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Stimulated photon emission and 
two-photon Raman scattering in a 
coupled-cavity QED system
C. Li & Z. Song

We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. 
Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon 
emission from a polariton through polariton-photon collisions. This observation opens the possibility 
of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. 
Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. 
This paves the way towards single photon storage by the aid of atom-cavity interaction.

A coupled-cavity QED system provides a promising platform to study novel quantum phenomena, since it com-
bines two or more distinct quantum components, exhibiting features not seen in these individual systems. The 
discrete spatial mode of the photon in a coupled-cavity array and its nonlinear coupling to atom make the possi-
ble applications both in quantum information processing1 and quantum simulation2. The seminal papers3–5 pro-
posed the use of the system to create strongly correlated many-body models. It has predicted the quantum phase 
transition from Mott insulator phase to superfluid phase5,6. This scenario is constructed under the assumption 
that there is no extra photon leaking into the system. The stability of an insulating phase bases on the fact that 
the polariton states in a cavity QED system are eigenstates, i.e., spontaneous photon emission is forbidden. This 
situation may change if a photon can stimulate the photon emission from a polariton. In contrast with quantum 
phase transition induced by varying system parameters, such as atom-cavity coupling strength, stimulated photon 
emission from polaritons can also trigger the transition between insulating and radiative phases. It is interesting 
and important to investigate the photon-photon and photon-polariton scattering processes. Many efforts related 
to few-body dynamics mainly focused on multi-photon transports through coupled-cavity QED systems7–19, 
while a few works dealt with the formation of bound state20–22. So far, what happens when a photon collides with 
a polariton is still an open question.

In this paper, we study the scattering problem of an incident photon by a polariton in a one-dimensional 
coupled-cavity QED system. Analytical approximate analysis and numerical simulation reveal several dynamical 
features. We find that a photon can stimulate the photon emission from a polariton, which induces the amplifica-
tion of the photon population in a multi-polariton system. After a chain reaction, incident photons can stimulate 
the transition from insulating to radiative phases in the system with low doped cavity density. We also investi-
gate the inverse process of stimulated photon emission from a polariton. We will show that a polariton can be 
generated by a two-photon Raman scattering process, which has been studied for the atoms found in nature23–25. 
Moreover, it has been shown that an atom-cavity system can behave as a quantum switch for the coherent trans-
port of a single photon26. Considering a two-excitation problem, we find that a single-photon transmission 
through a quantum switch is affected significantly by a polariton that resides at it.

This paper is organized as follows. At first, we present the model and single-excitation polaritonic states. Then, 
we propose an effective Hamiltonian to analyze the possibility of photon emission from two aspects. Numerical 
simulations for two-particle collision processes are showed later. Finally, we give a summary and discussion.

Results
Model and polariton. We consider a one-dimensional coupled-cavity system with a two-level atom, which 
is embedded in the center of cavity array. The Hamiltonian can be written as
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where λ represents atom-cavity coupling strength and κ is the photon hopping strength for the tunneling between 
adjacent cavities. Here, g  ( )e  denotes the ground (excited) state of the qubit with σ =e ez  and σ = −g gz , 
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, is a conserved quantity for the Hamiltonian H, i.e., , =H[ ] 0.
The coupled-cavity array can be considered as a one-dimensional waveguide, while the two-level atom can 

act as a quantum switch to control the single-photon transmission26. To demonstrate this point, we rewrite the 
Hamiltonian in the form
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It indicates that the atom couples to photons of all modes π π∈ − ,k [ ]. In the = 1  subspace, atom can be 
regarded as a stationary scattering center. All the dynamics can be treated in the context of single-particle scatter-
ing method, which has been well studied26.

A comprehensive understanding for the dynamics involving the sector with  > 1 is necessary to both theo-
retical explorations and practical applications. Intuitively, the state of the atom ( e  or )g  should affect the inter-
action between the atom and a photon. In experiments, the practical processes may concern two or more photons, 
which obviously affect on the function of the quantum switch. On the other hand, the stability of an insulating 
phase may be spoiled by the background photons from environment. In this paper, we study the scattering prob-
lem in the = 2  sector, focusing on the effect of the nonlinearity arising from the atom. The investigation has 
two aspects: First, we study the photon scattering from a polariton. Secondly, we consider the collision of two 
photons under the atom-cavity nonlinear interaction.

We start our investigation with the solution of single-particle bound and scattering states. In the invariant 
subspace with = 1 , exact solution shows that there are two bound states, termed as single-excitation polari-
tonic states, being the mixture of photonic and atomic excitations. From the Method, these polaritonic states are 
obtained by Bethe Ansatz method as the form
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where the normalization factor is
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The corresponding energy is

ε κ β= ± , ( )± 2 cosh 8

where the positive number β determines the extension of bound states around the doped cavity, obeys the 
equation

λ κ λ κ= ( / ) + + ( / ) . ( )βe 2 1 2 92 4 2

We can see that β has nonzero solutions for nonzero λ, indicating the existence of nontrivial bound states.
On the other hand, the derivation in Method shows that the solution of scattering states φk  with energy 

ε κ= − k2 cosk  has the form
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where Λ k is the normalization factor and
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We can see that a polariton is a local eigen state of the system, which is stable and cannot emit a photon in the 
subspace. The aim of this work is considering the effects of photon-photon and photon-polariton collisions. Our 
strategy is sketched in Fig. 1(a). In the invariant subspace with = 2 , a two-excitation state can be a direct prod-
uct of a local photon and a polariton states, which are well separated in real space. As long as time evolution, two 
local particles are overlapped. The nonlinear effect induces the interaction between the photon and polariton. 
After a relaxation time, the free photons spread out from the central cavity, only the polaritons are left, being 
stationary at the center. In the case of the ultimate polaritonic probability being less than 1, (or the escaped pho-
ton number larger than 1) we can conclude that the stimulated photon emission occurs during the process. We 
will show that this behavior becomes crucial when we study the stability of a macroscopic insulating phase, and 
the efficiency of a quantum switch in a waveguide. In the following section, we will analyze the possibility of pho-
ton emission from two aspects.

Effective description
In this section, we present an analytical analysis on the effects of photon-photon and photon-polariton collisions. 
This will be based on an effective description of the original Hamiltonian H or H. We extend the Hilbert space by 
introducing the auxiliary photon state ( )†a 0e

n

e
, where †ae  is the creation operator of a photon at site e and 0 e

 is 
the corresponding vacuum state. The qubit state e  is replaced by †a 0e e

. We rewrite the original Hamiltonians H 
and H as the Hubbard models
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We note that the state ( )†a 0e
n

e
 with n >  1 will be ruled out as → ∞U , Hamiltonians Heq and Heq being equiv-

alent to H and H , respectively. Correspondingly, we have , = , = H H[ ] [ ] 0eq eq eq eq   by defining 
= ∑ =
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N

l leq 0  + †a ae e. We will see that this equivalence can be true for a large magnitude U ~ 10. Next, we will 
perform our analysis from two aspects: k space and real space.

Coupled equations in k space
First of all, we would like to point out that the eigenstates of the Hamiltionians H and H in Eqs (1) and (2) are still 
the eigenstates of Heq and Heq by taking → †e a 0e e

. Now we consider the case in two-particle subspace. The 
basis set for two-particle invariant subspace can be constructed by the single-particle eigen states φ±  and φk . We 
concern the complete basis set with even parity, which can be classified into four groups

σ φ φ| , , | 〉| 〉, ( )σk{ 1 } : 14k

Figure 1. (a) Schematic configuration for the coherent collision of polariton and photon. An array of coupled 
single-mode cavities, where the central cavity is coupled to a two-level atom. Initially a polariton is located 
at the center, while a photon wave packet is moving from the left to collide with the polariton. (b) Schematic 
illustration for the equivalent description of the hybrid system. The excited state of the atom can be treated as a 
side-coupling site with infinite on-site repulsion.
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φ φ, , , ( )′ ′k k{ 2 } : 15k k

σ σ φ φ, , . ( )σ σ′ ′{ 3 } : 16

where σ =  ± . We note that state φ φ ′k k  is automatically the eigenstate of H with eigen energy ε ε+ ′k k . And 
states φ φ ′σ σ  will be ruled out as U →  ∞. Then basis sets σ, , k{ 1 } and , , ′k k{ 2 } can further construct an 
invariant subspace approximately. In this sense, the solution of the Schrodinger equation
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where coefficients ( )σ, ,C tk1  and ( ), , ′C tk k2  describe the two-particle dynamics and satisfy the coupled differential 
equations
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is a matrix representation of H on the basis set ( ), ( )t tC C{ }1 2 . Although we cannot get an analytical solution of 
ψ ( )t , we can conclude that the nontrivial solution ψ ( )t  should predict the following relations in principle. We 
can always have nonzero C2(t) from initial condition C1(0) ≠ 0 but C2(0) =  0, i.e.,

φ φ φ φ→ , ( )′′σ ′ 22k k k

and inversely, nonzero C1(t) from initial condition C2(0) ≠ 0 but C1(0) =  0, i.e.,

φ φ φ φ→ . ( )′′σ′ 23k k k

The former corresponds to the stimulated photon emission of the polariton, while the latter corresponds to 
the polariton state generation by a two-photon Raman scattering. The two processes are schematically illustrated 
in Figs 2(a) and 3(a).

Effective photon blockade
In this section, we will demonstrate the process in Eq. (22) from an alternative way. One can consider the collision 
between an incident photon and an initial bound state around the site e in the system Heq. The obtained result 
should be close to that of the H system. In this context, the photon-photon collision only occurs at site e. Then the 
impact of the incident photon on the bound photon can be approximately regarded as a kicked potential on the 
eth site. In the following, we will investigate the effect the potential works on the dynamics of the bound photon.

We reduce the two-particle system of Heq to a single-particle system with the effective time-dependent 
Hamiltonian,

( ) = + ( ), ( )H t H V t 24eff 0

∑κ λ= − + + + . .,
( )=

H l l e1 0 H c
25l

N

0
0

δ τ( ) = ( − ) . ( )V t U t e e 260

where U0 is the strength of the scattering and = †e a 0e e
, = †l a 0l  ( = , ± , ± , ...)l 0 1 2  denotes the 

single-photon state. The initial state is one of the bound states

∑φ κ
λ

β=
Ω





 ± + ( )





. ( )

β±

>

−
e e l1 2 sinh 1

27l

l l

0



www.nature.com/scientificreports/

5Scientific RepoRts | 6:20991 | DOI: 10.1038/srep20991

After the impact of the kicked potential, φ±  should probably jump to the scattering states φk . In the follow-
ing, we demonstrate this point based on time-dependent perturbation theory.

For small U0, the transition probability amplitude from the initial state ϕµ  at t =  0 to ϕν  µ ν( , = ±) at t >  τ 
can express as
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up to second order according to the time-dependent perturbation theory. Using the identity

Figure 2. Polariton-photon transition in a coupled-cavity array coupled to a two-level atomic system.  
(a) When the collision between a photon and polariton occurs, the total photon probability cannot be 
preserved. The gain of photons indicates the stimulated photon emission. The blue (gray) color represents the 
polaritonic (atomic ground) state. (b) The insulating-radiative phase transition. A multi-polaritonic insulating 
state can collapse to a radiative state by an external field radiation.

Figure 3. The two-photon Raman transition in a coupled-cavity array coupled to a two-level atomic system. 
(a) When the collision between two photons from opposite directions occurs at the cavity with an atom, the 
total photon probability cannot be preserved. The loss of photons indicates the two-photon Raman transition. 
The blue (gray) color represents the polaritonic (atomic ground) state. (b) Single-photon storage by the aid 
of single photons train from the opposite side. Any single photons cannot be stored in the atom when they 
transmit unidirectionally. It can be achieved by an incident single photons from the opposite side.
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The crucial conclusion is that the transition probability from the bound state to the scattering state is
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which is always positive for small nonzero U0. This indicates that the collision between a photon and a polariton 
can induce the photon emission from the polariton.

We employ the numerical simulation for verification and demonstration of our analysis. We compute the time 
evolution of an initial bound state by taking a rectangular approximation to a delta function.
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For fixed U0, we carry the calculation for different values of w. It is found that the result becomes stable as w 
decreases. The convergent data are adopted as an approximate numerical result. The evolution of an initial bound 
state under the central potential pulse is computed as well. The magnitude distribution of the evolved wave func-
tion ( , ) = Φ( )P l t l t  is plotted in Fig. 4. Here the propose of using ( , )P l t  rather than the probability P(l, t) 
is to highlight the escaping wave packets from the center. We can see that there are two sub-wave packets propagat-
ing to the leftmost and rightmost, and the amplitude of the central bound state is reduced after this process. It can 
be predicted that the bound-state probability will keep decreasing by the successive pulses potential.

The result of this section cannot be regarded as sufficient proof of the occurrence of the stimulated photon 
emission from a polariton. Nevertheless, it shows that there is a high possibility that such a process can happen. 
In the following section, we will investigate this phenomenon by numerical simulation.

Numerical simulation
In principle, one can explore the problem by solving the coupled equations (19) numerically. The truncation 
approximation is necessary since a numerous number of equations are involved. However, we can take an 
alternative way for truncation approximation, which is more efficiency for a discrete system. We can solve the 
Schrodinger Eq. (17) in finite real space by computing the time evolution of the initial state

ϕ φΦ( ) = , ( )−0 36

where ϕ  denotes local photonic state which is separated from polariton φ−  in real space. The following analysis 
is also available for the state φ+ . At time t, the evolved state is
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where ξ  denotes two-excitation polaritonic state. We consider the local photonic state ϕ  as a Gaussian wave 
packet with momentum k0 and initial center NA, which has the form
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where Ω = ∑ α− ( − )el
l N

0
A

2 2
 is the normalization factor and the half-width of the wave packet is α/2 ln 2 . We take 

α/ ln N2 2 A  to ensure the two particles being well separated initially. The evolved wave function Φ( )t  is 
computed by exact numerical diagonalization.

The probability distribution
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( , ) = Φ( ) Φ( ) , ( )†l t t a a t 39l l

is plotted in Fig. 5 to show the profile of the evolved wave function. One can notice that in the photon-polariton 
collision process, the probability of the polariton is not conserved. This result has implications in two aspects: 
First, we achieve a better understanding of the occurrence of stimulated photon emission from a polariton. We 
find that the scattered and emitted photons are still local. This is crucial for the multi-polariton system, since the 
outcome photons can stimulate the photon emission of another polariton with high probability. Second, it pro-
vides evidence to support the equivalence between Heq with large U and the original H.

The above result is for an incident wave packet with k0 =  π/2. We are interested in the dependence of emission 
probability on the central momentum k0 of the incident wave packet. The probability of the survival polaritons 
can be measured approximately by the photon probability within the region of the initial polariton resides in, i.e.,

∑( ) = ( , ),
( )= ,

P t l t
40l e

l

res
0

0



where l0 denotes the extent of the polariton. Obviously, Pres(t) contains the probabilities of the residual polariton 
and the free photons within − ,l l[ ]0 0 . For infinite chain system, 1 −  Pres(∞) equals to the photon emission proba-
bility Γ . In the numerical simulation, the system is finite, we take Γ  =  1 −  Min[Pres(t)] within a finite time interval 
in order to avoid the error from the reflected photons. Results of Γ  as function of k0 presented in Fig. 6, show that 
the maximal photon emission probability reaches 0.4 at π≈ .k 0 730 . We can see that the stimulated transition is 
significant, which indicates that a polariton is fragile against an incident photon.

Now we explore a system with a portion of cavities with doped atom. For a well prepared insulating phase, 
which is formed by many independent polaritons, decreasing λ can lead to the delocalization of the photons. The 
above analysis offers an alternative probability: external radiation can trigger a sudden change of the state. After 
the collision of an incident photon and the first polariton, the scattered and emitted photons can further stimulate 
other polaritons. In order to mimic such a chain reaction, we study the multi-collision process by computing the 
time evolution of the two-particle system in a long time scale. We consider a finite system, in which the scattered 
and emitted photons are reflected due to the open boundary condition. It can simulate the repeating collision pro-
cess, resulting in the continuous probability decay of polaritons. Results of our numerical simulations of 1 −  Pres(t) 

Figure 4. Time evolution of the initial bound state φΦ =( ) −0  in Eq. (27) driven by the rectangular-
pulsed potential. The magnitude distributions of the evolved wave function ( , )P l t  for several instants are 
obtained as converging results for λ =  0.8, U0 =  2, and κ= × − −w 2 10 5 1. The red line indicates the probability 
of the eth site. The circle(black) represents the initial profile of the bound state at site e and the circles (gray) 
represents the initial profile of the bound state as comparison to the profile of the final state. It shows that there 
is a particle probability spreading out from the center to the infinity, and the final bound state has almost the 
same shape as the initial one but less probability. This indicates that a kicked potential can induce the transition 
from the bound states to the scattering states.
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is presented in Fig. 7(b). It appears that the local average of Pres(t) continuously decays at beginning as predicted 
and then converges to a nonzero constant. As pointed above, Pres(t) may contain photon probability, leading to 
Pres(t) >  1. However, the local maxima of 1 −  Pres(t) can measure the stimulated transition approximately.

We presume that a polariton should be washed out by successive collision. However, numerical result shows 
that the residual polariton probability does not tend to zero after a long time. There are two main reasons: First, 
as time goes on, any wave packets will spread, reducing the impact of photons on the polariton. Second, the 
inverse process of photon emission should be considered, in which two colliding photons can create polaritons. 
To demonstrate such a process, we compute the corresponding simulation. In this process, according to Eq. 36, 
the initial state can be expressed as

ϕ π ϕ πΦ( ) = ( , / ) (− , − / ) , ( )N N0 3 3 41A A

which implies that there are only two symmetry Gaussian wave packets at the beginning. At time t, the evolved 
state is

Figure 5. Collision process between an incident photon wave packet and a polariton. The probability 
distributions ( , )l t  for several instants are obtained by the time evolution under the systems of (a) the 
Hamiltonian Heq with λ =  2, U =  0 and (b) U =  10, (c) the original Hamiltonian H with λ =  2 (or equivalently, 
Heq with U =  ∞). The incident wave packet has k0 =  π/2 and α =  0.3. The blue (red) dotted line indicates the 
initial probability of the 0th (eth) site as comparison. It shows that the probability of the scattering photon is 
conserved for the non-interacting case with U =  0, but not conserved in the presence of nonlinearity in H. The 
result demonstrates the occurrence of stimulated photon emission from a polariton. Moreover, it is observed 
that the incident wave packet is totally reflected from the center in the case (a), but transmitted in the aid of the 
polariton. The very close similarity between (b,c) indicates that equivalence between Hubbard and the cavity-
atom models. In both cases, the scattered and emitted photons are still local, keeping the similar shape of the 
incident one.

Figure 6. Emission probability from polariton sized l0 = 9, stimulated by the photon wave packet with 
α = 0.3 and different k0, for the system with λ = 2. It shows that the transition probability can reach 0.4 at 

π≈ .k 0 730 .
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where ξ  denotes the two-excitation polaritonic state. The probability distribution ( , )l t  at several typical 
instants is plotted in Fig. 8. One can see that in the photon-photon collision process, the probability of photons is 
not conserved as well, which indicates that a polariton can be created when two photons meet at the 0-th cavity. 
This shows that a polariton can be generated by two-photon Raman scattering. As a summary of numerical 
results, we conclude that a polariton cannot completely transmit to a photon by the collision from a single photon, 
and inversely, a photon cannot completely transmit to a polariton by the collision from a single photon. The essen-
tial reason is the energy conservation: two-photon energy cannot match that of one photon plus one polariton, 
i.e.,

κ κ κ ε− − ≠ − ′′ + . ( )′
±k k k2 cos 2 cos 2 cos 43

This feature can also be employed to realize all-optical control of photon storage. One main task of quantum 
information science is to find physical implementations in which a flying qubit can be stopped to store or process 
quantum information. It has been shown that a flying qubit can be stopped and stored as a collective polariton by 
tuning the cavity-atom coupling strength adiabatically27. In the present cavity QED system, a single-photon wave 

Figure 7. (a) Schematic illustration for the scattering process of a moving wave packet and a stationary 
polariton at center of finite chain. (b) Plots of 1 −  Pres(t) for the cases with l0 =  9, α =  0.3, λ =  2, L =  120, 
k0 =  3π/4 (blue), π/2 (red). One can see that the probability converges to a nonzero constant at long-time scale.

Figure 8. Collision process between two incident photon wave packets from leftmost and rightmost, 
respectively. The probability distributions ( , )l t  for several instants are obtained by the time evolution under 
the system of the original Hamiltonian H with λ =  2 (or equivalently, Heq with U =  ∞). The red line indicates the 
probability of the eth site. It shows that the probability of the scattering photon is not conserved in the presence 
of nonlinearity in H. It demonstrates the polariton can be created by the collision of two free photons.
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packet can be a flying qubit, while a polariton can be regarded as a stopped photon, or a stationary qubit. Our 
result indicates that a single-photon wave packet, or a train of separated wave packets cannot excite a polariton 
if the atom is in ground state at the beginning. Then any incident single photons from one side cannot create a 
polariton solely, leaving the atom in the ground state. This can be expressed as equation

∏φ ϕ ( , ) = ,
( )

± −e N k 0
44

iHt

i

n

i 0

where Ni <  0, k0 ∈  (0, π) and α− /+ N N ln2 2i i1 , i.e., all the n wave packets incident from left and the 
neighboring wave packets are well separated. In contrast a photon can be stopped at the polariton with the aid of 
single photons train from the opposite side. This can be expressed as equation

∏φ ϕ ϕ( , − ) ( , ) ≠ ,
( )

± −e N k N k 0
45

iHt

i

n

i0 0 0

i.e, the atom partially absorbs a photon to form a polariton. The processes expressed by two above Eqs. are sche-
matically illustrated in Fig. 3(b).

Discussion
In this paper, the scattering problem of photon and polariton in a one-dimensional coupled-cavity system has 
been theoretically investigated. The analysis shows that, a photon can stimulate the photon emission from a 
polariton, which suggests that the insulating phase is fragile against the external radiation for a system with a 
lower density of doped cavity. This result can have some applications in practice. For example, this provides a way 
to induce the amplification of the photon population in a multi-polariton system as a photon amplifier. On the 
other hand, we also find that two-photon Raman transition can occur in this cavity QED system, i.e., a stationary 
single-excitation polariton can be generated by three-body, two photons and atom, collision. This phenomenon 
can be used to design a scheme to stop and store a single photon. Although this two photon-polariton transitions 
is probabilistic, it reveals the peculiar features of two-excitation dynamics, which significantly differs from a 
single-particle scattering problem and opens a possibility to achieve all-optical control of a single photon. The 
underlying physics can be understood as the effective interaction of two photons arising from the nonlinearity in 
the doped cavity. These photon emission and absorption processes is an exclusive signature of correlated photons 
and could be applied to the quantum and optical device design.

Methods
The exact eigenstates with  = 1. In this section, we present the exact eigenstates with = 1  for the 
Hamiltonian H. The Hamiltonian has parity symmetry [P, H] =  0, where =− −Pa P al l

1 . The odd-parity eigen-
states can be obtained directly, which is

∑ϕ =
Ω

( )

=
Ω
( − )

( )

≠

−

†

† †

kl a g

N
i

a a g

1 sin 0

2
2

0
46

k

k l
l

k
k k

0

with eigen energy ε κ= − k2 cosk , where Ω k is the normalization factor and †ak  is the photon operator in k 
space, i.e.,

∑= ,
( )=

† †a
N

e a1
2 47

k
l

N
ikl

l
0

∑= .
( )

−† †a
N

e a1
2 48l

k

ikl
k

The solutions φk  with even parity are two folds:
(i) For real k, the eigenstates has the form

∑φ = + + ( + ) ,
( )≠

−† † †g e f a g A e a B e a g0 0 0
49

k
k k

l
k

ik l
l k

ik l
l0

0

where

∏= , = .
( )=

a0 0 0 0
50l

l l l
0

Submitting φk  to the Schrodinger equation

φ ε φ= , ( )H 51k
k

k

we get the equations for coefficients gk, fk, Ak, and Bk,
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ε κ= − ( + ), ( )−e e 52k
ik ik

ε κ( + ) = − ( + + ), ( )− −A e B e A e B e f 53k k
ik

k
ik

k
ik

k
ik

k
2 2

ε κ λ= − ( + ) + , ( )−f A e B e g2 54k k k
ik

k
ik

k

ε λ= . ( )g f 55k k k

The eigenstates φk  are two folds:
(i) For real k, a straightforward derivation leads to

κ λ
κ ε λ ε ε κ

κλ
κε λ ε

=
−

+ ( − )( + )

=
−

− ( − ) ,
( )

−
−

−

A
g e

i k
e

g
i k

e

4 sin
[2 ]

4 sin
[2 ] 56

k
k

ik

k k k
ik

k
k

ik
k

2
2 2 2

2 2

κ λ
κ ε λ ε ε κ

κλ
κε λ ε

= + ( − )( + )

= − ( − ) ,
( )

B
g e

i k
e

g
i k

e

4 sin
[2 ]

4 sin
[2 ] 57

k
k

ik

k k k
ik

k
k

ik
k

2
2 2 2

2 2

ε

λ
= , ( )f

g
58k

k k

ε κ= − . ( )k2 cos 59k

Then we have

∑φ
ε
λ κλ

ς=
Λ






+ +




,

( )≠
±
±† †e a g

i k
e a g1 0 0 1

4 sin
0

60
k

k

k

l

ik l
l0

0



ς λ ε κε λ ε= ± ( − ) ( − ) ( )± e[ 2 ] 61k k
ik

k
2 2 2 2

where Λ k is the normalization factor, and ε ε κ= = − k2 cosk k . These are extended states.
(ii) There are two eigenstates with complex k which can be seen as two bound states. The boundary condition

φ = , → ± ∞, ( )l l0 for 62k

and real εk require

β π β= , = + ( )A k i i0 or 63k

with real β >  0. A straightforward derivation leads to

= , ( )B f 64k k

λ κ= ( − ), ( )β β−e e 652 2 2 2

ε κ β= ± . ( )± 2 cosh 66

λ κ λ κ= ( / ) + + ( / ) . ( )βe 2 1 2 672 4 2

Then we have

∑φ κ
λ

β= ±
Ω

+
( )

Ω
,

( )
β±

=

− †e e a g2 sinh 0
1

0
68l

l
l

l
0

where the normalization factor is
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