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Abstract
Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxa-

mate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand

equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl

ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the

Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product.
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Introduction
So-called artificial metalloenzymes have attracted attention over

the last decade [1-9]. Incorporation of an organometallic

cofactor into proteins offers new possibilities to expand the

reaction repertoire catalyzed by natural enzymes to non-natural

reactions. With this approach man-made metalloproteins as

asymmetric transfer hydrogenases [10,11], Suzukiases [12],

metatheases [13-20], epoxidases [21], Diels–Alderases [22-27]

and others have been reported. The Diels–Alder reaction is a

powerful C–C bond formation reaction, widely used in organic

chemistry, e.g., for the synthesis of natural products [28]. This

reaction is known to be catalyzed by Lewis acids such as a

Cu(II) complex [29]. Additionally, structurally defined cata-

lysts are found to influence the endo/exo ratio as well as the en-

antioselectivity [30]. Artificial Diels–Alderases have also been

reported to show good endo/exo selectivities as well as high en-

antioselectivities in a benchmark reaction of azachalcone with

cyclopentadiene [22-27].

The artificial Diels–Alderases reported so far used soluble pro-

teins, where the binding site of Cu(II) was formed either by site-
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Scheme 1: Syntheses to Cu(I) complex bearing a NHC ligand.

Scheme 2: Synthesis of Cu(II) terpyridyl complexes.

directed mutagenesis [22,23], by incorporation of a suitable

ligand, or copper complex in an apo-protein [24-27]. Here we

report on the use of the robust transmembrane protein Ferric

hydroxamate uptake protein component A (FhuA) as host for

defined Cu(I) NHC or Cu(II) terpyridyl complexes with a male-

imide moiety. By covalently bonding these copper complexes to

the protein artificial Diels–Alderases based on a membrane pro-

tein have been obtained.

Results and Discussion
Synthesis of the metal complexes
As the protein host, the FhuA ΔCVFtev variant of the Ferric

hydroxamate uptake protein component A (FhuA) was chosen

[31]. This protein was shown to be suitable to harbor

Grubbs–Hoveyda type catalysts for olefin metathesis [17,18].

To anchor Cu(I) in the protein FhuA ΔCVFtev that contains a

cysteine residue at position 545 for conjugation [31], an NHC

ligand containing a maleimide function was prepared

(Scheme 1).

The imidazolium salt 3 was synthesized by nucleophilic substi-

tution of mesityl imidazol 1 with maleimide derivative 2. These

salts were used to generate the Cu(I) NHC complexes 4 upon

deprotonation with K2CO3. Complex 4 contains only one NHC

ligand at the copper, as shown by elemental analysis and

ESIMS. Attempts to coordinate Cu(II) to the NHC ligand failed.

However, the terpyridyl (terpy) ligand is a promising candidate

to support Cu(II) ions. Therefore, the terpy framework contain-

ing an alcohol function on the 4 position of the central pyridine

was chosen (Scheme 2).
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Scheme 3: Anchoring and refolding of the biohybrid copper complexes.

By either esterification or nucleophilic attack, the spacer with

the maleimide group was attached. The ligand was treated with

one equivalent of Cu(NO3)2·3H2O leading to the Cu(II) com-

plexes 10–12.

By using the established anchoring strategy, the Cu(I) and

Cu(II) complexes (4 and 10–12) were anchored covalently

inside the β-barrel structure. After anchoring, the protein was

refolded by dialysis (Scheme 3).

Anchoring of all complexes was successful. Titration of the free

cysteine with the fluorescence dye ThioGlo® indicated that

more than 95% of the cysteine residues were conjugated for

each catalyst.

Renaturing of the protein was successful in the case of the terpy

ligand framework (for clarity of the location of the catalyst, see

Figure S1 in Supporting Information File 1). After 3 days of di-

alysis against SDS-solution, excess catalyst 10–12 was re-

moved. Additional 3 days of dialysis against PE-PEG solution

renatured the protein structure to give the expected β-barrel

structure, as indicated by CD spectra (Figure 1).

The CD spectra show a minimum at around 215 nm and a

maximum at 195 nm, as expected for β-barrel proteins such as

FhuA [17,18,31]. This finding suggests correct refolding of the

protein. Additionally, the temperature stability of the new

conjugate 17 was evaluated.

Figure 1: CD spectra of refolded catalysts 17–19 (red: 17, black: 18,
blue: 19).

The temperature-dependent CD spectra indicate correct folding

of the catalyst in the temperature range from 4 °C to 64 °C

(Figure 2). This is in agreement with previously reported

stability analysis of the wild-type FhuA and the FhuA mutant

with its “cork” domain removed (FhuA Δ1-159) [31].

The Cu(I) NHC-containing protein could not be renatured. We

speculate that during the refolding procedure Cu(I) was

oxidized to Cu(II) by contamination with air. Cu(II) led to pro-

tein aggregation and precipitation. This was shown in an inde-

pendent experiment. When one equiv of Cu(NO3)2·3H2O was
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Figure 2: Temperature-dependent CD spectra of catalyst 17.

added to a solution of FhuA ΔCVFtev, the protein precipitated

rapidly and quantitatively.

MALDI–TOF–MS analysis for the whole biohybrid catalyst

was difficult due to the high mass of approximately 64 kDa.

However, digestion into smaller fragments is possible with the

deliberately introduced TEV cleavage site [17,18]. The frag-

ment containing the Cu complex was cut out and analyzed sepa-

rately (Figure 3).

Figure 3: MALDI–TOF mass spectra (black: 17, red: FhuAΔCVFtev).

Digestion of biohybrid catalyst 17 was successful. Comparison

of the MALDI–TOF– MS spectrum with FhuA ΔCVFtev (calcd

(M + Na+): m/z = 5925 Da; found: m/z = 5925 Da) indicates

successful coupling. The signal of m/z = 6301 Da indicates the

FhuA fragment with the attached ligand framework (calcd (M):

m/z = 6302 Da; found: m/z = 6301 Da). The signal of

m/z = 6111 Da results from saponification of the ester and the

maleimide moiety (calcd (M + H2O + Na+): m/z = 6111 Da,

found: m/z = 6111 Da). We were unable to detect the copper ion

in the MALDI–TOF–MS.

The isolated biohybrid catalysts were tested in the Diels–Alder

reaction of azachalcone 20 and cyclopentadiene (21, Table 1).

We evaluated first the background reaction of this Diels–Alder

reaction in the detergents and buffer solutions we used for the

biohybrid catalysts. Since SDS precipitates at 4 °C and the solu-

tion becomes heterogeneous, we decided to perform the reac-

tions in SDS at 23 °C. After 3 days, the reaction showed

62% conversion with an endo to exo ratio of 70:30 (Table 1,

entry 2). Since detergents such as SDS influences the reaction

significantly, this value is in good agreement with previously

reported results [32]. In PE-PEG at 4 °C the conversion was

lower; the endo/exo ratio was ca. 55:45 (Table 1, entry 1).

Using CuI in SDS, the conversion increased slightly, showing

the same selectivity (Table 1, entry 5). When using Cu(II) as a

catalyst, the conversion was complete in both detergent solu-

tions, but no change in selectivity was observed (Table 1,

entries 3 and 4). CuI NHC complex 4 showed the same activity

and selectivity as CuI (Table 1, entry 6). By using the bioconju-

gate 13, the conversion with 62% is comparable with the pro-

tein-free catalysts or CuI itself, but the selectivity significantly

changed the endo product preferred (Table 1, entry 7). By using

the Cu(II) complexes 10–12 in the refolding buffer: the conver-
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Table 1: Diels–Alder reaction catalyzed by the biohybrid catalysts.

Entry Catalyst Buffer Temp. [°C] Conv.a [%] endo/exob

1 – PE-PEGc 4 20 55/45
2 – SDSd 23 62 70/30
3 Cu(NO3)2·3H2O PE-PEGc 4 95 54/46
4 Cu(NO3)2·3H2O SDSd 23 94 65/35
5 CuI SDSd 23 78 70/30
6 4 SDSd 23 75 67/33
7 13 SDSd 23 62 90/10
8 10 PE-PEGc 4 21 65/35
9 11 PE-PEGc 4 33 56/44
10 12 PE-PEGc 4 12 66/34
11 14 SDSd 23 92 90/10
12 15 SDSd 23 87 89/11
13 16 SDSd 23 91 89/11
14 17 PE-PEGc 4 69 96/4
15 18 PE-PEGc 4 15 66/34
16 19 PE-PEGc 4 64 98/2

aDetermined by 1H NMR in CDCl3 and HPLC. bDetermined by HPLC. cPE-PEG (0.125 M), sodium phosphate buffer (100 mM, pH 7.4).
dSDS (1% w/w), pH 7.5 (adjusted with NaHCO3).

sion decreased with an endo/exo ratio of approximately 60/40

(Table 1, entry 8–10). Upon attaching the catalyst to the protein

in the partially folded state, the selectivity increased to

90% endo with high conversions independent of the spacer

length (Table 1, entry 11–13). The refolded biohybrid catalysts

17 and 19 showed good conversion with almost quantitative

endo product formation (Table 1, entries 14 and 16). Catalyst 18

with the longest spacer unit, however, showed moderate activi-

ty and loss of endo selectivity. This is explained by the high

flexibility of this catalyst within the β-barrel structure of the

refolded protein (Table 1, entry 15). Based on these catalysis

results, we hypothesize that the protein environment is steri-

cally rather demanding, which is even more pronounced in the

refolded state. The absence of any enantioselectivity suggests

that no preferential orientation of the substrate at the active site

within the barrel structure is possible. Notably, no protein pre-

cipitated during catalysis, showing the advantageous feature of

membrane proteins in terms of robustness as compared to

soluble proteins [15].

Conclusion
Herein, we report the synthesis of Cu(I) NHC and Cu(II)

terpyridyl complexes equipped with a maleimide moiety

which underwent covalent conjugation at the cysteine

residue 545 of the transmembrane protein FhuAΔCVFtev.

These biohybrid conjugates were analyzed by CD spectros-

copy, MALDI–TOF–MS, ThioGlo fluorescence titration,

and BCA assay. All employed methods indicate the folded

structure of  FhuA ΔCVF t ev  and a high occupancy

of the only accessible cysteine residue within this β-barrel

protein.

The biohybrid catalysts showed high activity and high endo

selectivity in the Diels–Alder reaction of substrate 20 with

cyclopentadiene (21). A comparison with other reported artifi-

cial Diels–Alderases is not meaningful because of the utiliza-

tion of detergents in the present case, which increases the

stability towards the Diels–Alder reaction conditions. However,

similar trends with respect to both activity and endo selectivity

were observed. The cavity of FhuA appears to enhance the

reaction as reported by Hayashi et al. for nitrobindin [26],

Reetz et al. for serum albumin [22,23], and Roelfes et al.

for Lactococcal multidrug resistance Regulator (LmrR)

[25]. Furthermore, the increased endo selectivity is in

agreement with other protein-modified catalysts reported so far

[22-27].
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Experimental
General considerations
All manipulations were performed under argon atmosphere

using standard Schlenk or glove box techniques. Prior to use,

glassware was dried overnight at 130 °C and solvents were

dried, distilled and degassed using standard methods. Catalysis

with Cu(II) complexes were performed under ambient condi-

tions. NMR measurements were performed on a Bruker Avance

II 400 or a Bruker Avance III HD 400 spectrometer at ambient

temperature unless otherwise mentioned. The chemical shifts

(δ ppm) in the 1H and 13C NMR spectra were referenced to the

residual proton signals of the deuterated solvents and reported

relative to tetramethylsilane [33]. Abbreviations for NMR spec-

tra: s (singlet), d (doublet), t (triplet), quint (quintet), m (multi-

plet). Elemental analyses were performed on an elementar vario

EL machine. CD spectra were recorded on a JASCO J-1100

equipped with a single position Peltier cell  holder.

MALDI–TOF spectra were recorded on an Ultraflex III TOF/

TOF mass spectrometer (Bruker Daltonics). High resolution

ESI–TOF–MS were performed on a Thermo Finnigan LCQ

Deca XP Plus spectrometer. CuI and Cu(NO3)2·3H2O were pur-

chased from Sigma-Aldrich and used as recieved. Cyclopenta-

diene was freshly distilled before used. Compounds 1 [34], 2

[35], 5 [36], 6 [37], 7 [37], 12 [26], 20 [32] and FhuAΔCVFtev

[17] were synthesized according to literature procedures.

Syntheses
Synthesis and characterization of IMesBr 3
A solution of 1-(3-bromopropyl)-1H-pyrrol-2,5-dione (1.69 g,

7.75 mmol, 1.00 equiv) and 1-(mesityl)-1H-imidazole (1.66 g,

8.91 mmol, 1.10 equiv) in toluene (35 mL) was stirred in a

closed Schlenk tube for 24 h at 110 °C. The colorless precipi-

tate was filtered, washed with toluene (3 × 15 mL) and dried

under vacuum to afford analytically pure imidazolium salt 1

(2.58 g, 6.40 mmol, 83%) as colorless powder. 1H NMR

(400 MHz, CD2Cl2) δ 10.32 (s, 1H, NCHN), 8.07 (s, 1H,

CH=CH), 7.28 (s, 1H, CH=CH), 7.05 (s, 2H, aryl CH), 6.73 (s,

2H, CH=CH), 4.68 (t, 3JHH = 6.85 Hz, 2H, CH2), 3.58 (t, 3JHH

= 6.42 Hz, 2H, CH2), 2.35 (s, 3H, p-CH3), 2.34 (quint,
3JHH = 6.72 Hz, 2H, CH2), 2.10 (s, 6H, o-Me); 13C NMR (100

MHz, CD2Cl2) δ 171.5 (C=O), 141.9, 139.0 (NCHN), 135.0

(CH=CH), 134.9, 131.3, 130.2, 123.8 (CH=CH), 123.7, 48.0

(CH2), 34.5 (CH2), 30.2 (CH2), 21.4 (p-Me), 18.0 (o-Me);

ESIMS (+) m/z (%): calcd for (C19H22N3O2)+, 324.171; found,

324.170 (100).

Synthesis and characterization of NHC-Cu(I)I
complex 4
The Imidazolium salt 3 (200 mg, 0.495 mmol, 1.00 equiv),

K2CO3 (280 mg, 2.02 mmol, 4.00 equiv) and CuI (95 mg,

0.495 mmol, 1.00 equiv) was stirred in THF (5 mL) for 24 h at

23 °C. The solvent was evaporated under vacuum and the

residue was dissolved in dichloromethane (4 mL). After

filtering over Celite® the solvent was evaporated under vacuum

and the residue dried under vacuum to afford CuI NHC com-

plex 6 (150 mg, 0.292 mmol, 59%) as orange powder. 1H NMR

(400 MHz, CDCl3) δ 7.19 (s, 1H, CH=CH), 7.28 (s, 1H,

CH=CH), 6.93 (s, 2H, aryl CH), 6.83 (s, 2H, CH=CH), 4.21 (t,
3JHH = 6.72 Hz, 2H, CH2), 3.58 (t, 3JHH = 6.72 Hz, 2H, CH2),

2.31 (s, 3H, p-Me), 2.16 (quint, 3JHH = 6.72 Hz, 2H, CH2), 2.00

(s, 6H, o-Me); 13C NMR (100 MHz, CDCl3,) δ 181.7 (NCN),

170.6 (C=O), 139.0, 135.4, 134.9, 134.2, 129.1 121.7, 120.6,

48.3 (CH2), 34.7 (CH2), 30.5 (CH2), 21.0 (p-Me), 17.9 (o-Me);

Anal. calcd for C19H21CuIN3O2, C, 44.41; H, 4.36; N, 8.18;

found: C, 44.02; H, 4.01; N, 7.75; ESIMS (+) m/z (%): calcd for

(C19H21CuN3O2)+ 388.092; found, 388.106 (100).

Synthesis of terpyridyl ligands 8 and 9
A solution of terpyridine 5 (200 mg, 0.803 mmol, 1.00 equiv) in

THF (10 mL) was treated with acid chloride 6 (165 mg,

0.884 mmol, 1.10 equiv) or 7 (177 mg, 0.884 mmol, 1.10 equiv)

in THF (5 mL). Triethylamine (NEt3) (222 µL, 1.61 mmol,

2.00 equiv) was added to the solution and the mixture was

stirred for 16 h at 23 °C. The solution was filtered and all vola-

tiles evaporated. The residue was dissolved in dichloromethane

(50 mL), washed twice with water (50 mL), and once with brine

(50 mL). The organic layer was dried over Na2SO4 and the sol-

vent removed under vacuum affording the terpyridine ligand 8

(285 mg, 0.715 mmol, 89%) or 9 (280 mg, 0.699 mmol, 87%).
1H NMR (8, 400 MHz, CD2Cl2) δ 8.69 (m, 2H, aryl CH), 8.60

(dt, 3JHH = 8.0 Hz, 3JHH = 1.0 Hz, 2H, aryl CH), 8.26 (s, 2H,

aryl CH), 7.86 (m, 2H, aryl CH), 7.34 (ddd, 3JHH = 7.4 Hz,
3JHH = 4.8 Hz, 3JHH = 1.1 Hz, 2H, aryl CH), 6.75 (s, 2H,

HC=CH), 4.00 (t, 3JHH = 7.0 Hz, 2H, CH2), 2.99 (t,
3JHH = 7.0 Hz, 2H, CH2) ppm; 1H NMR (9, 400 MHz, CD2Cl2)

δ  8.69 (m, 2H, aryl CH),  8.61 (dt, 3JHH  = 7.8 Hz,
3JHH = 1.1 Hz, 2H, aryl CH), 8.25 (s, 2H, aryl CH), 7.85 (m,

2H, aryl CH), 7.34 (ddd, 3JHH = 7.4 Hz, 3JHH = 4.9 Hz, 3JHH =

1.0 Hz, 2H, aryl CH), 6.75 (s, 2H, HC=CH), 3.71 (t, 3JHH = 6.8

Hz, 2H, CH2), 2.67 (t, 3JHH = 7.4 Hz, 2H, CH2), 2.09 (pent,
3JHH = 7.2 Hz, 2H, CH2) ppm.

Synthesis of Cu(II)-terpyridine complexes 10 and 11
To a solution of terpyridine ligand 8 (200 mg, 0.500 mmol,

1.00 equiv) or 9 (207 mg, 0.500 mmol, 1.00 equiv) in ethanol

(10 mL), Cu(NO3)2·3H2O (120 mg, 0.500 mmol, 1.00 equiv) in

ethanol was added. The solution was stirred for 2 h at 23 °C.

The blue precipitate was collected and washed generously with

cold THF (20 mL), cold ethanol (50 mL) and cold dichloro-

methane (10 mL). The residue was dried under vacuum, to give

the copper complex 10 (214 mg, 0.365 mmol, 73%) or 11

(207 mg, 0.345 mmol, 69%). ESIMS (10) (+) m/z (%): calcd for
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(C22H16CuN4O4)+, 463.0468; found, 463.0459 (35); calcd for:

(C15H10CuN3O)+, 311.0125; found, 311.0118 (43); ESIMS

(11) (+) m/z (%): calcd for (C23H18CuN4O4)+, 477.0624; found,

477.0624 (7); calcd for (C15H10CuN3O)+; 311.0125; found:

311.0114 (36).

General procedure: Conjugation of the
catalysts to FhuAΔCVFtev and refolding
To a degassed solution of FhuAΔCVFtev in water (5 mg/mL,

pH ≈ 8 (NaHCO3)) containing 1% (w/w) SDS, 10 equiv of cata-

lyst 4 in degassed THF (10% (v/v)) or 10 equiv of catalyst 10,

11, 12 in water (10% (v/v)) was added. The solution was

allowed to stir 16 h.

In the case of catalyst 4, water was removed in vacuum, and the

residue was washed with degassed THF (4 × 15 mL) to remove

excess of catalyst 4. The residue was dried in vacuum and dis-

solved in water.

In the case of catalyst 10–12, the solution was transferred into a

dialysis tube and the solution was dialyzed for 3 days against

200 fold volume containing SDS (1% (w/w)) and water (pH ≈ 8

(NaHCO3)). The dialysis solution was changed every 12 hours.

Afterwards, the sample was dialyzed for 2 days against 200 fold

volume containing the refolding detergent PE-PEG (0.125 mM,

average Mn = 2250 g/mol), sodium phosphate buffer (10 mM,

pH 7.4), and water. The dialysis solution was changed every

12 h.

The protein concentration was analyzed by BCA assay, the cou-

pling efficiency was determined by ThioGlo fluorescence titra-

tion, and correct refolding was determined by CD spectroscopy,

as previously reported [17,18]. Digestion of the proteins was

performed as previously reported [17].

General procedure: Diels–Alder reaction
To the corresponding catalyst (1 mol %) in 2 mL of buffer solu-

tion (0.125 mM PE-PEG, sodium phosphate buffer (100 mM,

pH 7.4), 1 mM EDTA) at 4 °C or 23 °C azachalcone 20 (4 mg,

0.02 mmol) in THF (10% (v/v)) and freshly distilled cyclopen-

tadiene (40 µL, 50 µM, 33 equiv) was added subsequently. The

reaction mixture was stirred for 72 h. Afterwards, the mixture

was extracted with Et2O (3 × 10 mL), the combined organic

phases were dried over Na2SO4 and the solvent removed under

reduced pressure. The residue was analyzed by 1H NMR spec-

troscopy and chiral phase HPLC using heptane/isopropanol

(98:2) as eluents. All reactions were carried out in triplicates.

Abbreviations
PE-PEG (polye thylene-polye thylene  g lycol ) ,  SDS

(sodium dodecyl sulfate), TEV (Tobacco Etch Virus),

MALDI–TOF–MS (matrix-assisted laser desorption/ionisation

and time-of-flight mass spectrometry), FhuAΔCVFtev (FhuA

Δ1-159_C545_V548_F501_tev), CD (circular dichroism), ESI-

MS (electrospray ionization-mass spectrometry), NaPi (sodium

phosphate buffer).

Supporting Information
Supporting Information File 1
Illustration of the catalyst 2 and NMR spectra of

synthesized compounds.
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