measures
of contiguity (i.e., total assembly size, maximum contig length, N50, L50, etc.), gene call-
ing and quality (i.e., coding DNA sequence [CDS], coding density), mapping rate, and
rate of gene fragmentation and misassembly were used (21). We used the number of
medium- to high-quality MAGs and proportion of metagenomic data retained in these
MAGs to evaluate the performance of the combination of assembler/assembly strategy
and binning approaches.

RESULTS AND DISCUSSION
Summary of metagenomic sequencing of drinking water samples. On average,

23.03 6 9.57 ng DNA was extracted from the 1,500-ml filtered tap water samples har-
boring between 21.8 and 85.8 million cells (Table S1 in the supplemental material). A
total of 1.05 billion (mean 6 standard deviation [SD], 87.67 6 4.34 million reads) raw
150-nucleotide (nt) paired-end reads, ranging between 81.37 and 94.15 million reads
per sample, were generated from the DNA extracts of 12 samples, which had average
16S rRNA gene counts of 3.8 � 105 6 1.9 � 105 copies/ml (Table S3). Control samples
with average 16S rRNA gene counts of 4.1 � 101 6 8 � 101 copies/ml had at least
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3 � 102-fold less raw paired-ended reads than samples (0.27 6 0.12 million reads)
(Table S3). Processing of the raw paired-end reads following quality filtering and con-
taminant exclusion removed, on average, 1.02 6 0.23% of the reads per sample. The
final sequence data set consisted of 1.04 billion (86.75 6 0.42 million) high-quality
processed reads with a lower and upper range of 80.51and 93.08 million reads per
sample, respectively (Table S3). Nonpareil (42) was used to assess the coverage of
sequencing effort (Table S4). The average coverage estimates across samples were
89.00 6 3.00%, with a lower and upper range of 84.00 and 94.00%, respectively. This
suggests that a sequencing depth of ;81 to 94 million reads was sufficient to capture
most of the microbial diversity in each sample.

Evaluation of metagenome assembly quality for variable assembly strategy
and metagenome assembler combinations. The performance of two de Bruijn
graph-based assemblers, metaSPAdes and MEGAHIT, that utilize iterative multiple k-
mer approaches to improve assembly quality (43, 44) were assessed for three coassem-
bly strategies (i.e., coassembly of all samples, MASH distance-based assembly, and
time-discrete assembly) and assembly of individual samples (Table S2). Inclusion of var-
ious assembly strategies allows for the assessment of assembly performance in terms
of computational requirements (i.e., RAM usage, assembly runtime per processing
core, etc.) and assembly quality at various levels of diversity as well as sequence depth
and coverage. The metaSPAdes assemblies required more computing recourses, i.e.,
demanded higher memory limits and threads and had runtimes that were up to 6-fold
longer compared to the MEGAHIT assemblies (Table S5), which confirms previous find-
ings (17, 18, 21). As expected, coassembly strategies (i.e., coassembly of all samples,
MASH distance-based assembly, and time-discrete assembly) for both metaSPAdes and
MEGAHIT were associated with longer runtimes (Table S5). Among the metaSPAdes
assemblies, time-discrete assembly had the longest runtime (195 h summed across all
assemblies), followed by coassembly (100 h) and MASH-distance based assembly (28 h
summed across all assemblies). Similar observations were made for the MEGAHIT
assemblies (Table S5).

Evaluating de novo assembly quality for environmental samples is challenging due
to the lack of a ground truth reference assembly for comparison (45). As a result, we
used measures of contiguity (i.e., total assembly size, maximum contig length, N50, L50,
etc.), gene calling and quality (i.e., coding DNA sequence [CDS], coding density), map-
ping rate, and rate of gene fragmentation and misassembly to assess the quality of the
assemblies (Table S5). In total, between 9,959,586 and 114,386,414 contigs were gener-
ated across the metaSPAdes and MEGAHIT assemblies. Most of the assembled contigs
;98.39% had lengths below 1 kbp and were not used in downstream analysis.
Duplicate and contained contigs that accounted for between 10 and 42% of the fil-
tered contigs (.1 kbp) were found among the MASH distance-based and time-discrete
coassemblies and individual assemblies of metaSPAdes and MEGAHIT and removed
(Table S5). Duplicate contigs were defined as contigs sharing 100% sequence similarity
over the entire length, while contained contigs included shorter contigs that were
100% similar to a longer contig over their length. The average total number of contigs
per assembly strategy kept after removing contigs shorter than 1 kbp and redundant
contigs was 506,898 (SD, 164,157). For each assembly strategy, the metaSPAdes assem-
blies produced between 10 and 20% more contigs greater than 1 kbp than the number
of contigs that were generated from the MEGAHIT assemblies (Table S5). Differences
between assemblies were more apparent when metrics related to assembly contiguity
were compared. Irrespective of the assembly strategy, the total assembly length of the
metaSPAdes assemblies was greater than the assemblies of MEGAHIT (Fig. 1A).
MetaSPAdes time-discrete assembly had the greatest assembly length (2,940.15 Mbp),
followed by individual assembly (2,037.97 Mbp), coassembly (1,488.27 Mbp), and
MASH distance-based assembly (1,147.06 Mbp). Since larger assembly lengths are not
always indicative of better assembly quality (21), N50 estimates representing a
weighted medium contig size were considered. The metaSPAdes assemblies generated
contigs with higher N50 estimates than the MEGAHIT assemblies (Fig. 1B). Time-discrete
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assembly of metaSPAdes had the highest N50 estimates (6.77 kbp), followed by individ-
ual assembly (5.67 kbp), MASH distance-based assembly (5.65 kbp), and coassembly
(5.32 kbp). The higher N50 estimates of the metaSPAdes assemblies indicate that these
assemblies contain a lower proportion of small contigs and therefore are less frag-
mented assemblies (1, 18, 21, 46).

Although the metaSPAdes assemblies were associated with 10 to 30% more CDSs
than the MEGAHIT assemblies, the coding densities were similar across the assemblies of
metaSPAdes and MEGAHIT and range between 0.77 and 0.80, indicating that none of the
assembly strategies/assemblers were susceptible to disproportionately higher frameshift
errors (Table S5). CDSs were blasted against the UniProtKB/TrEMBL nonredundant (nr)
protein database to identify high-scoring segment pairs (HSPs), i.e., sequence pairs shar-
ing high alignment scores, at an expected value (E value) cutoff of 1 � 1023. Across the
assembly strategies, between 71 and 76% of the CDSs shared a high degree of similarity
against the reference amino acid sequences in the UniProtKB/TrEMBL nr protein database
and had average E values and bit scores of 3.09 � 1026 6 3.91 � 1025 and
387.006 305.65, respectively (Table S5). Assembly fragmentation was assessed by analyz-
ing the ratio between the lengths of CDSs (query length [qlen]) and their top hits in the
UniProtKB/TrEMBL nr protein database (subject length [slen]), with higher qlen/slen ratios
indicating less gene fragmentation and thus lower assembly fragmentation. Similar distri-
butions in qlen/slen ratios were observed across the assemblies of metaSPAdes and
MEGAHIT, with only between 30 and 36% of the CDSs having qlen/slen ratios ranging
between 0.95 and 1 (Fig. S3A; Table S6.1). This suggests that the vast majority of CDSs
across both assemblers and all assembly strategies were likely fragmented.

The CDSs of the metaSPAdes assemblies were less fragmented than those from the
MEGAHIT assemblies and hence had higher mean qlen/slen ratios (Table S6.1; Fig. S3B).

FIG 1 Comparison of assembly characteristics associated with 4 different assembly strategies (coassembly [gray], MASH distance-based assembly [blue],
time-discrete assembly [green], and individual assembly [orange]) that were assembled with metaSPAdes and MEGAHIT. Assembly characteristics were
determined using nonredundant contigs larger than 1 kbp of coassemblies and pooled MASH distance-based, time-discrete, and individual assemblies.
Assembly characteristics included total assembly length (A), N50 estimates (B), and proportion of reads (C) of 12 drinking water samples (l) that were
mapped against the nonredundant filtered assemblies. For a complete list of estimates, please refer to Table S5 in the supplemental material.
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Post hoc comparisons using the Tukey honestly significant difference (HSD) test indicated
statistically significant differences between all metaSPAdes and MEGAHIT assemblies
(Tukey HSD test, all P , 0.05) (Tables S6.2 and S6.3). metaSPAdes time-discrete assembly
had the greatest mean qlen/slen ratio (0.9016 0.307), followed by MASH distance-based
assembly (0.895 6 0.315), individual assembly (0.895 6 0.306), and coassembly
(0.892 6 0.320). Similar observations were made for the MEGAHIT assembly strategies
(Table S6.1). Though significant differences were found, the effect sizes of these differen-
ces were small (effect size [h2], 1.15E-04 and 2.39E-04 for metaSPAdes and MEGAHIT,
respectively), suggesting that only 0.01 and 0.02% of the change in qlen/slen ratios can
be accounted for by the assembly strategy for metaSPAdes and MEGAHIT, respectively.
Statistically significant differences in the variation around the mean qlen/slen ratios were
observed for the assemblies of metaSPAdes (coefficient of variation [CV], 0.35 6 0.01)
and MEGAHIT (C, 0.366 0.01) (signed-likelihood ratio test [SLRT] and asymptomatic test,
all P , 0.05) (Table S6.4). Associations between the mean qlen/slen ratios and CV esti-
mates indicated that the metaSPAdes assembly strategies were associated with higher
qlen/slen ratios and lower CV estimates than the assemblies of MEGAHIT (Fig. S3B). The
ratio between the alignment lengths of CDSs (query alignment length [qalignlen]) and
their top hits in the UniProtKB/TrEMBL nr protein database (subject alignment length
[salignlen]) were used to evaluate potential misassembly due to the presence of
insertion/deletion (indels) in genes (Table S7.1). Similar distributions in qalignlen/sal-
ignlen ratios were observed across the assemblies of metaSPAdes and MEGAHIT,
with between 59 and 66% of the CDSs having qalignlen/salignlen ratios that ranged
between 0.95 and 1 (Fig. S3C; Table S7.1). Though statistically significant differences
in the mean qalignlen/salignlen ratios were observed for the assemblies of
metaSPAdes and MEGAHIT (ANOVA, all P , 0.05) (Tables S7.2 and S7.3), the effect
size of the differences was small (h 2 = 6.22 � 1025 and 3.74 � 1025 for metaSPAdes
and MEGAHIT, respectively). Similarly, small but statistically significant differences in
the variation around the mean qalignlen/salignlen ratios of the metaSPAdes and
MEGAHIT assembly strategies were observed (CV range, 0.02 to 0.03 for metaSPAdes
and MEGAHIT assemblies) (SLRT and asymptomatic test, all P , 0.05) (Table S7.4).
Overall, these results suggest that while metaSPAdes results in significantly less frag-
mented assemblies with lower rates of genes fragmentation, the effect size of this
difference on CDS quality is small.

The proportion of sequencing information retained following assembly was determined
by mapping the quality-trimmed paired-end reads of each sample to the nonredundant fil-
tered metaSPAdes and MEGAHIT assemblies. Although a significant proportion of the
assembled contigs ;98.39% were removed due to insufficient contig lengths, the majority
of sequencing data were retained in contigs .1 kbp (Table S5). No statistically significant
differences between the mean read mapping rates of corresponding metaSPAdes and
MEGAHIT assembly strategies were observed (Tukey HSD, all P, 0.05) (Table S8); however,
the metaSPAdes assemblies had mean mapping rates that were higher than the MEGAHIT
assemblies (Fig. 1C; Table S5). Among the metaSPAdes assemblies, coassembly of all sam-
ples had the highest mapping rate (90.61 6 3.28%), followed by time-discrete assembly
(88.45 6 3.64%), MASH distance-based assembly (86.91 6 3.39%), and individual assembly
(85.47 6 4.45%). Similar observations were made for the MEGAHIT assemblies. Overall, the
metaSPAdes assemblies had larger and more contiguous assemblies with read mapping
rates of.85%. This confirms previous findings (1, 18, 21, 46).

Evaluation of binning results for the combination of assembly strategies,
assemblers, and binning approaches. Unrefined bin sets were generated from the
metaSPAdes and MEGAHIT assemblies of each assembly strategy using original bin-
ning algorithms that combine tetranucleotide frequencies and coverage information
across samples (12, 13, 47), i.e., CONCOCT v1.1.1, MetaBAT v2.12.1, and MaxBin v2.2.4,
as well as DAS Tool v1.1.0, which integrates results of bin predictions made by original
binning algorithms to optimize the selection on nonredundant, high-quality bin sets
(20). This resulted in 64 assembly/binning combinations (n = 32 assembly/binning
combinations for bin sets that were constructed using larger than 1-kbp and 2.5-kbp
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contigs, respectively) (Table S9). MASH distance-based nonmetric multidimensional
scaling (NMDS) clustering of the unrefined bin sets indicated that the bin sets clustered
based on assembly/binning approach rather than contig size cutoff used for binning
(Fig. S4). The importance of assembly/binning approach compared to contig size cutoff
was further confirmed by permutational analysis of variance (PERMANOVA) (Table
S10). The minimum contig threshold (1 kbp or 2.5 kbp) that was selected for binning
explained a smaller proportion of the variation, ;2% [PERMANOVA, F(1) = 36.16,
R2 = 0.02, P, 0.05] compared to 96% of the variation that was explained by the assem-
bly/binning approach choice [PERMANOVA, F(31) = 46.24, R2 = 0.96, P , 0.05].
However, the unrefined bin sets that were generated using contigs .1 kbp produced
about 20% more unrefined bins with $ 50% completeness than the unrefined bin sets
that were generated using contigs .2.5 kbp (Fig. 2; Table S9). These unrefined bins
were, furthermore, associated with mapping rates that were between 5 and 20%
higher than the unrefined bins that were generated using contigs .2.5 kbp (Fig. 2;
Table S9). These findings suggest that binning with contigs .1 kbp allows for a more
accurate representation of the microbial diversity.

Marked improvements in bin qualities following reassembly and curation.
Across the 64 assembly/binning combinations greater than 1-kbp and 2.5-kbp contig
size bin sets of 4 assembly/binning approaches, hence, 8 assembly/binning combina-
tions in total, consistently produced the highest number bins (completeness $ 50%)
and mapping rates greater than 50%. These assembly/binning approaches included the
following coassembly strategies of metaSPAdes: (i) metaSPAdes coassembly and
CONCOCT, (ii) metaSPAdes time-discrete assembly and CONCOCT, (iii) metaSPAdes

FIG 2 Association between total number of bins and mean read mapping rates of sample reads mapped against the unrefined bins with completeness
$50% that were assembled with different assembly approaches (coassembly [gray], MASH distance-based assembly [blue], time-discrete assembly [green],
and individual assembly [orange]) using metaSPAdes (~) and MEGAHIT (n) and binned with CONCOCT, MetaBAT2, MaxBin2, and DAS Tool. Error bars
indicate standard errors of read mapping rates.
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coassembly and MetaBAT2, and (iv) metaSPAdes coassembly and DAS Tool (Fig. 2). The
unrefined CONCOCT bin sets of the coassembled metaSPAdes assemblies (i.e.,
metaSPAdes coassembly and CONCOCT and metaSPAdes time-discrete assembly and
CONCOCT) consisted of fewer bins and bins that were significantly greater in size (Table
S11). In particular, for metaSPAdes coassembly and CONCOCT, the average bin size was
8.15 6 8.12 Mbp and 6.41 6 5.26 Mbp for 1-kbp and 2.5-kbp constructed bins, while
metaSPAdes time-discrete assembly and CONCOCT had average bin sizes of
14.056 15.06 Mbp (contigs. 1 kbp) and 15.016 12.59 Mbp (contigs. 2.5 kbp). These
bins were also associated with large redundancy estimates that averaged above 60%
and average strain heterogeneity estimates greater than 20% (Fig. 3). These findings sug-
gest that the unrefined CONCOCT bin sets likely consist of multigenome or chimeric bins
and highlighted the need for reassembly of individual bins and/or bin curation (19). The
remaining coassembly strategies of metaSPAdes, i.e., metaSPAdes coassembly with
MetaBAT2 and metaSPAdes coassembly with DAS Tool, generated more bins and bins
with lower redundancy estimates that average below 15% (Fig. 3). To improve the qual-
ity of the unrefined bin sets, bins with greater than 50% completeness of the 8 assem-
bly/binning combinations were independently subjected to reassembly. Proper paired
quality-trimmed reads associated with the bins were extracted, converted to FASTQ for-
mat, and then reassembled using metaSPAdes and rebinned using the appropriate origi-
nal binning approach. Following reassembly, the reassembled unrefined bin sets of
metaSPAdes coassembly with CONCOCT and metaSPAdes time-discrete assembly with
CONCOCT consisted of bins that were notably smaller in size (Table S11). Specifically, the
reassembled metaSPAdes time-discrete assembly and CONCOCT had average unrefined
bin sizes for the 1-kbp- and 2.5-kbp constructed bins (4.21 6 2.75 Mbp and 3.97 6 1.66
Mbp, respectively) that were at least 4-fold lower than the original unrefined bin sizes.
Similar observations were made for reassembled metaSPAdes coassembly and
CONCOCT that had an average 2-fold reduction in bin size (Table S11). Furthermore,

FIG 3 Bubble plot showing the total number of bins (depicted by size) with mean completeness and redundancy estimates of unrefined bin sets
(completeness estimates . 50%) that were generated before and after reassembly using 4 assembly/binning approaches (metaSPAdes coassembly and
CONCOCT [orange], metaSPAdes coassembly and DAS Tool [gray], metaSPAdes coassembly and MetaBAT2 [blue], and metaSPAdes time-discrete assembly
and CONCOCT [green]) and binning of contigs greater than 1 kbp and 2.5 kbp.
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reductions in bin size across the coassembled CONCOCT bins that were reassembled
was accompanied by improvements in bin quality (Fig. 3). These improvements were
associated with reduced redundancy estimates across the 1-kbp and 2.5-kbp unrefined
bin sets of reassembled metaSPAdes coassembly and CONCOCT (26.91 6 47.05% and
23.86 6 42.87%) and reassembled metaSPAdes time-discrete assembly and CONCOCT
(21.52 6 41.98% and 11.08 6 27.92%). These findings suggest that the unrefined
CONCOCT bins set consisted of chimeric bins that were resolved with reassembly. This
improvement in bin quality after reassembly is consistent with previous findings (48). In
contrast, no improvements in bin quality were observed in the reassembled bin sets of
MetaBAT2 and DAS Tool (Fig. 3). Specifically, the reassembled unrefined 1-kbp and 2.5-
kbp bin sets of metaSPAdes coassembly and MetaBAT2 maintained smaller bin sizes
(4.16 6 3.04% and 4.28 6 2.66%) as well as average redundancy estimates below
approximately 10% (11.05 6 29.38% and 8.66 6 20.47%). Similar observations were
made for metaSPAdes coassembly and DAS Tool. This was expected, as higher-quality
bins were associated with both MetaBAT and DAS Tool bin sets prior to reassembly.

Metagenome-assembled genomes shared across assembly/binning approaches.
The reassembled CONCOCT bin sets (i.e., reassembled metaSPAdes coassembly with
CONCOCT and reassembled metaSPAdes time-discrete assembly with CONCOCT) and
original assembled MetaBAT and DAS Tool bin sets were manually curated using the
interactive interface of anvi’o v6.1 (49) to obtain final MAGs (completeness $ 50% and
redundancy , 10%) (Fig. S5). In total 1,279 MAGs were generated across the 4 assem-
bly/binning approaches that were constructed using contigs .1 kbp (n = 673) and
contigs .2.5 kbp (n = 606). Approximately 98% (n = 1,259) of the MAGs that were
identified met the metagenome-assembled genome (MIMAG) standard (50) for me-
dium-quality draft genomes, while only 20 MAGs were classified as high-quality draft
genomes (Table S12.1). The limited number of high-quality MAGs was mainly due to
the absence of a full complement of rRNA genes. Depending on the assembly/binning
approach, between 75 and 83% of the MAGs lacked 16S rRNA genes, while between
10 and 16% of the MAGs consisted of fragmented 16S rRNA gene(s) (Table S12.1).
MAGs often lack 16S rRNA genes due to their conserved and repetitive nature, which
results in fragmented assemblies (24, 51, 52). Overall, none of the assembly/binning
strategies produced sufficient high-quality MAGs as defined under MIMAG standards.
Alternative sequencing technologies (e.g., long read) may be able to successfully
reconstruct full complementary rRNA genes to increase the number of high-quality
MAGs (5).

The MAGs across the 4 assembly/binning approaches shared similar characteristics
in terms of contiguity (i.e., total length and N50) and quality (i.e., completeness, redun-
dancy, and strain heterogeneity) (Fig. 4A and Table S12.1). Overall, the curated MAG
sets of the assembly/binning approaches retained more than 66% of the sequencing
information (Table S12.1). The curated MAG sets of DAS Tool and MetaBAT had higher
mapping rates, ;70%, than the curated reassembled MAG sets of CONCOCT. As shown
in Fig. 4B, MAGs that were reconstructed using a minimum contig length of 1 kbp had
slightly higher mapping rates than the mapping rates of the MAGs that were recon-
structed using a minimum contig length of 2.5 kbp. These differences in read mapping
rates were not statistically significantly different between corresponding assembly/bin-
ning strategies that used minimum contig threshold of 1 kbp and 2.5 kbp for MAG
reconstruction, respectively (Tukey HSD test, all P. 0.05) (Table S12.2).

The curated MAG sets clustered by assembly/binning approach based on MASH dis-
tance estimates that explained approximately 91% of the variation in the nucleotide
composition [PERMANOVA, F(3) = 16.80, R2 = 0.91, P , 0.05] (Fig. 4C; Table S13). Though
the minimum contig threshold (1 kbp or 2.5 kbp) that was selected for binning explained
a smaller proportion of the variation of ;3%, this was not significant [PERMANOVA, F
(1) = 1.73, R2 = 0.03, P. 0.05] (Table S13). Based on MASH distance estimates, the differ-
ences in nucleotide composition of the curated MAGs between assembly/binning
approaches were small, ranging between 0.005 and 0.08. Reassembled metaSPAdes
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time-discrete assembly clustered separately from the other assembly/binning strategies,
suggesting differences in the nucleotide composition of these curated MAGs.

Similarities in the nucleotide composition of the curated MAG sets and comparable
MAG characteristics (i.e., continuity and quality) suggest the presence of overlapping MAGs
across the assembly/binning approaches that likely represent the same species. The pres-
ence of overlapping MAGs across the assembly/binning approaches was investigated by
aggregating all the MAGs and then clustering them using a 95% average nucleotide iden-
tity (ANI) threshold to identify species-level representative genomes (SRGs). Although the
species concept for prokaryotes is controversial, this operational definition is commonly
used and considered a golden standard (53). A total of 233 SRGs with average dRep quality
scores {calculated as (A � completeness) 2 (B � contamination) 1 C � [contamination �
(strain_heterogeneity/100)] 1 D � log(N50) 1 E � log(size) 1 F � (centrality 2 S_ani)} (54)
of 74.40 6 21.80% were identified across the assembly/binning approaches (Table S14).
These SRGs had average sizes of 3.46 6 1.72% and were nearly complete (81.98 6

16.39%), with redundancy estimates less than 10%. Taxonomic classification of the SRGs
using GTDB-Tk classified 33 SRGs to species level, 178 to genus level, 217 to family level,
and 233 to order, class, and phylum levels (Fig. 5A and Table S14).

Approximately 34% (n = 79) of the SRGs were shared across the assembly/binning
approaches, where they accounted for between 39 and 48% of the sequencing data
(Fig. 5B and Table S15). These SRGs had better quality with average completeness and
redundancy estimates of 94.03 6 8.3% and 1.3 6 1.17%, respectively. Unique SRGs

FIG 4 Summary statistics and characteristics of 1,279 curated MAGs that were generated across the 4 assembly/binning approaches (reassembled
metaSPAdes coassembly and CONCOCT [gray], metaSPAdes coassembly and DAS Tool [orange], metaSPAdes coassembly and MetaBAT2 [blue], and
reassembled metaSPAdes time-discrete assembly and CONCOCT [green]) using contigs larger than 1 kbp (n = 673) and 2.5 kbp (n = 606), respectively. (A)
Bubble plot showing total MAG size (depicted by size) and completeness (x axis) and redundancy (y axis) estimates of 1,279 curated MAGs that were
generated for each of the 4 assembly/binning approaches. (B) Proportion of reads of 12 drinking water samples (l) that were mapped against the curated
MAGs of each assembly/binning approach. (C) Comparison of the curated MAGs’ nucleotide composition across the different assembly/binning approaches
according to MASH distance. The heatmap are colored according to MASH distance; white denotes a distance of 0. Labels on the x and y axes are colored
according to assembly/binning approach, and clustering was done using Euclidean distance. For a complete list of continuity and quality estimates, please
refer to Table S12 in the supplemental material.
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FIG 5 (A) Phylogenomic analysis of 233 nearly complete SRGs inferred from 37 single-copy ribosomal bacterial core genes. The two inner panels represent
taxonomic classification of 16 bacterial phyla and class-level classification of dominating bacterial phyla, Proteobacteria representing Alphaproteobacteria
(red) and Gammaproteobacteria (blue). Outer panel represents a presence/absence summary plot showing the frequency distribution of MAGs that were
constructed using contigs greater than 1 kbp and 2.5 kbp across 4 assembly/binning approaches. Gray denotes absence, while black and red denotes the
presence of a singular MAG or duplicate MAGs that demonstrated $95% ANI, respectively. (B) UpSetR plot showing the distribution of species-level
representative genomes (SRGs) that demonstrated $95% ANI between the 4 assembly/binning approaches in which MAGs were constructed using contigs
greater than 1 kbp and 2.5 kbp. For the assembly/binning approaches, A represents metaSPAdes coassembly and MetaBAT2 (1 kbp), B indicates
metaSPAdes coassembly and MetaBAT2 (2.5 kbp), C represents metaSPAdes coassembly and DAS Tool (1 kbp), D represents metaSPAdes coassembly and
DAS Tool (2.5 kbp), E represents reassembled metaSPAdes coassembly and CONCOCT (1 kbp), F represents reassembled metaSPAdes coassembly and
CONCOCT (2.5 kbp), G represents reassembled metaSPAdes time-discrete assembly and CONCOCT (1 kbp), and H represents reassembled metaSPAdes
time-discrete assembly and CONCOCT (2.5 kbp).
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represented 10% (n = 29) of the total SRGs, while the largest proportion of the SRGs,
;43% (n = 125), were shared between two or more assembly/binning approaches (but
not all) (Fig. 5B). The latter shared similar quality characteristics to the SRGs that were
shared across all the assembly/binning approaches and accounted for between 18 and
32% of the sequencing data. Overall, metaSPAdes coassembly and MetaBAT2 (with
contigs . 1 kbp) retained more SRGs (n . 200) and were able to reconstruct MAGs
that were not detected in the other assembly/binning approaches (Fig. 5A). Though
reassembled metaSPAdes time-discrete assembly and CONCOCT were associated with
a low number of SRGs (n , 120), 12 duplicate SRGs sharing .95% ANI were identified
within the 1-kbp and 2.5-kbp approaches, respectively. These SRGs were likely subspe-
cies, suggesting that the reassembled metaSPAdes time-discrete assembly and
CONCOCT assembly/binning approach can differentiate between closely related spe-
cies that were otherwise collapsed or considered a singular strain using the other as-
sembly/binning approaches. This highlights the potential for utilizing multiple
approaches for not just binning but also assembly strategies, as this can assist in the re-
covery of a greater proportion of populations in metagenomes.

Reads from all samples were mapped to the 233 SRGs and their relative abundance
in each sample for all assembly/binning, and contig size strategy was estimated based
on the presence/absence of the bin in the respective strategy. Variability in the microbial
community structure and membership between the assembly/binning approaches were
visualized by ordinating the samples in multidimensional space. As shown in Fig. 6, the
samples cluster by time point which explained approximately 64% of the variation in the
community membership [PERMANOVA, F(11) = 108.88, R2 = 0.637, P , 0.05] and 70% of
the variation in community structure [PERMANOVA, F(11) = 50.92, R2 = 0.703, P , 0.05]
(Tables S16.1 and S16.2). The remaining variables, i.e., assembly/binning approach and
contig size, accounted for a smaller but significant proportion of the variation. In particu-
lar, the assembly/binning approach explained about 29% of the variation in community

FIG 6 Structure-based nonmetric multidimensional scaling (NMDS) of Bray-Curtis dissimilarity matrices and membership-based Jaccard distances as inferred
using the abundance information (in reads per kilobase per million [RPKM]) of all MAGs identified across the assembly/binning approaches. Points
represent samples (or time points) (see Table S1 in the supplemental material), and shapes represent the assembly/binning approaches, i.e., n, reassembled
metaSPAdes coassembly and CONCOCT; ~, metaSPAdes coassembly and DAS Tool; l, metaSPAdes coassembly and MetaBAT2; and 1, reassembled
metaSPAdes time-discrete assembly and CONCOCT.

Vosloo et al.

Volume 9 Issue 3 e01434-21 MicrobiolSpectrum.asm.org 12

https://www.MicrobiolSpectrum.asm.org


membership [PERMANOVA, F(3) = 182.78, R2 = 0.291, P , 0.05], while contig size
explained 3% [PERMANOVA, F(3) = 55.50, R2 = 0.03, P , 0.05]. Similar observations were
made for structure-based analysis (Table S16.1). Although no clustering by assembly/bin-
ning approach and contig size was observed, the average dissimilarity in community
structure and membership between time points were about 37 and 53%, respectively
(dBC and dJ = 0.3696 0.11 and 0.5286 0.13). These findings suggest that while temporal
dynamics of the drinking water microbiome are largely retained despite variation in ge-
nome-centric metagenomic workflows, the choice of assembly/binning strategy, in par-
ticular, can have a significant impact on the structure and membership of the drinking
water microbiome and should not be overlooked.

Conclusion. This study evaluated the performance of a combination of de novo assem-
bly strategies and binning algorithms for time series metagenomic data for drinking water
microbial communities to identify an ideal combination of assembly and binning
approaches that allow for the generation of high-quality metagenomic assemblies and
MAGs. Overall, metaSPAdes coassembly strategies, i.e., coassembly of all samples and time
discrete assembly, produced less fragmented and larger assemblies that retained the maxi-
mum amount of metagenomic information. Reassembly and binning followed by manual
curation significantly improved MAG qualities in situations with unresolved multigenome
or chimeric bins. Though none of the assembly/binning strategies were able to reconstruct
high-quality MAGs due to the absence of a full complement of rRNA genes, metaSPAdes
coassembly and MetaBAT2 retained the highest number of medium-quality MAGs and
were able to reconstruct MAGs that were not detected with the other assembly/binning
approaches. Moreover, reassembled metaSPAdes time-discrete assembly and CONCOCT
were able to differentiate between closely related species that were otherwise collapsed or
considered a singular strain using the other two assembly/binning approaches. Our study
also finds that the choice of assembly/binning strategy can have a significant impact on
the membership and structure of the microbial community as inferred from presence/ab-
sence and relative abundance of MAGs. This, combined with the fact that a significant pro-
portion of SRGs were not reconstructed using any single approach, highlights the need to
utilize multiple assembly/binning approaches for MAG recovery. We therefore recommend
utilizing multiple assembly, binning, and binning-aggregating strategies followed by dere-
plication to maximize the recovery of nonredundant MAGs that may more fully represent
the microbial populations in drinking water samples.

MATERIALS ANDMETHODS
Sample collection. A drinking water sample was collected every second week over a period of

6 months from a tap in a commercial building located in Boston, Massachusetts (United States). This
resulted in 12 drinking water samples that represented successive sampling points (Table S1 in the sup-
plemental material). Prior to sample collection, the system was flushed for at least 30 min at a flow rate
ranging between 3.0 and 3.3 l.min21, and then approximately 1,500 ml of tap water was collected for mi-
crobial community analysis in a sterile (by autoclaving) a 2-liter Duran GLS 80 wide-mouth borosilicated
glass bottle (Duran; catalog no. 1112715). An additional 500-ml sample was collected in parallel in sterile
2 � 250 ml Duran GLS 80 wide-mouth borosilicated glass bottles (Duran; catalog no. 218603656) for
chemical analysis. Samples for microbial community analysis were filtered immediately through
Sterivex-GP pressure filter units (EMD Millipore; catalog no. SVGP01050) containing a 0.22-mm polyether-
sulfone (PES) filter membrane, using the Geotech Geopump series II peristaltic pump (Geotech
Environmental Equipment, Inc.; catalog no. 91350113) and sterile size 15 Geotech silicone tubing
(Geotech Environmental Equipment, Inc.; catalog no. 77050000). Following filtration, the exterior of the
filter unit was cleaned with a 70% ethanol (Fisher Scientific; catalog no. A962F)-soaked Kimwipe
(Kimberly Clark Professional; catalog no. 34120) and then transferred to a 50-ml Falcon tube (Corning;
catalog no. 362070) and stored at 280°C until further analysis.

Water chemistry characterization. Water quality parameters (i.e., temperature, pH, conductivity,
and dissolved oxygen) were measured using the Orion Star A325 pH/conductivity portable multipara-
meter meter (Thermo Scientific; catalog no. STARA3250). Total chlorine was measured using U.S.
Environmental Protection Agency (U.S. EPA)-approved Hach method 8167 with DPD total chlorine rea-
gent powder pillows (Hach; catalog no. 2105669). Reactive orthophosphate was measured using U.S.
EPA-approved Hach method 8048 with PhosVer 3 phosphate reagent powder pillows (Hach; catalog no.
2106028). Nitrogen species, including ammonium, nitrate, and nitrite were measured using the nitro-
gen-ammonia reagent set (method 10023; Hach; catalog no. 2604545), NitraVer X nitrogen-nitrate rea-
gent set (method 10020; Hach; catalog no. 2605345), and NitriVer 3 TNT reagent set (method 10019;
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catalog no. 2608345), respectively. All Hach measurements were performed in triplicate on the DR1900
portable spectrophotometer (Hach; catalog no. DR190001H) (Table S1).

Flow cytometric analysis. Standard flow cytometric measurements (FCM) were performed as
described previously (30, 55). Briefly, samples were quenched with 10 mM sodium thiosulfate (1% [vol/
vol]) (Alfa Aesar; catalog no. AA35645K2) and then preheated at 37°C for 3 min, stained with SYBR green
I (SG) (Invitrogen; catalog no. S7585) (1:100 diluted in 10 mM Tris-HCl, pH 8.5; Bioworld; catalog no.
NC1213695) at 10 ml�ml21 or SG combined with propidium iodide (PI) (Molecular Probes; catalog no.
P3566) (3 mM final concentration) at 12 ml�ml21 and incubated in the dark at 37°C for 10 min. Five nega-
tive controls consisting of (i) unstained UltraPure DNase/RNase-free distilled water (Thermo Fisher
Scientific; catalog no. 10977015), (ii) SG-stained UltraPure DNase/RNase-free distilled water, (iii) SGPI-
stained UltraPure DNase/RNase-free distilled water, (iv) SG-stained 0.22-mm filtered tap water sample,
and (v) SGPI-stained 0.22-mm filtered tap water sample, respectively, were processed identically and in
parallel with the samples. FCM was performed on a 50-ml sample in triplicate at a preset flow rate of
66 ml�min21 using a BD Accuri C6 flow cytometer (BD Accuri cytometers, Belgium), which is equipped
with a 50-mW solid-state laser emitting light at a fixed wavelength of 488 nm. Green and red fluorescent
intensities were collected at FL1 of 5336 30 nm and FL3 of.670 nm, respectively, along with sideward-
and forward-scatter light intensities. Data were processed with the BD Accuri CFlow software that per-
mits electronic gating to separate the positive signals from instrumental and sample background noise
on a two-parameter density plot (30). A trigger/threshold of 1,000 was applied on the green fluores-
cence channel (FL1). No compensation was used.

Sample processing and DNA extraction. Prior to extraction, the bead constituents (i.e., ceramic
and silica spheres and glass bed) contained within the 2-ml Lysing Matrix E tubes (MP Biomedicals; cata-
log no. 116914100) were aseptically transferred into sterile 1.5-ml microcentrifuge tubes (Eppendorf; cat-
alog no. 022431021) (56). Removal of these components was necessary to ensure that the processed
PES filter membranes from the Sterivex-GP pressure filter units are fully immersed in solution during the
enzymatic and chemical treatment steps of the DNA extraction protocol. The PES filter membrane with
harvested microbial biomass was aseptically removed from the Sterivex-GP pressure filter unit and cut
into smaller pieces on the surface of a petri dish (Fisher Scientific; catalog no. FB0875712) using a sterile
scalpel (Fisher Scientific; catalog no. 08-920B) and then transferred into the emptied 2-ml Lysing Matrix
E tubes using a sterile tweezer (Fisher Scientific; catalog no. 22-327379). DNA extractions were per-
formed using a modified version of the DNeasy PowerWater kit (Qiagen; catalog no. 14900-50-NF or
14900-100-NF) protocol that utilizes enzymatic, chemical, and mechanical lysis strategies to enhance re-
covery of DNA from drinking water samples (56). Briefly, filter cuttings contained in the 2 ml Lysing
Matrix E tubes were submerged in 294 ml 10� Tris-EDTA (100 mM Tris, 10 mM EDTA, pH 8.0; G-
Biosciences; catalog no. 501035446) and 6 ml lysozyme solution (50 mg�ml21; Thermo Fisher Scientific;
catalog no. 90082) and incubated for 60 min at 37°C with light mixing at 300 rpm using the Eppendorf
ThermoMixer C (Eppendorf; catalog no. 2231000680). Subsequently, the tubes were supplemented with
300 ml prewarmed (55°C) PW1 solution, provided with the DNeasy PowerWater kit, and 30 ml proteinase
K (20 mg�ml21; Thermo Fisher Scientific; catalog no. AM2546), vortexed, and incubated for 30 min at
56°C with light mixing at 300 rpm using the Eppendorf ThermoMixer C. After incubation, the bead con-
stituents initially transferred to the sterile 1.5-ml microcentrifuge tubes were aseptically transferred back
to the Lysing Matrix E tubes. The tubes were then supplemented with 630ml chloroform/isoamyl alcohol
(24:1, pH 8; Acros Organics; catalog no. 327155000) and beads beaten at setting 6 for 40 s using the
FastPrep-24 classic instrument (MP Biomedicals; catalog no. 116004500). The resulting homogenized
mixture was then subjected to centrifugation at 14,000 � g for 10 min at 4°C using the Eppendorf centri-
fuge 5424R (catalog no. 5404000332). After centrifugation, the aqueous phase (600 to 650 ml) was trans-
ferred to a sterile 1.5-ml microcentrifuge tube. Exactly 600 ml of the aqueous phase was used as starting
material on the QIACube system (Qiagen; catalog no. 9001882) to purify DNA according to the manufac-
turer’s instructions using the DNeasy PowerWater kit protocol. Three negative controls consisting of a re-
agent blank (C01) and two filter blanks (i.e., unused PES membrane filters [C02] and PES membrane fil-
ters treated with autoclave deionized water [C03]) were processed identically and in parallel with the
samples. The extracted DNA was quantified in duplicate using the Qubit dsDNA high-sensitivity (HS)
assay kit (Thermo Fisher Scientific; catalog no. Q32851) with the Qubit 4 fluorometer (Thermo Fisher
Scientific; catalog no. Q33238) (Table S2). All DNA extracts (50 ml) were stored at 280°C until further
analysis.

Quantitative PCR. The quantitative PCR (qPCR) assay was performed on a QuantStudio 3 real-time
PCR system (Thermo Fisher Scientific; catalog no. A28567) in a 20-ml reaction mixture consisting of Luna
Universal qPCR master mix (New England Biolabs, Inc.; catalog no. NC1276266), forward and reverse
primer pairs (F515-GTGCCAGCMGCCGCGGTAA and R806-GGACTACHVGGGTWTCTAAT, respectively) (57),
UltraPure DNase/RNase-free distilled water (Thermo Fisher Scientific), and 1:10 diluted DNA template.
Reactions were prepared in triplicate in a 96-well optical plate using the epMotion M5073 automated
liquid handling system (Eppendorf; catalog no. 5073000205D). qPCR conditions were as follows: 1 min at
95°C and then 40 cycles consisting of 15 s at 95°C, 15 s at 50°C, and 1 min at 72°C. A calibration curve
with standards ranging from 102 to 108 copies of the 16S rRNA gene of Nitrosomonas europaea for total
bacteria assay was generated. The calibration curve for 16S rRNA copies was linear (R2 = 0.997) over 7
orders of magnitude with a high PCR efficiency (100%).

Metagenomic sequencing. Sequencing libraries were prepared using the Ovation Ultralow DNA-seq
library preparation kit (NuGen; catalog no. 0344NB). Metagenomic sequencing was performed on one S
prime (SP) lane of the NovaSeq 6000 sequencing system (Illumina) at the Roy J. Carver Biotechnology
Centre at the University of Illinois Urbana-Champaign (UIUC) Sequencing Core (Champaign, IL, USA).
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Sequence processing. (i) Preprocessing. Processing of sequencing data was done using the work-
flow outlined in Fig. S1. Initial quality control of FASTQ files was performed using fastp v0.20.0 (58) with
parameters –trim_poly_x, –qualified_quality_phred 20, –length_required 20. The UniVec_Core database
from NCBI (ftp://ftp.ncbi.nih.gov/pub/UniVec/) was subsequently used to screen for contaminant
sequences (e.g., phix sequencing control used as sequencing control and sequencing adapters) by map-
ping the reads from each sample against the UniVec_Core database using BWA-MEM v0.7.17 (59) and
then filtering reads in proper pair and supplementary alignments using SAMtools v1.9 (60) with parame-
ters -hbS -F2 -F2048. BAM files were subsequently sorted using the sort function of SAMtools v1.9, and
then quality-filtered forward and reverse FASTQ files were extracted from sequence alignments in sorted
BAM format using the bamtofastq function of bedtools v2.29.2 (https://bedtools.readthedocs.io/en/
latest/). The quality-filtered FASTQ files were analyzed using Nonpareil v3.303 (42) in k-mer mode to esti-
mate the coverage and to predict the number of sequences required to achieve “near-complete” cover-
age. Nonpareil curves were generated in R (61) using the function Nonpareil.set of Nonpareil v3.3.4.

(ii) MASH distance and k-means clustering.MASH v2.2.2 (62) was used to estimate read-based dis-
similarity between samples using the quality-filtered FASTQ files. For this, forward and reverse quality-fil-
tered FASTQ files of each sample were interleaved using interleafq v1.0 (https://github.com/quadram
-institute-bioscience/interleafq), and then the sketch function was used to convert the interleaved qual-
ity filtered FASTQ files of each sample into a MinHash sketch with parameters s = 100,000 and k = 21.
The dist function was subsequently used for pairwise comparisons between samples based on Jaccard
indices, thereby comparing the fraction shared k-mer between samples. K-means clustering on MASH
distances was performed to partition samples into clusters with the nearest mean (Fig. S2). For this, the
MASH distance matrix was imported into R, and the function fviz_nbclust of factoextra v1.0.7 (https://
www.rdocumentation.org/packages/factoextra) was used to determine and visualize the optimal num-
ber of clusters (or k groups) using the average silhouette method with 999 Monte Carlo iterations. The
MASH distance matrix was subsequently clustered by the k-means method using k-means of the stats
package v3.6.2 (https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/kmeans) and
then visualized using fviz_cluster of factoextra v1.0.7.

(iii) Metagenomic assembly and binning. The performance of a combination of assembly
(metaSPAdes v3.13.1 [43] and MEGAHIT v1.2.9 [44]), binning (CONCOCT v1.1.1 [13], MetaBAT v2.12.1
[12], and MaxBin v2.2.4 [47]) and bin-aggregating software (DAS Tool v1.1.0 [20]) was evaluated using
four assembly strategies, including individual assembly and three coassembly approaches, i.e., coassem-
bly with all samples, MASH distance-based assembly, and time-discrete assembly. This resulted in 32
combinations of assembler, assembly strategy, and binning approaches (Table S2). For MASH distance-
based assemblies, the following three coassemblies consisting of pooled samples that were identified
using pairwise MASH dissimilarity indices and k-means clustering were identified: (i) BW003, BW015,
BW030, and BW060; (ii) BW075, BW090, and BW105; and (iii) BW120, BW135, BW150, and BW165 (Table
S2). Samples pooled and coassembled for time-discrete assembly consisted of the following 11 combi-
nations representing paired samples from successive sampling points: (i) BW003 and BW015, (ii) BW015
and BW030, (iii) BW030 and BW045, (iv) BW045 and BW060, (v) BW060 and BW075, (vi) BW075 and
BW090, (vii) BW090 and BW105, (viii) BW105 and BW120, (ix) BW120 and BW135, (x) BW135 and BW150,
and (xi) BW150 and BW165. Control samples (i.e., C01, C02, and C03) were pooled and assembled inde-
pendently in both MASH distance-based and time-discrete assembly strategies.

Quality-filtered forward and reverse FASTQ files of samples for the individual and three coassembly
strategies were assembled using metaSPAdes v3.13.1 and MEGAHIT v1.2.9 with k-mer sizes of 21, 33, 55,
and 77. Following assembly and prior to binning, contigs of the MASH distance-based coassemblies (n = 4),
time-discrete coassemblies (n = 12), and individual assemblies (n = 15) were pooled within each strategy,
resulting in 6 pooled assemblies and 8 assemblies in total (6 pooled assemblies and 2 coassemblies) that
were used in downstream processing (Table S2). Contigs ,1 kbp were filtered from all assemblies using
seqtk (https://github.com/lh3/seqtk). This was followed by the removal of redundant contigs, i.e., duplicate
and contained contigs, using the dedupe function of BBTools v38.76 (https://github.com/BioInfoTools/
BBMap/blob/master/sh/dedupe.sh) for the pooled assemblies. QUAST v5.0.2 (63) was used to assess the
quality of the processed assemblies with default parameters. Mapping rates were determined by mapping
the quality-trimmed paired-end reads to each assembly using BWA-MEM v0.7.17 (59) and then filtering
unmapped reads using the view function of SAMtools v1.9 (60) with parameters -hbS -F4. BAM files were
subsequently sorted using the sort function of SAMtools v1.9, and then coverM v0.4.0 (https://github.com/
wwood/CoverM) was used to calculate contig-wise coverage with the method flag set to count. Prokka
v1.14.6 (64) was used to identify coding DNA sequences (CDSs) in the contigs and to translate these CDSs
to protein-coding amino acid sequences. Coding density was calculated by dividing the total CDS length
(in Mbp) by the total assembly length (in Mbp). The blastp workflow of DIAMOND v0.9.36 (65) was used to
align the protein-coding amino acid sequences against the UniProt Knowledgebase (UniProtKB)/TrEMBL
nonredundant (nr) protein database (https://www.uniprot.org/downloads) at an expected value (E value)
cutoff of 1 � 1023 to identify high-scoring segment pairs (HSPs). Predicted protein-coding amino acid
sequences that aligned with reference protein-coding amino acid sequences in the UniProtKB/TrEMBL nr
protein database were used to compute query/subject length ratios and query/subject length alignment
ratios. These query/subject length and query/subject length alignment ratios were used as a measure to
assess the extent of assembly fragmentation and misassembly.

Binning of contigs greater than 1.0kbp and 2.5 kbp was performed using the analysis and visualiza-
tion platform for omics data (anvi’o) v6.1 (49). In this workflow, bins were generated using binning algo-
rithms that combine tetranucleotide frequencies and coverage information across samples, including
CONCOCT v1.1.1 (13), MetaBAT v2.12.1 (12), and MaxBin v2.2.4 (47). Since different binning tools
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reconstruct genomes at various levels of completeness, a bin aggregation software, i.e., DAS Tool v1.1.0
(20), was used to integrate the results of bin predictions made by CONCOCT, MetaBAT2, and MaxBin2 to
optimize the selection on nonredundant, high-quality bin sets using default parameters. Recently pub-
lished binning algorithms, including variational autoencoders for metagenomic binning (VAMB) (66) and
SemiBin (67), were not considered in this study but are important alternatives to consider in the future
to facilitate the recovery of high-quality MAGs. Bin statistics, including total size, number of contigs, N50,
GC content, etc., were obtained using the anvi-summarize function of anvi’o, while estimates of quality
(completeness, redundancy, strain heterogeneity, etc.) were retrieved using the lineage-specific work-
flow of CheckM v1.0.18 (68). Mapping rates were determined by mapping the quality-trimmed paired-
end reads to each bin using BWA-MEM v0.7.17, and then filtering unmapped reads using the view func-
tion of SAMtools v1.9 with parameters: -hbS -F4. BAM files were subsequently sorted using the sort func-
tion of SAMtools v1.9, and then coverM v0.4.0 was used to calculate contig-wise coverage with the
method flag set to count.

To further improve bin quality, individual bins with $50% completeness of a selected combination
of assembler, assembly strategy, and binning approach were identified for reassembly (see Results and
Discussion). For this, properly paired quality-trimmed reads associated with individual bins of the
selected assembly/binning approaches were extracted and stored into their FASTQ files using SAMtools
v1.9 functions view and FASTQ, followed by assembly using metaSPAdes v3.13.1 with k-mer sizes 21, 33,
55, and 77. The reassembled contigs were rebinned a second time using the appropriate original bin-
ning approach, and bin statistics and mapping rates were determined as described above.

To obtain MAGs, bins were manually curated using the interactive interface of anvi’o v6.1. MAG char-
acteristics and mapping rates were determined as described above. To assist in the identification of
high- and medium-quality draft MAGs as defined under the minimum information about a metage-
nome-assembled genome (MIMAG) standards (50), ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs)
were detected with Prokka v1.14.6 (65). Pooled MAGs were dereplicated with dRep v2.6.2 (54) and clus-
tered into species-level representative genomes (SRGs) at 95% average nucleotide identity (ANI). SRGs
were classified using the classify workflow of the Genome Taxonomy Data set Toolkit (GTDB-Tk) v0.3.2
(69), which provides automated classification of bacterial genomes by placing them into domain-spe-
cific, concatenated protein reference trees. The phylogenomic workflow of anvi’o v6.1 was reproduced
to construct a phylogenomic tree using a concatenated alignment of 37 single-copy ribosomal bacterial
core genes.

Statistical analysis. Statistical analysis was performed in R (61). Descriptive statistics and statistics
on central tendency were performed using one-way analysis of variance (ANOVA) provided in the stats
package. Significant ANOVA findings were further investigated by performing a post hoc Tukey-Kramer
test using the function Tukey.HSD with Bonferroni correction. Nonmultidimensional scaling (NMDS)
using Bray-Curtis and Jaccard dissimilarity indices was performed using metaMDS provided in the vegan
package, and permutational analysis of variance (PERMANOVA) was conducted using the function
adonis of the vegan package. All plots were generated in R using ggplot2 (70).

Data availability. Raw sequence reads and 233 SRGs are available on NCBI at BioProject accession
numbers PRJNA745168 and PRJNA745370, respectively. The 8 assemblies and 1,279 curated MAGs are
available on datadryad at https://doi.org/10.5061/dryad.qnk98sfhr.
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