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Abstract

Studies in western zoo elephants have found relationships between body condition and

physiological function, and identified mitigating management strategies to optimize health

and welfare. A similar methodological approach was used in this study, which evaluated a

body condition score (BCS; 1 = thinnest, 5 = fattest) every other month and fecal glucocorti-

coid metabolite (FGM) concentrations twice monthly in 33 tourist camp elephants in Thai-

land for a 1-year period to assess seasonal variations, and determine how lipid profiles [total

cholesterol (TC), low density lipoproteins (LDL), high density lipoproteins (HDL), triglycer-

ides (TG)] and metabolic parameters [insulin, glucose, fructosamine, glucose to insulin ratio

(G:I)] related to measures of body condition and adrenal function. The most prevalent BCS

was 3–3.5 (60.6%), with 27.3% at BCS = 4 (overweight) and 12.1% at BCS = 4.5–5 (very

overweight); no elephants had a BCS <2. BCSs were higher in rainy and winter seasons

compared to summer, with FGM, TG, HDL, LDL, and insulin also higher in the rainy and/or

winter seasons (p<0.05). By contrast, TC and glucose were lowest in the rainy season.

FGM measures were negatively associated with two environmental factors: temperature

and rainfall, but not humidity. Positive correlations were found between BCS and TC, LDL,

and HDL, and between FGM and TC, HDL, glucose, and insulin (p<0.05), whereas BCS

and FGM were both negatively associated with the G:I (p<0.05). However, there was no

relationship between BCS and FGM among the camp elephants. Using BCS and FGM mea-

sures as outcome variables in separate regression models, this study found high BCS and

elevated FGM concentrations were associated with altered lipid profiles and metabolic sta-

tus in elephants. Furthermore, more work hours/day was associated with better body
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condition and health measures. Thus, being overweight and exposed to factors that

increase adrenal activity could adversely affect health status, requiring alterations in man-

agement for some individuals, whereas exercise appears to have a protective effect.

Introduction

Healthy populations of elephants are essential to long-term global conservation, especially in

the face of declining numbers. Wild elephant numbers throughout Asia have declined at least

50% over the last three generations, and without changes to conservation management, some

populations are bound to disappear within the next century [1, 2]. Captive propagation is one

strategy to ensure species survival [3], especially when conducted in range countries [4]. How-

ever, many Asian elephant (Elephas maximus) populations ex situ are not self-sustaining due

to poor reproduction [5] or health problems [6–8].

The elephant is a national symbol of Thailand, and an integral part of Thai and Buddhist

culture, and national economics. In the early 1900’s, there were ~100,000 captive elephants in

Thailand, almost all used for logging [9], a practice that was banned in 1989. Today, there are

~3,500 captive elephants, mostly (95%) privately owned [10], that are used primarily for tour-

ism. Poor sustainability of captive elephants in Thailand is a concern, and has resulted in

increasing efforts to improve breeding and population management [4]. The majority of tour-

ist elephants today are located in the north and northeast of the country (~60%), primarily in

Chiang Mai province where this study was conducted. In species with slow-growth popula-

tions (i.e., animals that mature late, produce small numbers of offspring, and have long life

spans), sustainability is influenced by factors such as adult survival [11–14] and reproduction

[15]. Asian elephants are a long-lived species, and produce only a few calves in their lifetime,

so it is important to better understand factors affecting health and reproduction to prevent fur-

ther population declines.

There are a number of ways to evaluate animal health status, apart from routine physical

examinations. One is a visual body condition score (BCS), which has become an indirect,

effective, and inexpensive tool in veterinary practices for assessing body fat, especially as it

relates to problems with obesity [16]. For Asian elephants, several BCS indexes have been

developed using 5- (Morfeld et al.,2016 [17]), 10- (Wijeyamohan et al., 2015 [18]) and 11-

(Wemmer et al., 2006 [19]) point scales. In many species, high body condition or obesity can

have negative effects on lipid profiles, including elevated serum triglycerides (TG) [20, 21],

total cholesterol (TC) [20, 21], low density lipoprotein (LDL) [22–24], and very low density

lipoproteins (VLDL) [20, 25]. Abnormally elevated blood glucose, TG, and cholesterol have

been linked to a number of disease problems, collectively called metabolic syndrome, such as

hypertension, hyperlipidemia, insulin resistance, and type 2 diabetes [26, 27]. By contrast, few

studies have examined these health factors in relation to body condition in elephants, and

those were only on animals in western zoos. For example, negative associations were found

between the BCS and glucose to insulin ratio (G:I) in zoo Asian and African elephants [28],

and fat-free mass and circulating glucose in African elephants [29], whereas Morfeld and

Brown [30] reported a positive correlation between BCS and insulin concentrations in African

elephants. Subsequent studies demonstrated the protective effects of increased exercise and

feeding diversity on BCS and metabolic function in zoo-housed elephants [28], which could

have application to tourist elephants in Thailand that participate in varying types of physical

activities. Another favorite activity of tourists is feeding bananas and sugar cane, leading to

concerns about whether that is linked to obesity and metabolic problems.
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In addition to obesity, stress can also affect metabolic health and lipid parameters. Gluco-

corticoids (GCs) are key regulators of whole-body homeostasis, and provide an organism with

the capacity to resist environmental changes and invasion of foreign substances [31]. Gluco-

corticoids modulate a large number of physiological actions involved in metabolic, inflamma-

tory, cardiovascular, and behavioral processes [32]. Mechanisms by which GCs orchestrate

these effects include increasing hepatic glucose production [33], decreasing peripheral glucose

uptake into muscle and adipose tissue [34, 35], increasing breakdown of fat and muscle to pro-

vide additional substrates for glucose production [36–38], and inhibiting insulin release from

pancreatic beta cells [39]. While important for maintaining metabolic equilibrium, excessive

GC exposure for prolonged periods can have devastating effects on health. Patients with hy-

per-GC production exhibit abdominal obesity, increased overall body fat, high blood pressure,

insulin resistance, and a preference for fatty foods [40]. Glucocorticoids can affect fat metabo-

lism by stimulating lipolysis, which leads to the release of free fatty acids into circulation [32].

Moreover, it has been shown that GCs play a role in the redistribution of body fat from periph-

ery to visceral depots [41]. Working elephants in Thailand interact with the public in a variety

of ways, including performing in shows, trekking, bathing, and painting. Often these activities

are not closely monitored or regulated, and could be sources of stress to individual animals.

Fecal GC metabolite analysis techniques have been developed for numerous species, which has

led to improved ex situ management [42]. The ease of fecal collection without animal distur-

bance, and that data reflect pooled values over time that are less affected by pulsatile or diurnal

changes in secretion makes this a particularly attractive approach for wildlife.

In recent years, the welfare of captive elephants has become a topic of intense debate among

the lay public, government agencies, and the scientific community. Therefore, the aim of this

study was to examine relationships between BCS and fecal GC metabolite (FGM) concentra-

tions on metabolic function (insulin, glucose, fructosamine, G:I) and lipid profiles (TC, TG,

HDL, LDL) in tourist camp elephants in Thailand. The hypothesis was that elephants with

higher adrenal activity and BCSs will exhibit more metabolic derangements than those with

normal BCS and lower FGM concentrations. The goal is to better understand what factors are

related to health and welfare of working elephants in Thailand so that evidence-based stan-

dards can be developed to create healthy, self-sustaining populations.

Materials and methods

Environmental data

Weather in Thailand is hot and humid, with three official seasons: summer (16 February–15

May), rainy (16 May–15 October) and winter (16 October–15 February). Information on daily

temperature (˚C), amount of rainfall (mm/day), and humidity (%), averaged by month, was

obtained from The Northern Meteorological Center, Meteorological Department, Ministry of

Information and Communication Technology, Chiang Mai, Thailand (Thai Meteorological

Department, 2016). A thermal–humidity index (THI) was calculated based on air temperature

and relative humidity using the following formula: THI = (1.8×Tdb+32) − (0.55−0.0055×RH)

× (1.8×Tdb−26), where the Tdb is the temperature of air measured by a thermometer freely

exposed to the air, but shielded from radiation and moisture, and RH is the relative humidity

(%) [43].

Animals

This study was approved by the Faculty of Veterinary Medicine, Chiang Mai University, Ani-

mal Care and Use Committee (FVM-ACUC; permit number S39/2559). Thirty-three adult

female Asian elephants (age range, 18–50; mean, 34.2±7.3 years) were housed at five tourist
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camps within 43–72 km of the Chiang Mai University Veterinary Faculty (latitude 18˚47’N,

longitude 98˚59’E, altitude 330 m) (Table 1). At four of the camps, tourists interacted with ele-

phants through riding programs (bareback or with a saddle) and feeding supplementary foods.

The fifth camp offered no tourist activities other than observation of elephants in a large field,

and being taken for a bath at a local river. Work hours per day was the time elephants were

involved in tourist activities, like giving rides or walking to a river for bathing. For saddle and

bareback riding, it equated to the number of rounds of riding per day times the minutes per

riding round. Elephants were fed primarily corn stalk, napier grass (Pennisetum purpureum)

and bana grass (Pennisetum purpureum X, P. americanum hybrid) with unlimited access to

fresh water. Animals were given an annual physical examination by staff veterinarians, and

were in good health during the study.

Body condition scoring

Once every 2 months, rear and side view photographs were taken of each elephant to permit a

visual evaluation of the backbone, rib bone and pelvic bone areas, and scored 1–5 (1 = thinnest;

5 = fattest) as described by Morfeld et al. [17], except that scoring was done in 0.5-point, rather

than 1-point, increments. All photos were evaluated by three experienced elephant veterinari-

ans, and the scores averaged. Intra-class correlations determined the inter-assessor reliability

was 0.85.

Blood collection

Blood samples (10 ml) were collected from each elephant from an ear vein by elephant camp

staff or Chiang Mai University veterinarians twice monthly for 1 year. All elephants were con-

ditioned to the blood sampling procedure. Blood was centrifuged at 1,500 x g for 10 minutes

within a few hours of collection, and the serum stored at -20˚C until processing and analysis.

Metabolic markers analysis

Serum glucose was measured by a hexokinase method using an automated glucose analyzer

(Glucinet T01-149, Bayer, Barcelona, Spain), with quinoneimine measured at 530 nm. Serum

fructosamine was measured by a colorimetric method using nitrobluetetrazolium [44] in a

Table 1. Description of each elephant camp in the study (Camps A–E). Information includes number of years the camp has been in operation (camp age), total number

of elephants in the camp, number of elephants participating in the study, participating elephant mean age (±SEM) and range, type of work with tourists, hours worked per

day, and primary and supplemental food items.

Variable Camp A Camp B Camp C Camp D Camp E

Camp age (years) 9 27 29 14 40

Total elephant number 46 66 52 68 76

Participating elephant

number

6 6 6 11 4

Elephant age (years) 28.5±1.8

(22–34)

36.8±2.9

(23–43)

35.3±3.8

(20–45)

35.8±2.3

(25–50)

32.2±3.0

(22–40)

Type of work Bareback riding Saddle riding Saddle riding No riding Saddle riding

Work time (hours/day) 1.3 2.3 3.8 0.2 3.3

Diet

Primary Napier grass, cornstalk Napier grass,
cornstalk

Napier grass,
cornstalk

Napier grass, bana grass, cornstalk Napier grass

Supplementary Bamboo, sugarcane,

banana
Banana, sugarcane Banana, sugarcane Hay, banana, watermelon, pumpkin,

cucumber
Bamboo, sugarcane,

banana

https://doi.org/10.1371/journal.pone.0204965.t001
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Biosystems BA400 clinical chemistry analyzer (Biosystems S.A., Barcelona, Spain). A solid-phase,

two-site bovine insulin enzyme immunoassay (EIA; Cat. No. 10-1113-01; Mercodia, Uppsala,

Sweden), validated for elephants, was used to measure serum insulin concentrations [30]. Colori-

metric responses were determined spectrophotometrically at 450 nm filter with an Opsys MR

Microplate Reader (TECAN SunriseTM microplate reader; Salzburg, Austria). All samples were

analyzed in duplicate; intra- and inter-assay CVs were<10% and<15%, respectively.

Lipid profile analysis

Serum lipids were quantified using a Mindray BS Series analyzer (Mindray BS-380, Shenzhen

Mindray Bio-Medical Electronics Co., Ltd.). Total cholesterol was measured by a cholesterol

oxidase-peroxidase (CHOD-POD) method. Triglycerides were measured by a glycerokinase

peroxidase-peroxidase (GPO-POD) method, with a sensitivity of 0.1 mmol/L (99.7% confi-

dence). The lowest measurable concentration was 0.1 mmoL/L (99.7% confidence) for TC,

and 0.05 mmol/L for both HDL and LDL.

Fecal extraction and GC metabolite analysis

All chemicals were obtained from Sigma Chemical Company (St. Louis, MO), unless otherwise

stated. The fecal extraction method was based on Brown et al. [45]. Briefly, wet fecal samples

were dried in a conventional oven at 60˚C for ~24–48 hours and stored at -20˚C until extrac-

tion. Frozen dried fecal samples were thawed at room temperature (RT), mixed well and 0.1 g

(±0.01) of dry powdered feces placed in a glass tube containing 90% ethanol in distilled water.

Samples were extracted twice by boiling in a water bath (96˚C) for 20 minutes and adding

100% ethanol as needed to keep from boiling dry. Samples were centrifuged at 1,500 x g for 20

min, and the combined supernatants dried under air in a 50˚C water bath. Dried extracts were

reconstituted by vortexing for 1 min in 3 ml ethanol, dried again, and then diluted and vor-

texed in methanol for analysis. Extracts were stored at –20˚C until EIA analysis.

Concentrations of FGM were determined using a double-antibody enzyme immunoassay

(EIA) with a polyclonal rabbit anti-corticosterone antibody (CJM006) that has been validated

for Asian elephants [46]. Second antibody-coated plates were prepared by adding 150 μl of

anti-rabbit IgG (0.01 mg/ml) to each well of a 96-well microtiter plate, and incubating at room

temperature (RT) for 15–24 h. The wells were then emptied and blotted dry, followed by add-

ing 250 μl blocking solution and incubating for 15–24 h at RT. After incubation, all wells were

emptied, blotted and dried at RT (Sanpla Dry Keeper, Sanplatec Corp., Auto A-3, Japan) with

loose desiccant in the bottom. After drying (humidity <20%), plates were heat-sealed in a foil

bag with a 1g desiccant packet, and stored at 4˚C until use.

Samples (50 μl), diluted 1:3 in assay buffer, or corticosterone standards (50 μl) were added

to appropriate wells. Corticosterone-horseradish peroxidase (25 μl) was immediately added to

each well except for non-specific binding wells, followed by 25 μl anti-corticosterone antibody,

and incubated at RT for 1 h. Plates were then washed four times with wash buffer (1:20 dilu-

tion, 20X Wash Buffer Part No. X007; Arbor Assays, MI) and 100 μl of TMB substrate solution

was added, followed by incubation for 45–60 min at RT without shaking. The absorbance was

measured at 405 nm by a microplate reader (TECAN). Assay sensitivity (based on 90% bind-

ing) was 0.14 ng/ml. Samples were analyzed in duplicate; intra- and inter-assay CVs were

<10% and<15%, respectively.

Statistical analysis

Descriptive data were reported as mean ± standard error of the mean (SEM) and camp man-

agement variables were presented as a range or a frequency, depending on the type of data.

Metabolic, lipid and stress status of tourist elephants in Thailand
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Statistical analyses were performed using R version 3.4.0 (R Development Core Team, 2017).

Repeated measures data were analyzed using Generalized Estimating Equations (GEE) to

determine: 1) the effects of BCS and FGM on metabolic and lipid panel results; 2) seasonal and

climate factor effects on metabolic and lipid function; and 3) relationships among metabolic

and lipid panel measures. Differences in mean metabolic and lipid profiles between BCS

groups and seasons were further analyzed by Tukey’s post-hoc tests after GEE analyses. Corre-

lations between individual FGM and metabolic hormones or lipid measures in each elephant

(n = 33) were analyzed using Pearson’s tests for aggregated data. Mean monthly FGM were

compared using GEE followed by a Tukey’s test. The significance level was set at α = 0.05.

Results

Descriptive FGM, BCS, metabolic marker, and lipid profile measures are presented in Table 2,

highlighting the variability in mean and range values across individuals. BCSs ranged from 2

to 5, with none scoring BCS = 1 or 1.5. Based on the yearly average of monthly mode values,

numbers of elephants in each BCS category were: BCS = 2 (N = 1), BCS = 2.5 (N = 0), BCS = 3

(N = 14), BCS = 3.5 (N = 6), BCS = 4 (N = 7), BCS = 4.5 (N = 3), BCS = 5 (N = 2). Most ele-

phants (42.4%) were a BCS = 3, with 33.3% scoring BSC = 4 and 5. Relationships between BCS

and FGM on metabolic markers and lipid profiles are presented in Table 3. There were signifi-

cant positive associations between BCS and TC, HDL and LDL. Fecal GC metabolite concen-

trations also were positively related to TC and HDL, as well as glucose and insulin. Both BCS

and FGM were negatively correlated to G:I ratios. In separate Pearson’s correlation analyses of

individual means (n = 33), FGM levels were similarly correlated to TC, LDL, glucose, insulin,

and fructosamine (p<0.05) (Fig 1). Work time (hours per day) was negatively correlated with

FGM concentrations (r = -0.69, p<0.01), HDL (r = -0.51, p<0.01), glucose (r = -0.78, p<0.01),

fructosamine (r = -0.59, p<0.01) and insulin (r = -0.59, p<0.01), whereas the G:I was positively

associated with work time (r = 0.32, p<0.05).

Differences in FGM, metabolic marker and lipid profile measures related to BCS are shown

in Table 4. Because of limited numbers, elephants were grouped into three BCS classes: 2.0–3.0

(N = 15); 3.5–4.0 (N = 13); and 4.5–5.0 (N = 5) for further analysis. Higher levels of TC and

LDL were found in elephants with a BCS of�3.5 (overweight/very overweight) compared to

Table 2. Descriptive statistics. Mean (±SEM) and range values for body condition scores (BCS), fecal glucocorticoid

metabolite (FGM) concentrations, lipid panel measures and metabolic factors in female Asian elephants (n = 33) in

Thailand.

Parameters Mean Min—Max Mean range

BCS 3.50±0.02 2.00–5.00 2.37–5.00

FGM (ng/g) 50.80±0.89 11.42–194.17 34.51–72.26

TC (mg/dL) 37.40±0.32 10.00–109.00 24.38–48.52

TG (mg/dL) 28.60±0.64 4.00–157.00 18.09–42.96

HDL (mg/dL) 11.60±0.10 2.00–26.00 9.17–18.96

LDL (mg/dL) 27.80±0.29 8.00–107.00 14.30–41.14

Glucose (mg/dL) 88.90±0.75 50.00–180.00 68.91–112.50

Fructosamine (mM) 0.59±0.01 0.38–0.92 0.54–0.67

Insulin (μg/L) 0.75±0.03 0.02–5.91 0.12–2.10

G:I 196.00±6.72 22.67–721.56 83.87–532.32

TC = total cholesterol; TG = triglycerides; HDL = high density lipoproteins; LDL = low density lipoproteins; G:

I = glucose to insulin ratio.

https://doi.org/10.1371/journal.pone.0204965.t002
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those<3.5 (p<0.05). Elephants with BCSs of 4.5–5.0 had higher HDL, glucose and insulin lev-

els, and the lowest G:I ratio (p<0.05). Triglyceride concentrations in the intermediate BCS

group (BCS = 3.5–4) were higher than those in BCS = 2–3, but similar to BCS = 4.5–5. By con-

trast, FGM concentrations were similar across the BCS groups.

Seasonal effects on measured parameters are summarized in Table 5. All but the G:I was sig-

nificantly affected by season. BCSs were 9–13% higher in elephants during the rainy and win-

ter seasons compared to the summer, with TG, LDL, and insulin being higher in the winter

months only. Mean FGM concentrations were ~28% higher in winter compared to the sum-

mer and rainy seasons. LDL was also higher in the rainy and winter seasons compared to the

summer. By contrast, HDL was highest in the summer, intermediate in the winter and lowest

in the rainy season, whereas glucose was high in the winter and summer seasons. The effect of

season on longitudinal FGM concentrations is presented in Fig 2, with lower concentrations

observed between March and September, representing mid-summer to rainy seasons. Rela-

tionships between environmental factors and BCS and FGM concentrations are presented in

Table 6, with significant correlations noted between BCS and humidity, and between FGM

and all environmental factors but humidity. There were significant negative effects of monthly

temperature, rainfall, and THI on FGM measures.

Several correlations were noted amongst the metabolic and lipid factors as shown in

Table 7. Strong positive associations (p<0.001) included TC with TG, HDL with LDL, HDL

with LDL and insulin, and glucose with fructose and insulin. By contrast, negative relation-

ships (p<0.01) were found between the G:I ratio and HDL, glucose, and insulin.

Discussion

This was the first study to evaluate relationships between BCS and metabolic factors in Asian

elephants in any range country, and the first to assess lipid profiles in relation to body condi-

tion in this species. We also present new evidence for a relationship between nutritional status

and stress hormone levels in elephants, as indicated by associations between FGM concentra-

tions and several measures of metabolic and lipid function. The most prevalent (mode) BCS in

Thai elephants was 3–3.5 (60.6%), which is considered ideal [17]. Deviations from that were

mostly in the higher BSC categories, with 27.3% at BCS = 4 (overweight) and 12.1% at

BCS = 4.5–5 (very overweight); no elephants had a BCS <2. Overall, the working elephants in

our study had better body condition than those in western zoos. For example, in the U.S. only

Table 3. General Estimation Equation analyses. Relationships between health factors and body condition and adrenal steroid activity in female Asian elephants (n = 33)

in Thailand.

Parameters

BCS FGM

Intercept Beta P value Intercept beta P value

TC (mg/dL) 2.742 0.021 0.001 38.370 0.330 0.009

TG (mg/dL) 3.428 0.004 0.210 50.742 0.005 0.920

HDL (mg/dL) 2.751 0.067 0.001 34.160 1.445 <0.001

LDL (mg/dL) 2.960 0.021 0.002 44.933 0.223 0.076

Glucose (mg/dL) 3.361 0.002 0.430 21.314 0.336 <0.001

Fructosamine (mM) 3.179 0.610 0.570 39.270 19.81 0.230

Insulin (ng/ml) 3.654 0.062 0.570 46.610 6.160 0.004

G:I 3.913 -0.001 0.009 54.248 -0.014 0.038

BCS = body condition score; FGM = fecal glucocorticoid metabolites; TC = total cholesterol; TG = triglycerides; HDL = high density lipoproteins; LDL = low density

lipoproteins; G:I = glucose to insulin ratio.

https://doi.org/10.1371/journal.pone.0204965.t003
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16.5% had a BCS = 3; 27% were BCS = 4 and 48% were BCS = 5 [17], whereas 75% were scored

as overweight or very overweight in the U.K. [47]. This could be due to higher amounts of

exercise, with tourist elephants engaged in many activities, including trekking, bathing, shows

or walking with tourists [48], so inactivity is less of a concern. In the U.S., elephants that

walked more than 14 hours/week had a decreased risk of BCS = 4 or 5 [17, 28]. Feeding diver-

sity (i.e., presenting food in multiple ways) also was related to lower BCS in U.S. studies [17,

28]. Comparatively, there is little diversity in how tourist camp elephants are fed, which are

given fodder throughout the day, even during trekking. Thus, increased exercise during tourist

activities likely helps those elephants maintain better body condition, and in this study, ele-

phants that worked more hours per day in the form of saddle or bareback riding had lower

BCSs.

Fig 1. Relationships between fecal glucocorticoid metabolite (FGM) concentrations and metabolic and lipid measures.

Pearson’s correlation analyses illustrating relationships between FGM concentrations and total cholesterol, high density

lipoproteins, low density lipoproteins, glucose, fructosamine, and insulin in female Asian elephants (n = 33) in Thailand.

https://doi.org/10.1371/journal.pone.0204965.g001
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Despite the better overall body condition of tourist compared to western zoo elephants,

over a third had scores that suggested they were overweight, and these exhibited alterations in

lipid and sugar metabolism. A popular activity for tourists is feeding elephants, particularly

bananas and sugar cane, which possess high concentrations of sucrose and other soluble sugars

that could contribute to weight problems. Blood glucose values in this study agreed with non-

fasted levels found in a previous study of Thai elephants [49]. Another finding was that very

overweight elephants (BCS = 4.5–5) had higher levels of insulin. Insulin plays a central role in

Table 4. Body condition effects on adrenal and health makers in elephants. Effect of body condition on mean (±SEM) and range values fecal glucocorticoid metabolite

(FGM) concentrations, lipid panel measures and metabolic factors in Asian elephants in Thailand (n = 33).

BCS FGM

(ng/g)

TC

(mg/dL)

TG

(mg/dL)

HDL

(mg/dL)

LDL

(mg/dL)

GLU

(mg/dL)

FRUC

(mM)

INS

(ng/ml)

GI

2.0–3.0 58.01±4.02

(20.00–194.00)

35.20±0.88a

(22.00–52.00)

24.70±1.97a

(7.00–85.00)

11.50±0.27a

(7.00–17.00)

25.00±0.97a

(9.00–43.00)

96.50±3.09a

(56.00–180.00)

0.59±0.01ab

(0.45–0.80)

0.91±0.12a

(0.04–5.91)

165.00±34.60ab

(22.70–483.00)

3.5–4.0 58.00±4.28

(15.70–159.00)

38.60±1.10b

(22.00–60.00)

34.50±2.99b

(8.00–110.00)

11.60±0.32ab

(9.00–21.00)

29.40±0.98b

(13.00–52.00)

92.10±3.50a

(52.00–152.00)

0.58±0.01a

(0.48–0.70)

0.91±0.14a

(0.07–2.92)

183.00±24.10b

(38.20–543.00)

4.5–5.0 60.93±8.72

(32.00–126.00)

40.60±2.03b

(28.00–55.00)

29.90±2.84ab

(10.00–59.00)

13.20±0.67b

(9.00–21.00)

29.80±1.23b

(21.00–38.00)

104.80±5.65b

(58.00–144.00)

0.61±0.01b

(0.57–0.67)

1.23±0.22b

(0.07–2.58)

85.00±10.20a

(40.70–142.00)

a,b,cValues for each variable differ among BCS categories within columns are significantly different (p<0.05).

BCS = body condition score; TC = total cholesterol; TG = triglycerides; HDL = high density lipoproteins; LDL = low density lipoproteins; GLU = glucose;

FRUC = fructosamine; INS = insulin; G:I = glucose to insulin ratio.

https://doi.org/10.1371/journal.pone.0204965.t004

Table 5. Seasonal effects on body condition, adrenal steroid hormones and health factors in elephants. Mean

(±SEM) and range values in body condition scores (BCS), fecal glucocorticoid metabolite (FGM) concentrations, lipid

panel measures and metabolic factors across the summer, rainy and winter seasons of female Asian elephants (n = 33)

in Thailand.

Parameters Summer Rainy Winter

BCS 3.20±0.13a

(3.00–4.00)

3.48±0.08ab

(2.00–5.00)

3.62±0.08b

(2.00–5.00)

FGM (ng/g) 47.40±1.79a

(11.42–147.00)

47.3±1.15a

(11.90–132.38)

60.00±1.95b

(15.45–194.17)

TC (mg/dL) 38.70±0.88b

(20.00–109.00)

36.00±0.45a

(10.00–77.00)

38.20±0.46b

(22.00–60.00)

TG (mg/dL) 25.10±1.70a

(4.00–157.00)

29.20±0.86ab

(6.00–88.00)

30.40±1.10b

(7.00–110.00)

HDL (mg/dL) 12.50±0.25c

(2.00–26.00)

11.10±0.13a

(5.00–26.00)

11.70±0.16b

(7.00–21.00)

LDL (mg/dL) 25.80±0.57a

(12.00–89.00)

27.70±0.56b

(8.00–107.00)

29.40±0.46b

(9.00–67.00)

Glucose (mg/dL) 92.90±1.13b

(65.00–160.00)

83.60±1.13a

(50.00–180.00)

92.90±1.56b

(52.00–172.00)

Fructosamine (mM) 0.60±0.004b

(0.48–0.77)

0.59±0.004ab

(0.38–0.92)

0.58±0.003a

(0.45–0.77)

Insulin (ng/ml) 0.76±0.08ab

(0.02–3.37)

0.59±0.05a

(0.03–2.67)

0.94±0.09b

(0.03–5.91)

G:I 207.00±19.60

(34.41–721.56)

188.00±11.90

(38.17–713.17)

163.00±12.40

(22.67–612.53)

a,b,cSeasonal mean values are significantly different across each row (p<0.05).

TC = total cholesterol; TG = triglycerides; HDL = high density lipoproteins; LDL = low density lipoproteins; G:

I = glucose to insulin ratio

Summer: 16 February–15 May, rainy: 16 May–15 October, winter: 16 October–15 February

https://doi.org/10.1371/journal.pone.0204965.t005
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the regulation of blood glucose and energy homeostasis; however, high levels are associated

with hypertension, obesity, dyslipidemia, and glucose intolerance in humans [50, 51]. It was

not possible to fast elephants before blood sample collection in this study, and they had access

to forage overnight, so we also evaluated the G:I ratio, which has been used for detection of

insulin sensitivity in women [52], with lower values reflecting metabolic abnormalities. In the

present study, BCS was predictive of G:I, and elephants with higher scores (BCS = 4–5) exhib-

ited significantly lower G:I, a finding similar to U.S. studies [17, 28]. Comparatively, the overall

G:I average value for the tourist elephants (G:I = 165) was slightly better than that in the U.S.

Fig 2. Seasonal pattern of fecal glucocorticoid metabolite (FGM) concentrations. Mean (± SEM) monthly fecal glucocorticoid metabolite (FGM)

concentrations in female Asian elephants (n = 33) across the summer, rainy and winter seasons in Thailand. Superscripts designate significant differences in

monthly mean FGM concentrations (p<0.05).

https://doi.org/10.1371/journal.pone.0204965.g002

Table 6. General Estimation Equation analysis of seasonal relationships. Relationships between body condition scores (BCS) and fecal glucocorticoid metabolite

(FGM) concentrations and environmental factors in female Asian elephants (n = 33) in Thailand.

Parameters BCS FGM

Intercept Beta P value Intercept Beta P value

Temperature (˚C) 4.238 -0.026 0.23 84.43 -1.211 0.001

Rainfall (mm) 3.310 0.041 0.057 53.65 -0.77 0.028

Humidity (%) 2.307 0.005 0.001 54.21 -0.043 0.600

THI 3.781 -0.003 0.835 103.93 -0.682 0.022

THI = temperature-humidity index

https://doi.org/10.1371/journal.pone.0204965.t006
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(G:I = 110), although the ranges were similar (23–483 versus 14–430, respectively). In addition

to glucose and insulin, serum fructosamine also was measured, which reflects glucose levels

over the previous 2–3 weeks, and has been used to monitor and control blood sugar levels in

diabetic patients [53], dogs and cats [54]. It has been reported to have positive correlations

with body weight [55], body mass index [56] and waist circumference [57] in other species.

This is the first report of fructosamine levels in Asian elephants, which were positively corre-

lated with BCS and glucose, and so could be an additional marker of sugar homeostasis. Gly-

cated hemoglobin (HbA1c) is another measure that provides average blood glucose levels over

longer, 1–4 month periods, and is more common for monitoring diabetes in humans, although

fructosamine tests are better for people with sickle cell or other blood disorders that can affect

HbA1c levels [58]. We attempted to measure HbA1c in elephants by two ways: high perfor-

mance liquid chromatography and a HbA1c-DIRECT EIA (BioSystems S.A., Costa Brava, Bar-

celona, Spain); however, levels were undetectable.

There was a seasonality in BCSs, with the average being lowest in the summer. Other studies

have shown a shift towards thinner body condition during dry as compared to wet seasons in

free-ranging Asian elephants [59]. The only climate factor related to BCS was a positive rela-

tionship with humidity, although the effect of rainfall approached significance. A variety of cli-

matic drivers of body size declines have been proposed, and in ungulates, an indirect link

between climate, resources and ungulate body mass has been established, and may be influ-

enced by climate change [60, 61]. Warm springs reduce both relative winter mass loss and

summer mass gain in adult bighorn sheep (Ovis canadensis), likely due in part to growth rate

of plants and duration of access to high-quality forage [62]. A seasonal shift in the diet of

southeast Asian elephants from high-quality grasses in the wet season to poorer quality grass

during the dry season [63–65] could explain the lower BCS during the summer season. Alt-

hough our study animals were not free-ranging, most fodder was sourced locally, and so

would have been subject to seasonal influences. Quantifying the amount and frequency of

food provided was beyond the scope of this study, but will be a focus of future studies to iden-

tify relationships between nutrient intake, body condition and health.

Serum TG concentrations were within the range reported for Asian elephants [17, 66], and

lower for females with BCS = 2–3, like that of Morfeld et al. [17]. Significant relationships

between BCS and other lipids were observed, with thinner elephants (BCS = 2–3) exhibiting

Table 7. Relationships among metabolic and lipid factors. Correlation matrix presenting relationships between

lipid panel measures and metabolic factors in female Asian elephants (n = 33) in Thailand.

TC

TG TG

HDL HDL

LDL LDL

GLU GLU

FRUC FRUC

INS INS

G:I G:I

���p<0.001 (dark color),

��p<0.01 (medium color),

�p<0.05 (light color)

Blue = positive correlation. Red = negative correlation. TC = total cholesterol; TG = triglycerides; HDL = high

density lipoproteins; LDL = low density lipoproteins; GLU = glucose; FRUC = fructosamine; INS = insulin; G:

I = glucose to insulin ratio.

https://doi.org/10.1371/journal.pone.0204965.t007
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lower TC, HDL, and LDL concentrations than those with higher scores. In humans, a number

of metabolic changes are associated with obesity, high BMI or poor eating habits, including ele-

vated TG, TC and LDL levels. Similarly, in dogs, increased plasma TC and TG concentrations

are observed in association with obesity [20], and in horses, TG concentration is correlated with

body condition scores [67, 68]. Dyslipidemia resulting from poor diets and inadequate exercise

constitutes a major risk for development of heart disease and other health problems in women,

and is characterized by increased levels of TC, LDL cholesterol and TG, and decreased levels of

HDL [69–71]. Hyperlipidemia could pose problems for elephants, although incidence of cardio-

vascular disease appears to be relatively low [6]. There was variability in the types and duration

of work experienced by elephants across the five camps, with regression analyses indicating sig-

nificant correlations between work hours and lipid panel results, being negative for HDL, glu-

cose, fructosamine and insulin, and positive for G:I. Moderate amounts of exercise have a

positive impact on lipid levels in other species [72, 73]; thus, exercise may provide a protective

effect on lipid and sugar homeostasis in elephants, and should be encouraged.

There was a positive association between FGM and glucose, fructose, insulin, and a negative

correlation with G:I ratio, indicating a possible relationship between adrenal function and

metabolism, as has been demonstrated in other species [74–76]. Elevated and sustained corti-

sol secretion during chronic stress can lead to central obesity, hypertension, glucose intoler-

ance, and dyslipidemia in humans [77]. Administration of exogenous GCs also can increase

plasma insulin and TG levels in women, whereas adrenalectomy reduces plasma insulin, glu-

cose and TG levels [78]. Studies to understand how management factors affect stress responses

in captive animals are key to improving welfare [79], and are beginning to be applied to ele-

phants in westerns zoos [47, 80], which will be used as models for subsequent studies of work-

ing tourist elephants in Asia.

Last, there was an effect of season on FGM, with higher concentrations during the winter

when temperatures and rainfall were lower. Saliva cortisol in zoo Asian elephants in Spain were

highest between October and December [81], in agreement with our results. The need for more

energy to maintain optimum body temperature and ensure survival in cooler temperatures could

be related to this finding. Although the climate in Thailand is relatively warm, elephants have

been known to shiver on cool winter days (personal observations). In other ungulates, higher GC

levels during winter have been found in white-tailed deer (Odocoileus virginianus) [82] and mule

deer (Odocoileus hemionus) [83]. Elevated circulating GC levels as a response to cold stress also

were documented in reindeer (Rangifer tarandus) [84] and in farm animals [85]. In our study,

FGM concentrations were influenced by several environmental factors, and negatively associated

with temperature, rainfall and THI. Interestingly, this pattern differed significantly from that of

logging elephants in Myanmar, where FGM levels were positively correlated with rainfall, but not

with temperature [59]. In that study, FGM concentrations were highest in June, July and August,

which corresponded to the end of the hot season and start of the monsoon and work season [59].

In that population, the shift from rest to intense work periods appears to have resulted in a

marked increase in adrenal activity. Increased workloads have been associated with increased

adrenal corticoid activity in horses and humans [86, 87]. However, the negative relationship

between FGM and work hours in this study suggests it may not only be work hours that are affect-

ing adrenal activity in Thai elephants, but perhaps other factors like a greater number of tourists

taking advantage of the nicer climate in the winter, all of which should be explored more fully.

Conclusions

Using BCS and FGM as outcome variables in regression models, high BCS and FGM were

predictors of higher and potentially unhealthy metabolic and lipid levels in female Asian
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elephants. This study provides the first evidence that altered metabolic marker and lipid levels

are associated with high BCS and adrenal steroid hormone measures in tourist camp elephants

in Thailand, and that problems may be exacerbated during the high tourist season (winter and

rainy seasons). Future studies will focus on what factors specifically affect elephant health and

well-being, and the potential benefits of limiting the amount of high calorie treats (bananas,

sugar cane) given to elephants by tourists, ensuring animals receive appropriate levels of exer-

cise to reduce fat and increase muscle mass, and reducing stress by limiting workloads and

numbers of tourists interacting with individual elephants, especially during the high season.
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