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)e lungs are COVID-19’s most important focus, as it induces inflammatory changes in the lungs that can lead to respiratory
insufficiency. Reducing the supply of oxygen to human cells negatively impacts humans, and multiorgan failure with a high
mortality rate may, in certain circumstances, occur. Radiological pulmonary evaluation is a vital part of patient therapy for the
critically ill patient with COVID-19. )e evaluation of radiological imagery is a specialized activity that requires a radiologist.
Artificial intelligence to display radiological images is one of the essential topics. Using a deep machine learning technique to
identify morphological differences in the lungs of COVID-19-infected patients could yield promising results on digital images of
chest X-rays. Minor differences in digital images that are not detectable or apparent to the human eye may be detected using
computer vision algorithms. )is paper uses machine learning methods to diagnose COVID-19 on chest X-rays, and the findings
have been very promising.)e dataset includes COVID-19-enhanced X-ray images for disease detection using chest X-ray images.
)e data were gathered from two publicly accessible datasets. )e feature extractions are done using the gray level co-occurrence
matrix methods. K-nearest neighbor, support vector machine, linear discrimination analysis, näıve Bayes, and convolutional
neural network methods are used for the classification of patients. According to the findings, convolutional neural networks’
efficiency linked to imaging modalities with fewer human involvements outperforms other traditional machine
learning approaches.

1. Introduction

COVID-19 revealed flaws in many countries’ healthcare
services, and the failure of these systems to treat patients has
generated concern. )e lack of accuracy in clinical detection
methods is significant for COVID-19’s rapid dissemination
[1]. Molecular methodologies, such as computational real
reverse transcription-polymerase chain reaction (rRT-PCR)
[2], as well as other techniques, such as serologic tests [3] and

swab testing of the throat [4, 5], are employed and widely
utilized to diagnose COVID-19. Researchers also used chest
radiographs (X-rays) and chest computed tomography (CT)
scans to help indicate abnormalities characteristic of various
lung diseases, including COVID-19. CT scans and X-ray
examinations may be used as a critical screening method to
assess COVID-19 seriousness, track infectious patients’
emergency cases, and forecast COVID-19 progression [6, 7].
However, time is always short in such situations. )ese trials
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cannot be carried out using the current standard manual
diagnosis [8]. Deep learning (DL) is a branch of machine
learning (ML) that learns the highest-level abstractions from
findings using hierarchical structures. DL is utilized to solve
artificial intelligence challenges due to the multiple com-
putational levels. )e layers of DL are created from data
using a learning process rather than by individual tech-
nologists, which is a crucial feature of the DL approach. Its
benefits, such as higher achievement, blended function
learning with an end-to-end learning scheme, and the po-
tential to monitor composite knowledge challenges, have
achieved relevant therapeutic effectiveness in healthcare. DL
algorithms are also being employed to track and evaluate
coronavirus pandemics, thanks to their extensive application
in the research of medical recordings. Some theorists and
simulation engineers used autoencoders, convolutional
neural networks (CNN), and generative adversarial net-
works to analyze the coronavirus pandemic. Mathematical
and predictive methods may estimate human loss and
predict death over a specific time frame or up to the end of
the pandemic. Since statistical simulations do not consider
all facets of the pandemic, they cannot make more precise
predictions. To construct powerful models and resources
that support clinicians detect COVID-19 infection, scientists
and modeling engineers have widely used intelligent com-
putation methods in healthcare. )e government is taking
the necessary measures to prohibit the COVID-19 pandemic
from spreading and advancing intelligent computing
methods in healthcare. As a result, several ML approaches
are being used to tackle the latest COVID-19 pandemic
successfully. de Moraes Batista et al. [9] proposed that
various machine learning methods are used for the prog-
nosis of novel coronaviruses. Moreover, training the net-
work with 70% reference data and 30% test data measured
the accuracy of different ML techniques. With 68% sensi-
tivity, 85% specificities, 85% AUC, and 0.16 Brier scores, the
support vector machine (SVM) outperforms random forests,
logistic regression, and gradient boosting tree techniques.
ML approaches have several drawbacks, including the heavy
use of patient data [10], inconsistency, dependence on
temporal data, paucity, discrepancy [11], and the failure to
produce accurate forecasts due to high dimensionality [12].
)e generalized logistic growth model was utilized by
Ahmadi et al. [13] to predict the subepidemic waves of the
COVID-19 outbreak. Two, three, and four-wave phenomena
were predicted using the formula. Centered on a lung X-ray
map, Hassantabar et al. used an ML algorithm to detect
infected COVID-19 patient tissue [14, 15]. )is discovery
can also be utilized to observe and manage patients’ progress
in contaminated areas [16–20].

)is paper employs machine learningmethods to classify
COVID-19 X-ray images. )e feature extraction process is
the first and most crucial step in the classification process in
machine learning. Even though many deep learning algo-
rithms employ input photos to train the network, the GLCM
feature extraction approach shown in this study is successful.
As opposed to featuring extraction techniques with an image
input, the essential point in feature extraction methods with
picture input is to lower the processing time. )e size of the

output network is significantly less than with image input.
)e last phase involves the application of machine learning
technologies and the extraction of network performance
data. )e plans are compared in the confusion matrix and
ROC curve. For the classification of patients, KNN, SVM,
LDA, NB, and CNN methods are used.

2. Literature Review

By learning from basic depictions, deep learning strategies
can clarify complicated problems. DL methods have become
popular because they learn exact representations and the
property of studying information in a fundamental method
where several layers are used sequentially [21]. DL tech-
niques are usually employed in medical science, biomedical
science [20, 22], innovative health [23, 24], drug delivery
[25], and medical image recognition [26, 27], among others.
It is also commonly used to make an automated COVID-19
diagnosis. Data analysis, data processing, feature extraction
and classification, and performance assessment are all stages
in deep learning-based systems [21, 28]. A pretrained
method has already been trained in fields related to the
application’s context. Weight and prejudice were retrained
in transfer learning from a limited training network to a new
study network. In particular, training big data takes a long
time and needs much computing capital [21]. Xu et al.
evaluated a novel approach employing multitask joint
training algorithm for sectioning and classifying tongue
images using a deep convolutional neural network [29].

In another research by using support vector collection
data, a multiple kernel-based fuzzy SVM model was de-
veloped to predict DNA-binding proteins by Zou et al. [30].
Using a pretrained transfer learning model, the facility
speeds up the convergence with network generalization [31].
In transfer learning, multiple pretraining networks are re-
quired for the huge CNN. Some of the pretrained network of
COVID-19 classifications include AlexNet [32], GoogleNet
[33], SqueezeNet [34], various variants of visual geometry
group (VGG) [35], various forms of ResNet [36], Xception
[37], various forms of inception [38], various types of
MobileNet [39], DenseNet [40], U-Net [41, 42], and others.
Using transfer learning, detecting 0 in CT and X-ray images
has been effectively extended. 3D CT images are handled
distinctly other than colored X-ray. 3D CT images have a set
number of slices based on the computer and configuration
(16, 32, 59, 128, etc.). Individual slices of nature may be
greyscale or color photographs. Usually, the slices are iso-
lated and treated as individual pictures [43]. )e slices with
the most lung areas are included, while the remaining slices
are removed. Rezaei et al. created a lithological cartography
in the Sangan region of Northeastern Iran using satellite data
and image processing technologies [44]. During COVID-19,
Arenliu et al. have statistically analyzed the building of
online and telephone psychological first aid services in a low-
resource setting [45]. Rezaei et al. introduced a data-driven
approach for segmenting hand parts on depth maps that did
not need any additional effort to acquire segmentation labels
[46]. In [47], case study features obtained from the slices are
utilized to optimize the pretrained network. Also, U-Net has
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been utilized to segment and reduce features from various
regions of interest (ROI) in 3D CT in some cases [48].
Rehman and Lela investigated how to manage crises during
the COVID-19 pandemic [50]. Radulescu and Cavanagh
adapted their SEIR standard model [51] to investigate the
complicated hierarchical compartments and epidemiologic
factors of COVID-19. )ey reviewed the new management
policies of the pandemic, mutual isolation, travel prohibi-
tion, interruptions, and closings, to produce predictions and
assess the feasibility of containment measures. )e aim of
this study was to estimate the distribution gap in COVID-19
by means of a hybrid of SEIR models and regression models
applying data from the John Hopkins University on
COVID-19 [52]. Sadeghipour et al. conducted different
research in which they compared the Expert Clinical System
for Diagnosing Obstructive Sleep Apnea to the XCSR
classifier [54]. According to the study by Zhang et al., a
privacy-preserving algorithm is implemented for querying
clinical pathways in e-healthcare systems [55]. Liu et al.
published a self-supervised CycleGAN method for super-
resolving ultrasound images with perception consistency
[56]. Several ways to reduce the negative economic effects of
COVID-19 were presented by Mahmoudi et al. [57].
Chaudhary et al. proposed the Fourier-Bessel series ex-
pansion-based decomposition technique, a Fourier-Bessel
series expansion domain application of the wavelet packet
decomposition methodology. Using a transfer learning
technique, the subband pictures are utilized for training
multiple pretrained CNN models independently. A feature
set is obtained by fusing the in-depth features of each
channel. Several classifiers distinguish pneumonia caused by
COVID-19 from other viral and bacterial pneumonia and
healthy patients with the recovered feature vector. )e
COVID-19 categorization based on chest X-rays requires a
radiology specialist and a substantial amount of time, both
valuable commodities when COVID-19 illness spreads
rapidly. As a result, creating an automated analytic tech-
nique is desirable to save time for medical experts. )e
research discussed in [59] uses the susceptible exposed in-
fected removed (SEIR) method for physical estimation and
evaluation distancing. If the process of return to work started
in April, physical distance measures were successful. )is
study investigates the relationship between temperature and
humidity in relation to the transmission of COVID-19 [60].
Alyasseri et al. [57] divided the research tracks into two
categories: deep learning (DL) and machine learning (ML),
and they presented COVID-19 public datasets that had been
produced and retrieved from different nations. )e mea-
surements used to evaluate diagnostic approaches have been
compared, and a thorough explanation has been provided.
)e study served as a guide for the research community on
the planned development of machine learning for COVID-
19. It served as an inspiration for their work on subsequent
developments.

Kumar et al. [76] investigated various artificial intelli-
gence-based strategies to apply these techniques to the
prediction and diagnosis of COVID-19 illness. )eir ideas
for future study and their facilitation of knowledge collecting
and formulation on the application of artificial intelligence

approaches for dealing with the COVID-19 outbreak and its
effects were much appreciated. Using computed CT scans,
Akram et al. [77] demonstrated an automated approach for
the quick diagnosis of COVID-19 infection. )ey used
discrete wavelet transform and extended segmentation-
based fractal texture analysis methods to extract the essential
characteristics from the fractal texture dataset. Khan et al.
[78] presented a strategy for enhancing contrast by com-
bining top-hat and Wiener filters, which they called “con-
trast enhancement.” Two deep learning models that had
already been trained were used and fine-tuned according to
the target classes. )e features were then retrieved and fused
using a parallel fusion approach—the parallel positive
correlation—to achieve the best results. )e entropy-con-
trolled firefly optimization approach was used to identify the
most optimal characteristics. Nejatishahidin et al. [79]
proposed a new pose estimation method that can be applied
to previously undetected environments. A framework for
identifying 15 different forms of chest illnesses, including the
COVID-19 disease, was suggested by Rehman et al. [80].)e
framework was based on the use of a chest X-ray modality.
)is architecture enhanced the accuracy of COVID-19
identification while simultaneously increasing the prediction
rates for other chest disorders. According to one suggestion,
face masks can be used nationwide and applied promptly
(see Table 1).

3. Methods and Materials

3.1. Feature Extraction. )e extraction feature decreases the
number of tools used to interpret large data sets accurately.
)e vast number of variables involved is one of the critical
problems of sophisticated data analytics. It would help if you
had plenty of memory and computing power for working
with an extensive range of variables or required an algorithm
to classify the exhibits and use them for new samples.
Feature extraction is a wide-ranging concept to create dy-
namic mixes of variables to tackle these problems with
absolute accuracy. Texture analysis sought to identify a
reliable way to represent the specific properties of textures in
a simplified but specific way for correct object detection and
division. )e surface is essential in image analysis and
pattern recognition. Texture extraction is only used in a few
processor architectures [75].

A gray surface incidence matrix is developed in this
study to achieve statistical texture characteristics. )e tex-
ture properties of the observed substances are calculated
from the statistical light intensity distribution of specific
positions in the statistical texture analysis concerning each
other. )e numbers are classified as first, second, or higher
order, depending on the number of pixels for each com-
bination. )e gray level matrix (GLCM) is a technique to
calculate statistical texture characteristics of the second
order. In several recent studies, this method has been used
for third and higher-order textures that recognize the re-
lationships between three or more physically feasible pixels
but are seldom used because time and perception complexity
are computed. GLCM has 22 features, which are listed as
follows [81]:
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(1) Energy
(2) Entropy
(3) Dissimilarity
(4) Contrast/inertia
(5) Inverse difference
(6) Correlation
(7) Homogeneity
(8) Autocorrelation
(9) Cluster shade
(10) Cluster prominence
(11) Maximum probability
(12) Sum of squares
(13) Sum of average
(14) Sum of variance
(15) Sum of entropy
(16) Difference variance
(17) Difference entropy
(18) Information correlation criteria (1)
(19) Information correlation criteria (2)
(20) Maximum correlation coefficient

(21) Inverse difference normalized
(22) Inverse difference moment normalized

3.2. Machine Learning Classifiers. One of the learning net-
works inspired by the perceptron neural network is this kind
of neural network. )e picture or features linked to the
problem are first classified and fed into the grid. )e con-
cealed weights in the output layer would then express
themselves in several ways [61]. If the output comprises
multiple numerical components, the algorithm gives a
classification or recognition algorithm (e.g., image classifi-
cation, normal� 1, abnormal� 2). After many images have
been trained, the results are weighted.

)e image form is detected when a new image is applied
to the algorithm, other than the training images. For in-
stance, the matrix of different images is sent to the method
and trained in the computer, such as images of benign or
malignant cancers, Alzheimer’s, sarcoma, or brain tumors
[61]. )e process determines the type of disease based on the
weights obtained. )e convolutional sublayer is the CNN’s
foundation, and its output matrix can be seen as a 3Dmatrix
of neurons. Standard neural networks are considered for a
better understanding. Each layer was a 1D matrix of neu-
rons, producing its output and eventually accumulating a

Table 1: Literature review related to deep learning method for classification of COVID-19.

Approaches Dataset Volume TPR Acc
COVID-Net [58] COVIDx test 13800 0.871 0.926

ResNet50; InceptionV3; Inception-
ResNetV2 [59] GitHub 100 —

98%;
97%;
87%

COVNet [60] Proprietary datasets 4356 0.87

Deep learning with X-ray [61] Proprietary datasets 448 0.986 0.967
6 8

COVIDX-Net (VGG19 and
DenseNet201) [62] Proprietary datasets 50 — 0.9

Barstugan et al. [63] Proprietary datasets 150 — 0.996
8

ResNet50 and SVM [64] GitHub, Kaggle, and Open-i 158 97. 0.953
29% 8

SVM and random forests [65] Hospital Israelita Albert Einstein in São Paulo — 0.067 0.8477

MLT and SVM [66] Montgomery County X-ray Set and COVID Chest X-ray Set and
COVID Chest X-ray dataset master 40 0.957 0.974

6 8
Li et al. [67] Proprietary — 0.8 0.87

SMOTE [68] Chest X-ray images (Pneumonia)1 and COVID-19 public dataset from
Italy 5840 0.967 0.966

Probabilistic model [69] Kaggle benchmark dataset 51 — 0.994
NLR&RDW-SD [70] Jingzhou Central Hospital — 0.9 0.857
RF-based model [71] Proprietary — — 0.875

SMOTE [68] Chest X-ray images (Pneumonia)1 and COVID-19 public dataset from
Italy 5840 0.932 0.931

iSARF [72] 3 University Hospitals (Tongji, Shanghai, Fudan) — 0.907 0.879

SMOTE [68] Chest X-ray images (Pneumonia)1 and COVID-19 public dataset from
Italy 5840 0.947 0.947

Modified U-Net structure [73] SIRM 110 — 0.79
Attention U-Net with an adversarial
critic model [74] JSRT, Montgomery, and Shenzhen 1047 — 0.96

InfNet and the Semi-Inf-Net [75] CCOVID-19 CT segmentation and COVID-19 CT/X-ray collection 1600 0.725 —
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series of results corresponding to each neuron. While rather
than a scaler number, a 3D matrix in which the neurons are
arranged in 3D in the CNN is revealed. As a result, this
cube’s output is also a three-dimensional matrix [61]. )e
placement of a maxpooling layer among several layers is a
widespread technique in traditional architecture. )is layer
aims to reduce the features and measurements in the net-
work and thus overfit the display, resulting in a smaller input
size. )e maxpooling feature enlarges or reduces the size of
the position. Artificial neural networks’ activation mecha-
nism specifies the neuron based on the input matrix [82].
)e result values are converted to a goal range, 0 to 1 or −1 to
1 (depending on the activation mechanism used). For in-
stance, the logistic activation function converts all inputs to
true absolute ranges [0, 1]. Another way to lose weight is to
optimize your weight. In this article, the rectified linear unit
(ReLU) for the following functions is employed:

f(x) �
0 x< 0,

x x≥ 0.
 (1)

)e expressions, such as SoftMax, are not exclusive to a
single feature and relate to the 1D matrix.

f i( x
→

) �

e
xi



J

j�1
e

xj
. (2)

In KNN, each tuple in the n-dimensional space can be
called a point if the educational tuples contain n indexes.)e
k-nearest algorithm is specified based on distance measures
(e.g., Euclidean distance) in each attribute when a nontuple
is given. )e test sample is found among the training
samples. )e test sample’s classmark is identical to the labels
of the majority of these samples in the test sample’s vicinity
[83].

SVM is a supervised ML technological category that uses
a hyperplane to classify each observation in a given data set.
SVM can address linear and nonlinear issues, which is more
beneficial in large datasets. SVMs are a generalized linear
classifier that can be considered a perceptron extension.
)ey are also known as a particular case of Tikhonov’s
regularization [84].

Bayesian learning is a computational method for linking
data sets to different mathematical approaches by learning
conditional independence. Bayesian learning incorporates
previous probability functions and new insight to measure
later probability. )e probability of (θ) must be amplified if
Y1, Y2, Y3, . . . Yn represents a set of inputs and returns a
label. Naive Bayes classifiers can be trained effectively for
particular probability models in a supervised learning
framework. )e maximum likelihood approach is used to
estimate parameters for naive Bayes models in many
practical applications. In other words, the naive Bayes model
[85] can be used without endorsing Bayesian probability or
using complex Bayesian techniques.

Fisher’s linear discriminant is a technique for deter-
mining a linear combination of variables that describe or
discriminate two or more sets of objects or occurrences. It is

utilized in statistics and other areas. Fisher’s linear dis-
criminant is a generalization of LDA. )e resulting mixture
may be used as a linear classifier or, more generally, reduce
dimensionality before further classification. Discriminant
analysis is used when groups are known a priori (unlike in
cluster analysis). A score on one or more quantitative
predictor variables, as well as a score on a group indicator, is
required for each scenario [86]. In basic terms, discriminant
function analysis involves grouping, classifying, or catego-
rizing objects into similar groups, classes, or categories.

3.3. Classifier’s Performance Analysis Metrics. )e ROC
curve is defined by comparing the true positive rate (TPR) to
the false positive rate (FPR). In ML, the TPR is also called
recall or probability of detection. Starting on the ROC’s left
side, the FPR and TPR have vanished. ()is implies that the
threshold line, which represents the most significant number
of test results, is extensive.) Start with the most test results
and use that as a starting point. )e consistency of the
findings of a measure that divides the knowledge into these
two categories is measurable and descriptive.

True positive (TP): the classification of the COVID-19
patient is accurate
False positive (FP): the classification of non-COVID
patients is with mistakes
True negative (TN): the classification of non-COVID is
accurate
False negative (FN): the classification of COVID-19
patients is with mistakes

In mathematical terminology, the sensitivity of sepa-
rating the percentages of TP cases into the number of TP and
FN cases is as follows:

Sensitivity �
TP

TP + FN
. (3)

)e function of the techniques listed in artificial intel-
ligence is the confusion matrix. Such a presentation is often
utilized in supervised learning algorithms, but it is often
employed in unsupervised learning. Each column of the
matrix contains an instance of the expected value. Suppose
each row has an actual (true) case. Also, the name of this
matrix is revealed, allowing for errors and tampering with
the outcome [86] (see Figure 1).

4. Results and Discussion

4.1. Dataset. )e dataset includes COVID-19-enhanced
X-ray images for disease detection using chest X-ray images.
)e data were gathered from two publicly accessible datasets
[87, 88]. )e data are based on a shared open dataset of chest
X-rays and CT photographs of patients with COVID-19 or
other viral or bacterial pneumonia and are positive or
suspicious (MERS, SARS, and ARDS). Data would be
compiled directly from hospitals and doctors and indirectly
from public records. All photographs and data are made
public [46, 50, 53]. Images are in the size of 256× 256 in PNG
format. )e example of images is shown in Figure 2. For
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analysis and simulation of the methods, 1824 image is used
so that 80% belongs to training and 20% is the validation
sample. [89].

4.2. Preprocessing. In this paper, the dataset of lung X-ray
images is collected from the data repository. It converted to a
unique PNG format with 256× 256 pixel size. First, the
image should be transformed into a double matrix for
analysis. )e first and most crucial part of classification in
machine learning is feature extraction. Although many deep
learning methods use input images to train the network, this
paper’s GLCM feature extraction method is effective. )e
critical point in feature extraction methods is that the
processing time is reduced, and the size of the output
network is highly more minor than the methods with image
input. )e GLCM approaches extracted 22 features for each
image explained in the methods and materials section. )e
features are normalized between [−1, 1] in the next step to
transform the matrix in an identical range. Two folders of
COVID-19 patients and non-COVID patients with 1824
images were finally converted to a matrix with an 1824× 22
size. )en, images with COVID-19 infections are labeled
with (1 or positive) and other images (0 or negative). )e
final step is the implementation of machine learning
methods and extracting performance metrics from the
networks. )e conceptual diagram of the process is illus-
trated in Figure 3.

4.3. Results of Classification. In this paper, five powerful
machine learning techniques are utilized to classify and
diagnose the COVID-19 patients with other patients. Five
classifiers that analyze and implement diagnosis include
KNN, SVM, NB, LDA, and CNN.

Moreover, each class of 912 vectors with 22 features
enters the methods. )e classification results in a confusion
matrix are depicted in Figure 4. Regarding the confusion
matrix in Figure 4, orange cells illustrate true metrics, and
white cells are false. For example, in KNN results, from 912
images with COVID-19, 825 (45.8% of all images) are de-
tected correctly. However, 77 (4.2% of all images) are
misdiagnosed. )erefore, the sensitivity of the KNN
methods is 91.6%. In other words, 91.6% of patients with
COVID-19 are detected accurately.

Moreover, from 912 images with other diseases, 98.9%
are diagnosed correctly. It means that the specificity of the
KNN is 98.9%. Furthermore, precision for KNN is 98.8%,
which means that 845 patients are detected as COVID-19;
however, 835 patients (98.8%) are diagnosed truly. Finally,
another important metric for analyzing classifiers is accu-
racy. It includes all number of true values over the number of
true and false values. For the KNN method, the accuracy is
95.2%. It means that from all images, 95.2% (902 + 835) of
them are diagnosed correctly. Compared with other ma-
chine learning methods, the accuracy of KNN is higher than
SVM, NB, and LDA approaches. CNN is a feedforward
neural network that trains to remove more complex, high-
level functionality as neural networks to generate an output
map. )e convolutional kernel utilizes an input function

map. If a function converts, the output map reflects it, so
CNN takes advantage of the fact that a feature is the same in
the receptive field no matter where it is. It suggests that CNN
can learn more helpful functionality than approaches that do
not consider. Because of this assumption, weight sharing is
used to minimize the number of factors. )e CNNs learn
through gradient descent. Each layer feeds into the one
below it, resulting in hierarchical features tailored to the task
at hand. Features in the form of a real-valued vector are
typically required by SVM and others.

On the other hand, CNN is typically taught from be-
ginning to end, ensuring it responds to the dilemma it is
trying to solve. SVMs, KNNs, and random forests use CNN
as a trainable attribute detector. Different algorithms in
machine learning should be complementary since SVMs are
still widely used; it only depends on the task. )erefore, this
paper uses the CNN method to classify COVID-19 patients
using GLCM features. )e structure of CNN architecture is
shown in Figure 5.

)e input layer consists of 22 GLCM normalized fea-
tures. It is used as a vector for the simulation of the network.
Finally, the categorical output labels are 1 for positive
samples (COVID-19 patients) and 0 for negative samples
(other patients).)e simulation has PC core i7, 2.5GHz, and
12GB RAM. )e process of training is shown in Figure 6.
)e process has continued to 5800 iterations to reach an
acceptable accuracy. )e complexity of SVM is O(n3), KNN
O(n dk), NB O(n d), LDA O(mn.min(m, n)), CNN O(n).

)e confusion matrix of the CNN results is illustrated in
Figure 7. Based on the matrix, from 912 COVID-19 patients,
905 (99.2%) were diagnosed correctly. However, only seven
images are misdiagnosed. On the other hand, all the patients
with other diseases or negative results are detected. In other
words, the sensitivity and specificity of the CNNmethods are
99.2% and 100%. Moreover, the precision is 100%. It means
that all the patients detected as COVID-19 are truly correct.

Negative Positive

Specificity (TNR) Sensitivity (TPR)
FPR FNR

TPFP Precision (PPV)
FDR

Negative Predictive
Value (NPV)

FOR

FNTN

Accuracy
Error

Po
sit

iv
e

N
eg

at
iv

e

Figure 1: )e confusion matrix.
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Consequently, the accuracy of the CNN methods is
99.6%. For comparison of the used machine learning
methods, the ROC curve is depicted in Figure 8. Regarding
the ROC curve, the horizontal axis is fallout or FPR, and the
vertical axis is sensitivity or TPR. If the fallout and sensitivity
are lower and higher values, respectively, it is desirable for
classification. )erefore, CNN methods result in higher
sensitivity in comparison with other methods. Also, NB
illustrated lower sensitivity between machine learning
methods.

Based on the performance analysis metrics results shown
in Table 2, the higher values belong to the CNN technique.
Under the ROC curve value, AUC is another essential metric
for classifiers. For CNN methods, it is 99.97. Consequently,
the highest accuracy belongs to CNN, KNN, LDA, SVM, and
NB, respectively.

5. Discussion

As medical image processing technology has progressed,
intelligent detection and diagnosis software have accelera-
ted. A vital tool for boosting diagnosis accuracy is machine
learning algorithms, widely regarded as adequate. However,
to generate superior machine learning models, it is vital to
use effective feature extraction methods. )erefore, deep
learning models are often utilized in medical imaging ap-
plications because they can automatically retrieve features or
employ pretrained models. As a consequence, deep learning
models are becoming increasingly popular. )e findings of
this article, which employs machine learning algorithms to
identify COVID-19 on chest X-rays, are extremely en-
couraging in their preliminary nature. GLCM algorithms are
used to extract the features from the data.

(a) (b)

Figure 2: Example of X-ray image from patients’ lungs. (a) COVID-19 patient. (b) Other patients.
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Figure 3: Conceptual diagram of the presented method.
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Figure 4: )e confusion matrix of the deep learning methods used for COVID-19 diagnosis.
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)e followings are the broad thumb guidelines employed
in selecting textural features: because the values of energy are
within a normalized range, it is chosen over entropy. )e
average gray level difference between neighboring pixels is
connected with contrast. It is similar to variance, but it is
chosen because of the lower computing effort and usefulness

as a spatial frequency measure. In addition, energy and
contrast are essential characteristics in terms of visual
evaluation and computational burden to discern between
distinct textural patterns. )e categorization of patients is
accomplished using KNN, SVM, LDA, NB, and CNN al-
gorithms. It would be beneficial to have a large amount of
memory and computer capacity for working with many
variables or require an algorithm to categorize the exhibits
and apply them to fresh samples. Feature extraction is a
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broad idea that may be used to build dynamic mixes of
variables that can solve these challenges with pinpoint
precision. To achieve accurate object recognition and divi-
sion, texture analysis tried to discover a reliable technique to
express the distinctive attributes of textures in a simplified
yet specific manner for object detection and division. )e
surface is critical in the interpretation of images and the
recognition of patterns. Texture extraction is only employed
in a few CPU architectures, and it is not widely available.

Additionally, the accuracy is excellent. It follows that all
of the patients who were previously diagnosed as having
COVID-19 were correct in their diagnosis. Consequently,
the best accuracy is achieved by CNN, KNN, LDA, SVM, and
NB, in that order. By categorizing lungs and adding in-
formation paired with lungs around noise, there is a sig-
nificant likelihood of supplying more data, resulting in
enhanced outcomes. )is disturbance is linked to cables and
collected equipment, patients’ ages, and gender, allowing
photos without lungs to be classified precisely. Due to noise
bias, future applications utilizing models without lungs may
have an increased risk of mislabeling pictures. To verify that
noise is not a cause of bias, more work is needed to segregate
diseases diagnosed by the expert radiologist. It is also im-
portant to note that the findings reported do not always
imply the same performance across all datasets. Principal
datasets, for example, originate from European patients;
other global patients may have modest data capture dif-
ferences or diseases, implying that a better categorization
utilizing global datasets is required. Separating the datasets
by gender will also offer further information on the model’s
scope, as the soft tissues of the breast might conceal sections
of the lungs. It is unclear whether this represents a bias in the
model’s prediction.

6. Conclusion

)e growth of intelligent detection and diagnostic software
has accelerated as medical image processing has advanced.
Machine learning algorithms are commonly recognized as a
powerful method for improving disease diagnostic accuracy.
However, efficient feature extraction tools are necessary to
obtain better machine learning models. As a result, deep
learning models are commonly used in medical imaging
applications because they can automatically retrieve features
or use pretrained models. )is paper uses machine learning
methods to diagnose COVID-19 on chest X-rays, and the
findings have been very promising. )e feature extractions
are done using GLCM methods. For the classification of
patients, KNN, SVM, LDA, NB, and CNNmethods are used.

)e sensitivity of the KNN methods is 91.6 percent,
based on the findings. In other words, 91.6 percent of
COVID-19 patients are correctly identified. Furthermore,
when comparing the process 912 images to other diseases,
98.9% of the disorder is correctly identified. It means that the
KNN has a specificity of 98.9%. Furthermore, KNN has a
precision of 98.8%, which indicates that 845 patients are
observed as having COVID-19 disorder, but only 835
(98.8%) are diagnosed. It means that 95.2 percent of the
images are correctly diagnosed. In contrast to other machine
learning techniques, the precision of KNN is better than that
of SVM, NB, and LDA. Based on the index, 905 (99.2%) of
912 COVID-19 patients were correctly diagnosed. Only
seven images, however, are misdiagnosed. Patients with
other diseases or unfavorable effects, on the other hand, are
identified. In other words, the CNN approaches have a
sensitivity and specificity of 99.2 percent and 100 percent,
respectively. Furthermore, the precision is fine. It means that
all of the patients who were identified as having COVID-19
are right. As a result, CNN, KNN, LDA, SVM, and NB have
the best accuracy, respectively. Future works should extend
feature-based methods for classifying diseases such as
COVID-19, Alzheimer’s, and lung cancer instead of image
base method. It prevents time constraints and develops fast
methods [90, 91].
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