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Bone research is a dynamic area of scientific investigation that usually encompasses multidisciplines.
Virtually all basic cellular research, clinical research and epidemiologic research rely on statistical con-
cepts and methodology for inference. This paper discusses common issues and suggested solutions
concerning the application of statistical thinking in bone research, particularly in clinical and epidemi-
ological investigations. The issues are sample size estimation, biases and confounders, analysis of lon-

gitudinal data, categorization of continuous data, selection of significant variables, over-fitting, P-values,
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false positive finding, confidence interval, and Bayesian inference. It is hoped that by adopting the

suggested measures the scientific quality of bone research can improve.
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1. Introduction

Bone research commonly involves multifaceted studies. These
studies may range from basic cellular experiments, clinical trials to
epidemiological investigations. Most of these studies come down to
3 broad aims: assessing difference (ie, effect), association, and
prediction. Do cells with one version of a gene express more of an
enzyme than cells with another version? Does a new drug reduce
the risk of fracture compared with placebo? Among hundreds of
risk factors in a cohort study, which factors are associated with
fracture? Can a new prediction model based on Caucasian pop-
ulations be used for fracture risk assessment in Asian populations?
The answer to these questions invariably involves statistical
thinking.

Indeed, every stage of a research project — from study design,
data collection, data analysis, to data reporting — involves statistical
consideration. Statistical models and null hypothesis significance
testing are powerful methods to discover laws and trends under-
lying observational data, and to help make accurate inference. Test
of hypothesis can also help researchers to make decision of
accepting or rejecting a null hypothesis, contributing to the
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scientific progress. Thus, reviewers and readers alike expect re-
searchers to apply appropriate statistical models to obtain useful
information from the data for creating new knowledge.

However, misuse of statistical methods has been common in
biomedical research [1], and the problem is still persistent [2,3]. In
the 1960s, a review of 149 studies from popular medical journals
revealed that less than 30% of studies were methodologically
‘acceptable’ [4]. About 2 decades later, a review of 196 clinical trials
on rheumatoid arthritis found that 76% of the conclusions or ab-
stracts contained ‘doubtful or invalid statements’ [5]. In a recent
systematic review of published studies in orthopedic journals, 17%
of studies where conclusions were not consistent with results
presented, and 39% of studies where a different analytical method
should have been applied [6]. While the majority of statistical er-
rors were minor, about 17% errors could compromise the study
conclusion [6]. Apart from errors, there are deep concerns about the
abuse of statistical methods that lead to misinterpretation of data
and retraction of published studies. The bone research community
has recently come to terms with a high profile retraction of papers
by a bone researcher [7]. The misuse of statistical methods and
misinterpretation of statistical analysis partly contribute to the
problem of irreproducibility of research findings [8,9].

The recognition of the lack of reproducibility in biomedical
research [10—12] has led to several discussions on how to improve
the quality of bone research publications [13—15]. As an editor and
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expert reviewer for several bone and medical journals over the past
25 years, | have identified major areas that need improvement,
namely, reporting of study design, data analysis, and interpretation
of P-values. In this article, I focus on the most common issues that
appear repeatedly in the bone research literature, and then suggest
possible solutions. My aim is to help bone research colleagues in
providing relevant ideas and methods that are required to improve
the reproducibility and accurate inference of their work.

1.1. Sample size

The founder of modern statistics, Karl Pearson, once said that
"the utility of all science consists alone in its method, not its material"
[16]. Although the same method can be used in different studies, it
is the details of methodological activities that define the quality of
the work. The description of details and activities of study design
can be found in several guidelines such as CONSORT [17] for clinical
trials, STROBE [18] for observational studies, and ARRIVE [19] for
animal studies.

One important point of these guidelines is the description of
sample size estimation. As a norm, studies with inadequate sample
size have low sensitivity (eg, power) to uncover a true association. It
is not widely appreciated that underpowered studies often produce
statistically significant and exaggerated findings, but the findings
have low probability of reproducibility [20].

Therefore, a clear explanation of sample size estimation and
rationale, including primary outcome, expected effect size, type I
and type II error, greatly help readers to assess the reliability of
study findings [21]. Unfortunately, many bone science authors do
not report how they arrived at the sample size. Moreover, most
laboratory studies are based on a small number of animals, but
there is no quantitative justification of the sample size [22]. As a
result, it is very difficult to interpret a study’s observed effect size in
the absence of a hypothesized effect size that underlined the esti-
mation of sample size.

1.2. Biases and confounders

In uncontrolled and non-randomized studies, the association
between exposure and outcome can be misled by biases and con-
founders. The list of biases and confounders are extensive [23], and
these biases are almost always present in uncontrolled studies.
Among the list of biases, selection bias is a major threat. Selection
bias can arise in studies where participants were drawn from a
sample that is very different from the general population, and as a
result, it may distort the true association between exposure and
outcome. The diagram below (Fig. 1) shows a hypothetical associ-
ation between an exposure and an outcome in a population with a
correlation coefficient being r = —0.29 (P < 0.0001; left panel);
however, if a subset of the population was selected for analysis
(right panel) then the association is no longer statistically signifi-
cant (r = —0.05; P = 0.72). Thus, studies in subgroup of patients or
non-representative samples have a high risk of reaching a wrong
conclusion.

Confounding is a common threat to the validity of conclusions
from observational studies. A confounder is defined as a variable
that causes or influences both the exposure and outcome (Fig. 2, left
panel). For instance, an association between low levels of physical
activity and bone mineral density could be confounded by
advancing age (i.e., a confounder). In osteoporosis research, con-
founding variables such as age, gender, comorbidities, and frailty
could account for the observed association between bisphospho-
nates and mortality in observational studies [24].

Collider bias [25] is another threat to the validity of observational
studies. A variable is considered a ‘collider’ if it is caused by both the
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exposure and the outcome. It should be noted that collider is
different from confounder, which is defined as a variable that is the
cause of both exposure and outcome (Fig. 2, right panel). For
example, both fracture (outcome) and respiratory failure (expo-
sure) can cause patients to be hospitalized, and in this case, hos-
pitalization is the potential collider. The effect of collider bias is
nicely illustrated by the spurious association between single
nucleotide polymorphisms (SNP) and sex [26]. In this analysis, none
of the 694 SNPs for height, as expected, was associated with sex (ie,
the outcome) in a bivariate analysis; however, when height (ie, the
collider) was added to the model, 222 SNPs were significantly
associated to sex [26]. This example highlights that in association
analysis, adjusting for factor that is causally related to the outcome
can yield biologically meaningless but statistically significant
association.

Regression-based adjustment is a powerful method to adjust for
the effect of confounding variables, and help the inference to be
more accurate. However, regression adjustment for a collider can
yield a spurious association between exposure and outcome [26].
Some researchers have the tendency to adjust for all variables
available with the intention to obtain the most unbiased associa-
tion. For instance, some authors used weight, height, body mass
index, and age in a regression model. Such an agnostic approach of
adjustment may be counterproductive, because it runs the risk of
over-adjustment and over-fitting, not to mention the problem of
multicollinearity (ie, correlation among predictor variables). Not all
associations require regression adjustment, and appropriate
adjustment requires a careful consideration based on substantive
knowledge. For instance, adjustment is not necessary for a covari-
ate that does not induce the causal relationship between exposure
and outcome [27].

1.3. Longitudinal data

In prospective cohort studies, individuals are repeatedly
measured over time, enable the examination of individual evolu-
tion of outcome. The analysis of data from this type of study design
is challenging, because (i) measurements within an individual are
correlated, (ii) the duration between visits is different between
individuals, and (iii) there are missing data. Some authors applied
the analysis of variance to analyze such a longitudinal dataset, but
this method cannot handle the difference in follow-up duration and
missing data. If the within-subject correlation is not properly
accounted for, it can lead to false positive findings and wrong
confidence intervals [28]. Researchers are suggested to consider
more modern methods such as generalized estimating equations
[29] and the linear mixed effects model [30]. A major strength of
these modern methods is that they can handle missing data while
still accounting for variability within and between individuals.

Another common problem associated with longitudinal data
analysis is the determination of rate of change for an individual. For
studies that measure bone mineral density (BMD) before (denoted
by xg) and after (x;) intervention, most researchers would calculate
the percentage change as the difference between 2 measurements
over the baseline measurement, ie, (x; — Xg)/Xo x 100, and then
use the percentage change as a dependent variable for further
analyses. Although this measure seems straightforward, it is not
symmetric [31] and can result in misleading results [32]. A better
and symmetric quantification of change should use the mean of 2
measurements as the denominator, ie, (x; — Xg)/mean(xg, X1) x
100. For testing hypothesis concerning difference between treat-
ments in before-after studies that involves a continuous outcome
variable, the analysis of covariance is considered a standard method
[33].
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Fig. 1. Illustration of selection bias. There was a significant association between exposure and outcome in the population (left panel), but if a subset of individuals in red box were
selected from the population, the association can be statistically non-significant (right panel).
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Fig. 2. Illustration of confounding variable and collider variable. A confounder is a variable that causes both exposure and outcome variables. A collider is a variable that is caused by
both exposure and outcome variables. Regression model can be used to adjust for the effect of confounder, but it should not be used to adjust for the effect of collider.

1.4. Categorization of continuous variable

It is not uncommon to read bone research papers where the
authors categorize continuous variables such as bone mineral
density (BMD) into 2 distinct groups (eg, "osteporosis” and "non-
osteoporosis"), or 3 groups (eg, osteoporosis, osteopenia, and
normal), and then use the categorized variable as an exposure or an
outcome for further analyses. While the World Health Organiza-
tion’s recommended BMD classification [34] is appropriate for
clinical/diagnostic purposes, it is a bad practice for scientific purpose.

It has been repeatedly shown that such a categorization is un-
necessary and can distort an association [35]. Apart from the risk of
misclassification, the obvious problem with categorization of
continuous variables is the loss of information. In the case of
dichotomization, for example, all individuals above or below the
cut-point is treated equaly, yet their prognosis could be vastly
different. Therefore, the loss of information is increased (ie, more
severe) when the number of categories is reduced. Categorization
also reduces the efficiency of adjustment for confounders. In linear
models, a categorized risk factor removes only 67% of the
confounder compared to when the continuous type of the variable
is used [36].
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For scientific purposes, it is recommended that investigators do
not categorize continuous variables in an analysis of association.
Some continuous variables may exhibit a non-normal distribution,
and in this case, it is instructive to consider more appropriate an-
alyses such as spline regression or non-parametric smoother, and
not to categorize continuous data.

1.5. Selection of ‘significant’ variables

In many studies, the aim is to identify a set of predictor variables
that are independently associated with a continuous outcome (in
multiple linear regression) or a binary outcome (in multiple logistic
regression). In the presence of hundreds or thousands of variables
of interest, the number of possible sets of variables (or models) can
be very large. For instance, a study with 30 variables can generate at
least 2A30 = 1,073,741,824 possible models, and determining which
models are associated with an outcome is quite a challenge.

Many researchers have traditionally used stepwise regression to
select the ‘best model’. While stepwise regression is a popular
method for selecting a relevant set of variables, it has serious de-
ficiencies [37]. It is not widely appreciated that stepwise regression
does not necessarily come up with the best model if there are
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redundant predictors. Consequently, variables that are truly asso-
ciated with the outcome may not be identified by stepwise
regression, because they do not reach statistical significance, while
non-associated variables may be identified to be significant [38]. As
a result, the model identified by stepwise regression is poorly
reproducible.

For selection of relevant predictors, investigators are strongly
suggested to consider more robust methods such as Bayesian
model averaging [39,40] or LASSO [41] which has been shown to
perform better than the stepwise regression. Still, the models
identified by these methods are only suggestive in nature. Statis-
tical algorithms do not have substantive knowledge about a clinical
or biological problem that we researchers have. Therefore, the best
models must be guided by substantive knowledge, not just by
statistical method-driven model selection.

1.6. Over-fitting

Multivariable statistical model always runs the risk of being
over-fitted, in the sense that the model is unnecessarily complex.
When over-fitting happens, the model is not valid because it tries to
explain the random part of the model rather than the association
between variables. As a result, an over-fitting model may fit the
data very well for a dataset at hand, but it fits poorly for a new and
independent dataset.

Over-fitting often happens when the number of parameters in
the model is greater than the number of events. There is a rule of
thumb that each predictor in a multivariable model requires at least
10 events [42], but recent research has shown that this rule of
thumb is simplistic. Theoretical studies show that the number of
events in a multivariable prediction model is determined by (i) the
incidence of disease, (ii) the number of risk factors, (iii) the pro-
portion of variance explained, and (iv) shrinkage factor [43].

Modern methods such as LASSO [41] or ridge regression [44] can
help reduce over-fitting. In particular, LASSO is a method that
shrinks the model coefficients toward 0 by imposing a constraint on
the sum of the parameter estimates. This imposition can help
eliminate non-important predictors in the model, and hence
reduce the over-fitting.

1.7. P-values

Much of scientific inference boils down to the interpretation of
P-value. Since its inception in the 1920s, P-value has been ubiqui-
tous in the scientific literature, such that it is sometimes considered
a "passport for publication”. Readers of biomedical research liter-
ature may have noticed that the interpretation of P-value in most
papers was largely dichotomized into "significant” vs "non-signif-
icant”, with P = 0.05 being the commonest threshold for declaring a
discovery. In some not-so-extreme cases, researchers reach a
conclusion of effect based on a finding with P = 0.04, but readily
dismiss a result with P = 0.06 as a null effect. However, it is not
widely appreciated that that P-values vary greatly between samples
[45], such that a deletion or addition of a single observation can
change the statistical significance of a finding. Therefore, the simple
classification of finding into "significant” and "non-significant"
based on the threshold of 0.05 is not encouraged. The conclusion of
an effect should be based on full evidence, not limited to the levels
of statistical significance alone.

P-value is a result of null hypothesis significant testing (NHST).
However, few practicing scientists realize that NHST is the hy-
bridization of 2 approaches: test of significance and test of hy-
pothesis. This hybridization has generated a lot of confusion and
misinterpretation of P-values. It is thus instructive to have a brief
review of the thinking underlying the NHST approach.
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In the paradigm of significance testing, a null hypothesis is pro-
posed, then a test statistic (eg, t-test, chi-squared test) is computed
from the observed data. An index, called P-value, representing the
deviation between the test statistic and the null hypothesis is
derived, with lower values being a signal of the degree of implau-
sibility of the null hypothesis. The proponent of this significance
testing approach, Sir Ronald Fisher, suggested that a finding with P-
value of 0.05 or lower is considered statistically significant. In his
own words: "The value for which P = 0.05, or 1 in 20, is 1.96 or nearly
2; it is convenient to take this point as a limit in judging whether a
deviation ought to be considered significant or not" [46] Fisher sug-
gests that researchers should report exact P-values (eg, P = 0.031,
not P < 0.04).

In the paradigm of hypothesis testing, a null hypothesis and an
alternative hypothesis are proposed to assess 2 mutually exclusive
theories about the population of interest. Two long-term rates of
erroneous decisions are then defined prior to conducting data
collection: (i) the probability of a false positive finding that will be
made when the null hypothesis is true (also referred to as type I
error or «); and (ii) the probability of a false negative finding that
will be made when the null hypothesis is false (ie, type Il error or ).
Traditionally, researchers set a« = 5% and 8 = 20% in most studies.
After the data have been collected and distilled into a test statistic,
the test result is then compared with a theoretical cut-off value
associated with type I error. If the test result is smaller than the cut-
off value, then the null hypothesis is accepted; otherwise the null
hypothesis is rejected. The hypothesis testing approach, developed
by Jerzy Neyman and Egon Pearson in the 1930s, was designed so
that “in the long run of experience, we shall not be too often wrong”
[47]

NHST is the marriage between Fisher’s significance testing and
Neyman-Pearson’s hypothesis testing approaches [48]. In NHST, P-
value is compared with type I error rate « to reject (when P < «) or
accept (when P > «) the null hypothesis. As can be seen, this is
actually a mis-marriage of 2 different approaches, because the P-
value from significance testing is a local measure of evidence for a
specific study, but the type I error and type II error from hypothesis
testing are global measures from independent studies taken as a
totality.

This mis-marriage has generated to a lot of misconceptions of P-
values [49,50]. Most researchers interpret P-value as the probability
of null hypothesis (eg, no effect, no association), and consequently 1
minus P-value is implicitly viewed as the probability that the
alternative hypothesis (eg, presence of effect, association) is true;
however, such an unconditional interpretation is wrong. Actually,
P-value is the probability of obtaining results as extreme as the
observed results when the null hypothesis is true — it is a condi-
tional probability. Thus, if an effect size with P = 0.06, it means that
when the null hypothesis is true, a value of the effect size as or more
extreme than what was observed occurs in 6% of all samples; it does
not mean that the null hypothesis is true in 6% of all samples. In
other words, the effect size observed, or smaller, occurs in 1 —
P = 94% of all samples under the assumption that the null hy-
pothesis of no effect is true.

Because the P-value threshold of 0.05 is traditionally considered
‘statistically significant’, and statistical significance is associated
with a greater chance of publication, some researchers have
involved in questionable research practices such as "P-hacking"
[51]. P-hacking is a practice of data manipulation in conscious or
subconscious way that produces a desired P-value. These include
multiple subgroup analyses of an outcome, categorization of
continuous data, data transformation, and selection of statistical
tests. By manipulating data in such ways, an absolutely negative
data can produce a statistically significant result in 61% of the time
[51].
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1.8. Multiple testing, large sample size, and false discovery rate

In recent years, national registries have provided researchers
with opportunities to test hundreds or thousands of hypotheses,
with many more tests being unreported. As a norm, the more one
searches, the more one discovers unexpected and false findings. It
can be shown that the probability of false positive findings is an
exponential function of the number of hypothesis tests. For
instance, at the alpha level of 5%, a study testing for association
between 50 risk factors and an outcome, there is a 92% probability
that the study will find at least one ‘significant’ association, even if
there is no association between any of the risk factors and the
outcome. In genomic research, the P-value threshold of 5 x 108
has become a standard for common-variant genome wide associ-
ation studies, but there is no such threshold for registry-based
research. Researchers using registry based data are suggested to
take measures (such as Bonferroni’s procedure or Tukey’s test) to
adjust P values from multiple testing so that the nominal P-value is
less than 0.05, and to report the false discovery rate [52].

Studies with very large sample size pose serious challenges in
the inference of association. For a given effect size, P-value is a
reflection of sample size, in the sense that studies with very large
sample size almost always reject the null hypothesis. In the 1950s,
Lindley showed that a statistically significant finding from a study
with very large sample size may represent strong evidence for the
null effect, and this is later known as "Lindley’s Paradox" [53]. For
example, an observed proportion of 49.9% is consistent with the
null hypothesis of 50.0% (P = 0.95) when the sample size is 1000
individuals; however, when the sample size is 1,000,000, P = 0.045
which is against the null hypothesis at the a level of 0.05. In other
words, studies with very large sample size are very likely to find
small P-values, but their evidence against the null hypothesis is
very weak.

The implication is that the level of 5% may not be applicable to
large sample size studies. Researchers need to adjust the observed
P-value in large sample size studies. Good proposed a simple
adjustment called Q or standardized P-value [54]: Q = P/n/100 ,
where P is the actual P-value, n is the sample size. Thus, when
n = 100, the standardized P-value Q is the same as the observed P-
value. Good suggested that Q > 1 can be interpreted as support for
the null hypothesis. Thus for n = 1,000,000 and P = 0.045, Q = 4.5,
which is an evidence for the null hypothesis. Another solution is to
set an ‘optimal’ o level based on a hypothesized effect size and cost
of errors [55].

Many researchers mistaken the P-value as a false discovery rate.
According to this view, a finding with P = 0.05 is equivalent to a
false discovery rate of 5%. However, such an interpretation is also
wrong. It can actually be shown that in the agnostic scenario a
finding of P = 0.05 is equivalent to a false discovery rate of at least
30% [56]. It can also be shown that a P-value of 0.001 corresponds to
a false discovery rate of 1.8% [57]. Thus, there is a call that the
routine P-value should be lowered to 0.005 [58] or 0.001 [9] to
minimize false discovery rate. The implication of these consider-
ation is that researchers should not regard any result with P > 0.005
as an evidence of discovery.

1.9. Confidence interval

Researchers are almost always interested in knowing the size of
an effect or magnitude of association which is not conveyed by P-
value. Confidence interval provides likely values of effect size
within an interval (usually taken as 95%) that are compatible with a
study’s observed data. Thus, confidence interval is a very useful
complementary information pertaining to the practical significance
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of findings. For instance, a study testing the effect of supplemen-
tation of vitamins C and E during pregnancy concluded that the
supplementation "does not reduce the risk of death or other serious
outcomes in their infants" [59]. However, actual data showed that
the relative risk of death or serious outcome (relative risk 0.79; 95%
confidence interval, 0.61 to 1.02) clearly favored the supplemen-
tations group, even though P = 0.20.

Some researchers tend to mistakenly interpret confidence in-
terval as a test of significance. In this view, a 95% confidence interval
does not include the null hypothesis value is interpreted as statis-
tically significant. On the other hand, a 95% confidence interval
includes the null hypothesis value is considered statistically non-
significant. However, confidence interval is a result of estimation,
and it should not be interpreted within the framework of signifi-
cance testing. Accordingly, a confidence interval from 0.61 to 1.02
should be interpreted that the data are compatible with a 49%
reduction of risk or a 2% increase in risk. Thus, confidence interval
should be named as "Compatibility Intervals" [60].

While reporting confidence intervals has been almost a norm in
clinical research papers, it is still not widely adopted in animal
research. Investigators in basic as well as translational research are
suggested to report confidence interval for key measures in their
papers.

1.10. Bayesian inference

A 95% confidence interval (CI) from a to b is sometimes inter-
preted as there is a probability of 95% that the true value lies be-
tween a and b; however, this interpretation is strictly incorrect. The
actually interpretation of confidence interval requires a mental
exercise: if the study were repeated infinite number of times with
different samples, and a 95% Cl is obtained for each time, then 95%
of the intervals would contain the true value. That interpretation is
based on the frequentist school of inference. Admittedly, it is not easy
to comprehend the true meaning of CI.

The statement that ‘there is a probability of 95% that the true
value lies between a and b’ can only be derived from a Bayesian
analysis. A Bayesian analysis uses the Bayes’ theorem to synthesize
the prior information of an effect and the existing data to produce
the posterior probability of an effect [61]. The posterior probability
can directly provide the kind of answer that researchers want to
have: given the observed data, what is the probability that there is an
effect/association. Just as patients would like to know what is the
probability of having a disease after seeing a test result, researchers
want to know what is the probability of an effect after seeing result
of a test statistic. P-value cannot answer that question; Bayesian
analysis can.

Bayesian analysis allows the reporting of direct probability
statements about any magnitude of difference that is of clinical
interest [62,63]. For instance, a meta-analysis of 8 randomized
controlled trials showed that supplements of calcium and vitamin
D (CaD) reduced the risk of fracture in both community dwelling
and institutionalized individuals [64]. Using a Bayesian analysis
[65], we showed that the there was a 95% chance that the risk ratio
of fracture associated CaD supplements ranges between 0.68 and
1.02. Moreover, there is a 44% probability that CaD supplements
reduce fracture risk by at least 15% [65]. Sometimes, P-value based
results are not necessarily consistent with a Bayesian analysis. For
instance, based on the frequentist inference, the effect of alendro-
nate on hip fractures may be interpreted as statistically non-
significant at the alpha level of 5%; however, result of a Bayesian
analysis indicated that there is a 90% probability that alendronate
reduced fracture risk by at least 20% [66]. Although the Bayesian
school of inference has been suggested as a paradigm of inference
in the 21st century [67], its application in the medical research is
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Table 1
List of common issues and suggested solutions.
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Issue

Suggested solution

Lack of sample size justification

Provide a statement of sample size estimation, including hypothesized effect size, type I and

type Il error.

Confounders and biases

Data-dependent categorization of continuous data

Dichotomization of P-values into "significance” and "non-significance"
based on the threshold of P = 0.05

Selection of ‘significant’ variables

Over-fitting: number of predictors is greater than the number of events

Analysis of variance for longitudinal data

variance.

Multiple tests of hypothesis

P-value in very large sample size study

Interpretation of different P-values as different effect sizes
Quantification of uncertainty of effect size

Regression adjustment, but be aware of over adjustment and unnecessary adjustment.
Avoid categorization of continuous data. Use spline regression or non-parametric smoother.
Avoid dichotomization of P-value. Report actual P-values. Consider P < 0.001 or P < 0.005 as a
threshold for discovery declaration.

Avoid stepwise regression. Consider LASSO and Bayesian Model Averaging methods.
Consider LASSO and ridge regression analysis

Consider linear mixed effects model as an alternative to repeated measures analysis of

Consider adjustment for multiple tests of hypothesis. Consider false discovery reporting [77].
Consider Good’s adjustment [54].

Avoid. Report confidence intervals.

Consider Bayesian analysis.

still modest. The low level of uptake of Bayesian methods in
medical research is partly due to the difficulty in choosing prior
distributions that capture a reasonable amount of background
knowledge. Many researchers used expert opinions for deter-
mining prior distribution, but this can create many biased prob-
lems. Nevertheless, in most cases, prior distributions can be
generated from previously published data or from probability dis-
tributions that reflect a range of background knowledge about an
association: non-informative, sceptical to optimistic [68]. Bone
researchers are encouraged to consider Bayesian analysis and
interpretation more often in their studies.

2. Conclusions

Statistical errors can arise in every phase of a study, from
experimental design, data analysis to interpretation (Table 1). Data
are products of experiment, and data quality is a consequence of
experimental design. Good experimental design, whether it is an-
imal study or clinical trial, is essential for generating high quality
data. For a well-designed study with high quality data, simple
statistical methods suffice in most cases, and the chance of statis-
tical errors is low. Data can be adjusted, but study design cannot be
reversed. Therefore, it is very important that issues concerning
study design (eg, sample size, control, matching, blocking,
randomization, measurements) should be considered at the
beginning of a research project to minimize subsequent errors.

Although the focus of this article is on bone research, the errors
identified here are also discussed in other areas of research
[69—71]. Most of these errors come down to the practice of null
hypothesis significance testing and P-value, which is the subject of
intense debate among methodologists and practicing scientists
[72]. It is recognized that the P-value overstates the evidence for an
association, and that its arbitrary threshold of 0.05 is a major source
of falsely interpreted true positive results. About 25% of all findings
with P < 0.05, if viewed in a scientifically agnostic light, can be
regarded as either meaningless [73] or as nothing more than
chance findings [74]. There have been calls to ban P-value in sci-
entific inference [75,76]. However, it is likely that the P-value is
here to stay. Although P-value does not convey the truth, it is a
useful measure that helps distinguish between noise and signal in
the world of uncertainty. What is needed is the interpretation of P-
value should be contextualized within a study and biological
plausibility. It is hoped that this review helps improve statistical
literacy along all phases of research.
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