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Objective: Papillary thyroid carcinoma (PTC) accounts for 80% of thyroid

malignancy, and the occurrence of PTC is increasing rapidly. The present

study was conducted with the purpose of identifying novel and important

gene panels and developing an early diagnostic model for PTC by

combining artificial neural network (ANN) and random forest (RF).

Methods and results: Samples were searched from the Gene Expression

Omnibus (GEO) database, and gene expression datasets (GSE27155,

GSE60542, and GSE33630) were collected and processed. GSE27155 and

GSE60542 were merged into the training set, and GSE33630 was defined as

the validation set. Differentially expressed genes (DEGs) in the training set were

obtained by “limma” of R software. Then, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis as well as

immune cell infiltration analysis were conducted based on DEGs. Important

genes were identified from the DEGs by random forest. Finally, an artificial

neural network was used to develop a diagnostic model. Also, the diagnostic

model was validated by the validation set, and the area under the receiver

operating characteristic curve (AUC) value was satisfactory.

Conclusion: A diagnosticmodel was established by a joint of random forest and

artificial neural network based on a novel gene panel. The AUC showed that the

diagnostic model had significantly excellent performance.
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Introduction

Thyroid cancer (TC), accounting for 3.4% of all cancers

diagnosed annually, is the most common endocrine

malignancy (Seib and Sosa, 2019). TC was divided into three

types: differentiated thyroid cancer, representing over 90% of

thyroid cancer, consists of papillary thyroid carcinoma (PTC)

and follicular thyroid carcinoma (FTC). In addition, anaplastic

thyroid cancer (ATC, 1%) and poorly differentiated thyroid

cancer (PDTC, 5%) are rare tumors (Prete et al., 2020). With

the popularization of physical examination, the incidence of PTC

has increased rapidly (Wang and Sosa, 2018). PTC is usually an

inert and curable tumor with a 10-year survival rate>90%
(Alvarado et al., 2009). However, more than 25% of

advanced-stage PTC patients are characterized by their

invasiveness and metastasis; these traits usually result in poor

prognosis (Huang et al., 2021). Among PTC patients, cervical

lymph node metastasis (LNM) occurs in 50%–80% of patients,

which is a tested risk factor for recurrence and a reduced survival

rate (Ling et al., 2021). Distant metastasis occurs in 2% of

advanced-stage PTC, which is the main reason for death.

Lung is the most common metastatic site (53.4%), and 26.3%

presented with the multiple-organ metastasis (Toraih et al.,

2021). So, we intended to discover novel and important gene

panels and develop a diagnostic model for PTC of early stage.

The availability of microarray technology and more precise

RNA-sequencing technology improves the research of disease

pathogenesis (Xie et al., 2020). Discovering the most meaningful

variables for classification is the primary question about

developing a classification model using gene expression data.

To resolve this, a variety of machine learning algorithm,

including random forest (RF) (Kursa, 2014; Cai et al., 2015)

and artificial neural network (ANN) (Chen et al., 2014), were

used. Differing from common statistical methods, machine

learning involves learning from cases (Van Calster et al.,

2019). Therefore, RF and ANN were joined to develop a novel

diagnostic model of PTC by learning from the training set and

then testing the model in the validation set. The results of this

study reveal a novel gene panel for early clinical diagnosis of PTC.

Materials and methods

Research design

The study flowchart is shown in Figure 1. Three gene

expression datasets (GSE27155, GSE60542 and GSE33630)

were collected from the GEO database. GSE27155 and

GSE60542 were integrated into the training set, and

GSE33630 was selected as the validation set. Differentially

expressed genes (DEGs) were defined by the R package

“limma.” Gene Ontology (GO) function enrichment analyses

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were conducted through the

“clusterProfiler” package of R based on the DEGs in the

training set. Also, immune cell infiltration analysis was

performed by R. We determined 10 important genes through

random forest from the DEGs by the “randomForest” package.

Further, an artificial neural network diagnostic model was

established through the “neuralnet” package using the

10 important genes and was assessed by AUC. Finally, the

validity of the ANN diagnostic model was validated with the

performance of a validation set.

Data download and process

The GSE27155, GSE60542, and GSE33630 datasets were

collected via the Gene Expression Omnibus database (GEO;

https://www.ncbi.nlm.nih.gov/geo/). Then, gene names were

obtained by transforming probe names by R software. If

several probes could be matched to identical gene, the

FIGURE 1
Flowchart.

TABLE 1 Source of datasets.

Datasets Platform Normal PTC

GSE27155 GPL96 4 51

GSE60542 GPL570 30 33

GSE33630 GPL570 45 49
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expression data with gene was replaced by its mean expression

value. Finally, 55 samples (4 normal samples and 51 PTC

samples) in GSE27155, 63 samples (30 normal samples and

33 PTC samples) in GSE60542 and 94 samples (45 normal

samples and 49 PTC samples) in GSE33630 were utilized in

this research (Table 1). GSE27155 and GSE60542 were combined

into a training set, and GSE33630 as a validation set.

Screening for differentially expressed
genes

Differentially expressed genes (DEGs) were identified in

34 normal samples and 84 PTC samples of the training set

through the R package “limma” using the classic Bayesian

data analysis. |log2FC| >1.5 and adjusted p Value <0.05 were

set as threshold. Then, we obtained 94 DEGs involving 53 up-

regulated genes and 41 down-regulated genes. R package

“pheatmap” and “ggplot2” were utilized to conduct the

heatmap and volcano plot.

Gene Ontology function and Kyoto
Encyclopedia of Genes and Genomes
pathway enrichment analysis

To explore the biological significance of these DEGs, Gene

Ontology (GO) enrichment analysis (adjusted p value < 0.05)

categorizing genes into biological process (BP), cellular

component (CC), and molecular function (MF) was

performed. Meantime, Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis was used to describe

metabolic pathways (p value < 0.05). Enrichment analysis of

DEGs was conducted through the R package “clusterProfiler.”

Immune cell infiltration analysis

As a crucial component of the tumor environment,

immune cells impacted the development and prognosis of

tumors, their composition as well as function in various types

of tumors were different. On the one hand, some immune

cells have the roles to be favorable targets for

immunotherapy. On the other hand, some may react

negatively, even resulting in drug resistance. Given these

causes, figuring out the ingredient and possible influence

of immune cells in PTC was beneficial to identify valuable

therapeutic targets. We downloaded a reference including

human gene expression in immune cells. Then, we exploited

the reference and a file including the gene expression of each

sample to complete immune cell infiltration analysis and

obtain the result involving the expression of immune cells

of each sample by R software. Based on the result, we

performed correlation analysis of immune cell by the

“corrplot” package and difference analysis of immune cells

by the “vioplot” package.

Random forest analysis to determine
important genes

The important genes were identified by a random forest

classifier via “randomForest” package of R. Firstly, the

parameter “ntree” was set as 500 to find the best number of

trees. By calculating the error of cross validation, 15 was

selected as the best number of trees represented the

minimum error of cross validation. Then, parameter 15 was

used to reconduct random forest and the importance score of

genes was obtained. Genes with an importance score greater

than 2 were seen as PTC significantly related genes. The R

package “heatmap” was utilized to draw a heatmap based on

important genes.

Development and validation of an artificial
neural network model

Based on 10 important genes identified by RF, an artificial

neural network model was developed via the R package

“neuralnet.” At first, the expression of 10 important genes

was converted into “gene tag” based on their expression

levels. In the case of a certain sample, the expression level of

a specific gene was compared to the median of all sample

expression level. Among the up-regulated genes, if the

expression level is higher than the median, it will be valued

as 1, otherwise 0. Among the down-regulated gene, if

expression level is higher than median, it will be valued as 0,

otherwise 1. Then, we finished a “gene tag” sheet. Next, the

hidden layers of ANN were set as 5 to obtain a gene weight

calculated by “gene tag”. Finally, the ANN diagnostic model was

established. We assessed the model in the training set. Also, we

validated the model in the validation set, and its diagnostic

performance was evaluated by AUC.

Results

Differential expression analysis

In total, 53 significantly up-regulated genes and

41 significantly down-regulated genes were determined

between normal samples and PTC samples based on |

log2FC| >1.5 and adjusted p value <0.05 as threshold in

training sets GSE27155 and GSE60542. Heatmaps (Figure 2A)

and volcano plots (Figure 2B) of DEGs showed favorable

discrimination of gene expression.
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Gene Ontology/Kyoto Encyclopedia of
Genes and Genomes enrichment analysis

To reveal the biological importance of DEGs in the

mechanism of PTC, we conducted GO and KEGG enrichment

analysis using the package “clusterProfiler” of R software. Amid

GO enrichment analysis results (adjusted p value cutoff = 0.05),

concerning BP included wound healing, regulation of body fluid

levels, blood coagulation and hemostasis; CC involved collagen-

containing extracellular matrix; MF contained extracellular

FIGURE 2
Heatmap and volcano plot of DEGs. (A) The heatmap of differential expression analysis result. The colors of the heatmap, from red to blue,
indicate high to low expression of genes in normal and PTC samples. On the upper part of the heatmap, the blue band represents normal samples and
the red band stands for PTC samples. (B) The volcano plot of DEGs. The X-axis is logFC, and the Y-axis is –log10 (adj.p value). The high-expression
genes’ adj. p value <0.05 and logFC >1.5 are located on the top-right. The down-regulated genes’ adj. p value <0.05 and logFC < -1.5 are located
on the top-left. In addition, the black dots indicate the remaining stable genes.

FIGURE 3
The results of GO and KEGG enrichment analysis. (A) The GO function enrichment analysis of DEGs. The X-axis stands for count of genes. The
Y-axis represents BP, CC, and MF. (B) The KEGG pathways enrichment analysis of DEGs. The abscissa shows the count of genes, and the ordinate
exhibits pathways.

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.957718

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.957718


matrix structural constituents and other important functions

(Figure 3A). KEGG pathway enrichment analysis (p value

cutoff = 0.05) indicated that the DEGs were significantly

related to tyrosine metabolism, complement and coagulation

cascades, ECM–receptor interaction, and cell adhesion

molecules (Figure 3B).

Immune cell infiltration analysis

We utilized a reference including human gene expression in

immune cells and a file involving gene expression of each

sample to perform immune cell infiltration analysis. Then,

we conducted difference analysis of immune cells by the

“vioplot” package and correlation analysis of immune cells

by the “corrplot” package. Compared with normal samples,

T cells gamma delta, macrophages M2, dendritic cells resting,

dendritic cells activated and mast cells resting were higher in

PTC samples (p < 0.05). Conversely, macrophages M1, mast

cells activated, and eosinophils were lower in PTC(p < 0.05)

(Figure 4A). And macrophages M1 were correlated with

dendritic cells activated and T cells gamma delta

(correlation, 0.46 and 0.47) (Figure 4B).

Diagnosis-related important genes with
random forest

We performed a random forest based on 94 DEGs to

determine important genes. Considering the relationship plot

between error of cross validation and the number of decision

trees, we chose 15 trees as the parameter of the final model,

which revealed a minimum error of cross validation in the

model (Figure 5A). Eventually, 10 important genes were

determined on the condition that their importance score

was greater than 2 for the following analysis (Figure 5B).

Amid the 10 important genes, GALNT7 was the most

important. With heatmap, 10 important genes could be

differed from normal samples and PTC samples. Among

them, CITED1, AMIGO2, PSD3, GALNT7, and

PROS1 were down-regulated in normal samples and up-

regulated in PTC samples. TFF3, SLC4A4, AOX1, IPCEF1,

and TFCP2L1 were up-regulated in normal samples and

down-regulated in PTC samples (Figure 5C).

Development and validation of an artificial
neural network model

Expression of important genes determined by RF was

transformed into “gene tag” marked as 0/1. The weight of

all genes was calculated for optimal discrimination between

normal samples and PTC samples. Then, an ANN diagnostic

model based on gene weight was established (Figure 6).

Performance of the model had an AUC of 0.988

(Figure 7A) in the training set and 0.968 (Figure 7B) in the

validation set, indicating that the model was very satisfactory

in diagnosing PTC. The results demonstrated that we had

developed a precise diagnostic model between PTC and

normal samples.

FIGURE 4
The results of immune cell infiltration analysis. (A) The distribution of immune cells between normal samples and PTC samples. The abscissa
shows various immune cells, and the ordinate shows fraction. p < 0.05 was regarded as statistically significant. (B) Correlation analysis of immune
cells. The abscissa and ordinate are on behalf of immune cells, and the number stands for correlation. Red color represents a positive correlation, and
blue color represents a negative correlation. The larger absolute value or deeper color explains the higher correlation.
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Discussion

To date, employment of machine learning algorithms and wide

application of gene expression data in public databases offer

methods to find biomarkers for cancer diagnosis in a list of fields

(Wang et al., 2018; Tabl et al., 2019). The integration of RF andANN

can be employed to establish a stable diagnostic model for some

diseases, like ulcerative colitis and abdominal aortic aneurysm (Li

et al., 2020; Duan et al., 2022). Papillary thyroid carcinoma is

characterized by slow progression and good prognosis. Early-

stage PTC patients have a high postoperative survival rate, but

advanced-stage PTC patients still have the risk of lymph node

metastasis and distant metastasis, which seriously affect treatment

and prognosis. Though ultrasound is viewed as primary screening

approach for PTC, the diagnostic accuracy relying on node size is

changeable, especially for nodules ≤10 mm (Sutherland et al., 2021).

Other factors such as equipment, scan gain, dynamic range,

frequency, and doctors also significantly impact the accuracy of

ultrasound diagnosis (Gong et al., 2022). Owing to the absence of a

perfect diagnostic approach and a lack of potential biomarkers that

can be utilized in clinical practice, it is critical to establish amodel for

early diagnosis and screening of PTC.

FIGURE 5
(A) Correlation between the number of decision trees and the error of cross validation. The number of decision trees is shown on the abscissa;
the error of cross validation is exhibited on the ordinate. The best number of decision trees was 15 for which the error of cross validation was
minimum. (B) The X-axis stands for the importance score of genes calculated by the Gini coefficient method. The Y-axis represents the names of
genes. (C) The heatmap of 10 important genes determined by random forest. Red color represents up-regulated genes in both samples, and
blue color is on behalf of down-regulated genes in both samples. Above the picture, PTC samples are showed as a red band, and blue band indicates
normal samples.

FIGURE 6
The visualization of the ANN diagnostic model. The neural
network topology with 10 input layers consists of important genes;
5 hidden layers; and 2 output layers, including normal and PTC.
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Among 10 important genes identified by RF, CITED1,

AMIGO2, PSD3, GALNT7, and PROS1 were down-up-

regulated in normal samples and up-regulated in PTC

samples, TFF3, SLC4A4, AOX1, IPCEF1, and TFCP2L1 were

up-regulated in normal samples and down-regulated in PTC

samples. Then, an ANN diagnostic model was established, and

the performance was assessed by AUC (0.988). Also, we testified

the diagnostic ability in the validation set and the AUCwas 0.968,

which had great efficiency. Together, the developed diagnostic

model could offer a novel perspective on our research of the

mechanism of PTC.

In a previous study, 9 genes have been verified among

10 important genes related to PTC. The incidence and

progression of a series of malignancies are relevant to the

high expression of Polypeptide

N-Acetylgalactosaminyltransferase7 (GALNT7) and its

family members (Nakagawa et al., 2017; Detarya et al.,

2020). Wang argued that GALNT7 by activating EGFR/

PI3K/AKT kinase pathway to promote cell proliferation and

invasion of papillary thyroid cancer (Wang et al., 2021a). In

recent years, various human Pleckstrin and sec7 domain-

containing 3 (PSD3) have been believed to be related to

some tumors, like acute myeloid leukemia (Walker et al.,

2021), breast cancer metastasis (Thomassen et al., 2009),

astrocytoma progression (van den Boom et al., 2006).

PSD3 inhibits apoptosis in papillary thyroid cancer by

promoting proliferation, migration, invasion and G1/S

transition (Jin et al., 2021). Abnormal expression of Protein

S (PROS1) affects human papillary thyroid cancer progression,

especially associated with lymph node metastasis (Wang et al.,

2021b). Low expression of SLC4A4 affects invasion, metastasis,

and the MAPK signaling pathway in PTC. Huang argued the

down-regulation of SLC4A4 might be on account of the

excessive iodine intakes of patients (Huang et al., 2021). Glu/

Asp rich carboxy-terminal domain 1 (CITED1) via Wnt/β-
catenin signaling pathway results in the development of PTC

(Wang et al., 2019). Li showed that CITED1 increased

phosphorylation of pRb as well as E2F1 transcriptional

activity when p21 and p27 were expressed at low levels, and

verified CITED1 was involved in PTC cell proliferation and

tumorigenesis (Li et al., 2018). Yu reported that aldehyde

oxidase 1 (AOX1) protein level in blood plasma was lower

in patients with PTC, which indicated that AOX1 level in blood

plasma had the potential to differ in PTC from healthy humans.

Furthermore, low levels of AOX1 were highly related to poor

survival of PTC (Yu et al., 2021). IPCEF1 was viewed as a

significant biomarker for PTC. Moreover, a study showed that

the hsa_circ_IPCEF1/hsa-miR-3619–5p axis was associated

with the mechanism of PTC, which offers a new idea for

further diagnosis and treatment of PTC (Guo et al., 2021).

Several researchers revealed noticeable differences in Trefoil

factor 3 (TFF3) between benign thyroid nodules and thyroid

malignancy (Krause et al., 2008; Karger et al., 2012). Low

expression of TFCP2L1 can promote the progression of PTC

and CircHACE1 curbs PTC development by upregulating

TFCP2L1 through adsorbing miR-346 (Li et al., 2021).

Interestingly, we identified another important gene,

Adhesion Molecule With Ig Like Domain 2 (AMIGO2),

which has never been reported to be associated with PTC.

In addition, the research also has several limitations. Firstly,

though we have validated 10 significantly PTC-related genes, the

sample size is relatively small. Secondly, the ANN diagnostic

model was conducted using datasets from the GEO database, so it

should be tested in laboratory experiments and clinical practice.

FIGURE 7
Assessment and testification of the ANN diagnostic model by the ROC curve. (A) The assessment result of the training set; (B) the testification
result of the validation set.
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Conclusion

In this study, 10 genetic biomarkers related to PTC were

determined and the ANNmodel established by the 10-gene panel

displayed satisfactory performance when diagnosing PTC.

Moreover, the present research offers a useful basis for early

screening of PTC and promotes further study for development of

PTC as well as provides potential genes as targets for clinical

treatment. In conclusion, our finding has a certain clinical value

that can be valuable for early diagnosis of PTC.
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