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Vitamin D insufficiency during childhood has been linked to the development of multiple

sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central

nervous system (CNS). Since vitamin D was known to have immunoregulatory properties

on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in

aberrant immune responses and the development of MS. However, vitamin D receptors

are present on many cell types, including neurons, oligodendrocytes, astrocytes and

microglia, and vitamin D has profound effects on development and function of the CNS.

This leads to the possibility that low vitamin D may alter the CNS in a manner that makes

it vulnerable to inflammation and the development of MS. This review analysis the role of

vitamin D in the immune and nervous system, and how vitamin D insufficiency in children

may contribute to the development of MS.
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INTRODUCTION

The importance of vitamin D (VitD) in health was formally recognized in 1922 when it was
determined that cod liver oil and sunlight cured rickets (1, 2). Our understanding of the role of VitD
has expanded well beyond bone health with the observation that VitD receptors (VDR) are widely
expressed on many cell types in many tissues. VitD is a fat-soluble vitamin with limited availability
in foods. Thus, the predominant source of VitD is synthesis in the skin after sun exposure. VitD is a
steroid hormone that regulates numerous genes important in cell differentiation, proliferation and
homeostasis. Unfortunately, VitD deficiency is prevalent worldwide, with infants, pregnant women,
the elderly, and dark-skinned individuals being the most affected (3). There is substantial literature
describing the importance of VitD as an immune regulator with a growing body of evidence on
the importance of VitD on the development and function of the nervous system. While VitD
deficiency has been correlated with a variety of human diseases, there is substantial evidence that
VitD deficiency, particularly in children, may be a major risk factor for the development of multiple
sclerosis (MS), which is typically diagnosed in young adults. Historically, it has been postulated
that low VitD may be promoting a dysregulated and/or hyperactivated immune system that leads
to CNS inflammation. However, the fact that low VitD in children appears to be more closely
associated withMS than other autoimmune diseases suggests that VitD insufficiencymay be playing
an important role in the central nervous system (CNS), making it more vulnerable to inflammation.
Thus, VitD deficiency in children may be contributing to the risk of developing MS as an adult by
dysregulation of genes in both the immune system and CNS.
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MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is an inflammatory, demyelinating
disease affecting an estimated 2.8 million people worldwide
(4). Clinically, MS is characterized by relapsing and progressive
neurological dysfunction. In most patients, the disease begins
with episodes of neurological dysfunction followed by complete
or partial remission— the relapsing/remitting form of the disease
(RRMS). In some RRMS patients, the disease is later transformed
into uninterrupted progression of neurological deficits — the
secondary progressive phase of the disease (SPMS). Other
patients’ disease initiates with a slow, progressive accumulation
of neurological dysfunction — primary progressive multiple
sclerosis (PPMS) (5). Pathologically, MS is characterized by
focal plaques of demyelination with activated microglia and
abundant peripheral inflammatory cells in the CNS. The cause
of the disease is unknown and therapies are limited to disease
modifying medications that reduce the number inflammatory
lesions and slow disease progression.

Geographical Distribution of MS
Many decades ago it was found that MS has the lowest frequency
along the equator, and increases prevalence with increasing
latitude (6). The relationship between latitude and MS risks has
been observed in several studies. MS frequency among French
farmers displayed a north-south gradient and was inversely
correlated with exposure to sunlight, though the gene pools
and life styles of individuals were broadly comparable (7). UK
migrants who live in Tasmania in the south had greater MS
frequency than those that migrated to tropical Queensland (8).
Although MS risks seem to decrease with migration from high
to low latitudes (9), the timing of migration has critical effects
on this change. Migration studies have shown that people who
are younger than 15 years at the time of migration tend to adopt
MS risks of the country to which they migrate, whereas those
who are older than 15 years retain similar incidence as their
country of origin. A recent study in New Zealand confirmed
the latitude gradient, but also found that the prevalence gradient
was strongest at birth (10). A comprehensive meta-analysis of 94
studies published through 2018 confirmed the latitude gradient
in MS (11). Analysis of sun exposure based on age found that
living in an area with high UV-B before MS onset was associated
with a 45% lower risk of MS, and a 51% reduction in risk when
living in a medium to high UV-B area from 5-15 year of age (12).
Overall, the risk of developing MS is largely determined before
the age of 15 years (13–17) or at least within the first two decades
(18), suggesting a role for the environment in modifyingMS risks
during childhood and adolescence.

Genetic and Environmental Risk Factors in
MS
The cause of MS is unknown. It remains unclear what triggers
the immune system to attack the myelin sheath. Twin studies
reveal that genetic factors have important roles in MS risk.
The rate of concordance for MS among monozygotic twins is
25–40%, which is much higher than the 5% concordance rate
among dizygotic twins (19). Genome-wide sequencing studies

have further identified human leukocyte antigen (HLA) class II
exerting the strongest association with MS risks (20, 21). On
the other hand, the concordance rate among monozygotic twins
is not 100%, which means MS risks are not fully determined
by genetics.

Unquestionably, the environment is also influential on disease
susceptibility. Although the identity of environmental factors
involved in MS is not yet unequivocally known, accumulating
evidence lends strong supports to several candidates: Epstein-
Barr virus (EBV) infection, cigarette smoking and VitD. The
relationship between EBV seropositivity and MS risks is now
firmly established (p< 10–23). Virtually all (99.5%) patients with
MS are seropositive for antibodies directed against EBV (22). A
recent study analyzed multiple environmental factors that may
contribute to MS risk, including VitD levels and EBV antibody
titers (23). EBV antibody titers were significantly higher in MS
patients and there was an inverse relationship between VitD
levels and EDSS, yet no correlation between VitD levels and
EBV antibody titers. The prevalence of EBV infection is high
(94%) in age/gender-matched controls, so the vast majority of
infected individuals do not develop MS, which suggests that EBV
infection may be a necessary contributing factor to MS risk but
not a cause of MS. For cigarette smoking, a positive association
between smoking before age of onset and MS risks is found in
some case-control studies (24, 25). Individuals with RRMS have
an increased risk of developing SPMS if they have ever smoked,
compared with non-smokers (26). These factors— genetics, EBV
infection and smoking—maywork interactively to determineMS
susceptibility, but none of them can fully explain the geographic
variations in MS frequency and the changes in risk that occur
with migration.

Mouse Model of MS
Much of our fundamental understanding of MS is based on
observations in rodent models of MS such as experimental
autoimmune encephalomyelitis (EAE). EAE resembles MS in
both clinical and pathological aspects (27, 28). Susceptibility
to EAE and clinical course vary among strains of mice. For
instance, B10.PL and SJL/J mouse strains are two of the more
commonly used susceptible strains, whereas BALB/c is much
less susceptible (29). SJL/J mice develop a relapsing-remitting
disease that can transition into a progressive disease over
time, closely resembling RRMS and the transition to the SPMS
form (28). C57B/6 mice have become the most utilized EAE
model due to the availability of genetically modified mice on
the C57B/6 background that allows for defining the role of
specific molecules in CNS autoimmunity. The downside of
using the C57B/6 mouse model is that disease course and
inflammatory components of the lesion have distinct differences
from the human condition. Instead, C57B/6 mice develop
a rapid-onset, chronic neurological disease without relapses.
Furthermore, antibodies and neutrophils contribute significantly
to lesion formation which is not typical of MS (30, 31). Some
have speculated that C57B/6 EAE may actually be a better
model for neuromyelitis optica (NMO), a rare autoimmune
neurodegenerative disease very similar in phenotype to MS in
which antibodies to aquaporin 4 and neutrophils are known to
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contribute to the formation of demyelinating lesions (32). These
different EAE models have contributed to our understanding of
CNS autoimmunity, yet we should be cognizant of how they may
or may not reflect MS.

EAE can be induced by several methods. Active induction of
EAE is done by direct immunization with myelin proteins or
peptides emulsified in complete Freund’s adjuvant. The myelin
protein and/or peptide used differs because of variations in
MHC between strains of mice. Passive induction of EAE is
done by transfer of activated myelin-specific CD4T cells into a
naïve mouse. The myelin-specific CD4T cells can be generated
by immunization with a myelin protein/peptide, followed by
removal of the draining lymph nodes, reactivation of the myelin-
specific T cells in vitro, and injection of the myelin-specific
T cells into naïve mice resulting in EAE. Alternatively, T cell
receptor transgenic T cells specific for a myelin peptide can be
used. For example, CD4T cells from a T cell receptor transgenic
B10.PL mouse in which all the CD4T cells recognize myelin
basic protein (MBP) Ac1-11 peptide can be activated in vitro and
injected into naïve B10.PL mice, resulting in classical EAE (33–
35). In EAE, both myelin-specific Th1 and Th17 cells contribute
to pathogenesis, and both cell types have been implicated
in MS (35, 36). While myelin-specific T cells can be found
in both healthy individuals and MS patients, myelin-reactive
CD4T cells from MS patients have an activated and/or memory
phenotype, whereas those cells are naïve in healthy individuals
(37–41), supporting the idea that myelin-specific CD4T cells are
contributing to disease pathology in MS.

PHYSIOLOGY OF VITAMIN D

For most people, exposure to sunlight is their major source
of VitD. Ultraviolet B (UVB) photolyses 7-dehydrocholesterol
to pre-vitamin D3 in the epidermis, which then isomerizes
to vitamin D3 (Figure 1). VitD can be also obtained from
diet through ingestion of vitamin D2 (ergocalciferol) derived
from plants, colecalciferol supplements/fortified foods and oily
fish. Vitamin D3 in the body then undergoes a series of
hydroxylations, first to 25-hydroxyvitamin D3 (25(OH)D3) in
the liver, the main circulating form of the vitD with relatively
long half-life, and then to biologically active hormone 1,25-
dihydroxyvitamin D3 (1,25(OH)2D3, also known as calcitriol)
in the kidney (42). 1,25-dihydroxyvitamin D3 is the ligand for
VitD receptor (VDR), a member of the nuclear receptor family of
transcription factors which activates or represses the expression
of many genes (43), and exerts rapid non-genomic effects via the
membrane VDR (44).

VitD primarily acts as a hormone that regulates gene
transcription. VitD enters cells using carrier proteins or diffusion
where it can bind VDR in the cytoplasm (Figure 2). VitD/VDR
complexes are translocated to the nucleus where VDR dimerizes
with retinoid X receptors (RXR). VDR/RXR complexes bind
to VitD response elements which are present in nearly 1,000
genes, thus playing a major transcriptional role in many cell
types. There are non-genomic roles for VitD which occur within
minutes, far too soon to be mediated by altered gene expression.

The most noteworthy non-genomic effect of VitD is calcium
regulation. VitD binds to protein disulfide isomerase family
A, member 3 (PDIA3), resulting in the upregulation of PKA,
pI3K and p38MAPK which contribute to the intracellular flux
of calcium (Figure 2). While changes in intracellular calcium
may be independent of VDR engagement, calcium homeostasis
is affected by VDR signaling as seen in people with type
II genetic rickets and VDR-deficient mice which have severe
hypocalcemia (45–48).

Although the best-known function of VitD is to regulate
calcium physiology, it also has important effects on the
development and function of CNS. Neurons and microglia
express VDR. In addition, they can directly metabolize
25(OH)D3 because they express 1-α hydroxylase (49).
1,25(OH)2D3 has been shown to regulate glial cell line-derived
neurotrophic factor (GDNF) (50) and nerve growth factor
(NGF) (51) expression. The ability of 1,25(OH)2D3 to regulate
certain neurotrophic factors and influence inflammation has led
to the hypothesis that 1,25(OH)2D3 is neuroprotective (52). In
fact, it has shown a reduction in ROS induced cell death and
increased anti-oxidant species in glia cell by 1,25(OH)2D3 (53).
VitD insufficiency is associated with several other neurological
disorders beside MS, including Parkinson disease, schizophrenia,
depression and cognitive decline (54), suggesting its essential
role in maintaining normal CNS function.

How much VitD is optimal is somewhat controversial. The
most commonly published normal range for blood VitD levels
is 20–40 ng/mL (50–100 nmol/L) with levels below 20 ng/mL
(50 nmol/L) considered VitD deficient. The Endocrine Society
considers VitD levels of 20–29 ng/mL (50–74 nmol/L) to indicate
VitD insufficiency, and that VitD levels should be 30-100 ng/mL
(75–250 nmol/L) for optimal health benefit (55). Based on these
guidelines, it is estimated that 30–50% of Americans may be
VitD deficient. A New England Journal of Medicine article
suggested that VitD deficiency may be overstated, and perhaps
our current metrics for VitD-deficiency are incorrect, because of
misinterpretation of the Institute of Medicine’s reference values
(56). It should be noted that most of the studies evaluating VitD
levels in health are based on intestinal uptake of calcium and bone
health, so it remains unclear what the optimal dose may be for
optimal overall health.

VITAMIN D AND MS

One of the strongest correlates of latitude is the duration and
intensity of sunlight, and the synthesis of ViD is subsequently
affected by ultraviolet B (UVB) radiation. The incidence gradient
according to latitude and the effect of migration within
genetically uniform groups can be explained by VitD— as the link
between latitude and MS risk. The VitD hypothesis is supported
by studies of sunlight exposure history. The seasonal fluctuations
in VitD levels resulted in decreased VitD concentrations in utero,
whichmay contribute themonth-of birth effect inMS (57).While
not all studies are in agreement, a large meta-analysis found
that individuals born in the Spring have a significantly higher
risks of developing MS compared to individuals born in the fall
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FIGURE 1 | Vitamin D production pathway. Vitamin D3 is produced in the skin by UVB irradiation. Typically, the liver and kidney generate intermediates that ultimately

generate calcitriol, the active form of VitD. The brain and immune cells also express the enzyme that allows for the generation of calcitriol.

FIGURE 2 | Intracellular function of vitamin D. VitD typically acts as a transcription factor in association with retinoid-X-receptors (RXR) to mediate gene transcription

at VitD response elements in promoter regions of genes. However, VitD can have immediate effects on cell function (non-genomic) via interaction with PDIA3 that

leads to changes in calcium transport.

(58–60). Insufficient maternal 25-hydroxyvitamin D during early
pregnancy is associated with a 2-fold increased risk of MS in
offspring (61). Similarly, a Danish study used dried blood spot
samples collected near the time of birth to measure VitD in
individuals who later developed MS and matched controls (62).
Neonatal VitD levels were inversely associated risk of developing
MS, supporting the notion that maternal VitD levels may be
important to prevent MS in children. Higher sun exposure
during childhood (age of 6–15 years) was shown associated with
reduced MS risks (63). Time spent on outdoor activities during
childhood and adolescence (significant for age of 6–20 years)

in the summer was inversely related to the risks, whereas there
was no such effect in the winter (64). A study of monozygotic
twins who were discordant with MS has shown that twins with
MS reported significantly lower levels of childhood sun exposure
than their healthy sibling (65). However, sunlight may have
benefits to prevent CNS autoimmunity beyond VitD. A study in
EAE found that UV light suppressed EAE independent of VitD
and VDR (66).

Further evidence for the VitD hypothesis comes from the
studies of dietary VitD intake. At high latitudes, prevalence
of MS was lower than expected in populations with high
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FIGURE 3 | Immunoregulatory functions of vitamin D. VitD can regulate the function of numerous immune cells. VitD suppresses inflammatory cytokines and

antigen-presentation by innate immune cells. VitD also suppresses T cell activation, and favors the generation of Th2 cells and Tregs.

consumption of VitD-rich oily fish (67). A 40% reduction in
MS risks was found among women who used supplemental
VitD, compared with women who did not use supplements
(68). Lastly, a study directly measured the circulating 25(OH)D3
(the circulating form of VitD) concentrations in individuals
who served in the US military, and concluded that serum level
of 25(OH)D3 in healthy young white adults is an important
predictor of their risk of developingMS (69). These epidemiology
studies (latitude, migration, history of sunlight exposure, VitD
intake and serum concentration of VitD) give credibility to the
hypothesis that VitD, especially in early life, has protective effect
against MS development. Nevertheless, due to often confounding
variables in epidemiology studies, prospective experimental
studies are needed to validate the effect of VitD in determining
MS risks. A mendelian randomization study in which single
nucleotide polymorphisms associated with 25-hydroxyvitamin
D were identified and analyzed in the International Multiple
Sclerosis Genetics Consortium found that there was a significant
increased susceptibility to MS in individuals with a genetically
lowered level of 25-hydroxyvitamin D (70). This genetic study
supports the epidemiology data that optimal VitD levels are
protective against the development of MS. Interestingly, a
study of polymorphisms in the VitD-binding protein found an
association with MS risk in whites, but not blacks or Hispanics,
indicating that VitD may not be a significant risk factor in all
ethnicities (71).

After disease onset, VitD also acts in modulating MS clinical
course. Serum concentrations of 25-hydroxyvitamin D3 in MS
patients were lower during relapses than during remissions (72),
and correlated inversely with disease severity (73) and frequency
of relapse (74, 75). Although these results might indicate lower
sun exposure in patients with severe MS rather than a beneficial
effect of VitD, convincing studies with EAE have demonstrated
the immunomodulatory effect of VitD in inflammatory CNS
disease. Expression of VDR has been described in immune
cells, including dendritic cells, macrophages and activated T
and B cells (76). VitD supplementation clearly suppressed EAE
preventively (77, 78) and therapeutically (79). Moreover, the
therapeutic effects of VitD required VDR function in T cells
(80), and were through promoting IL-4, TGF-β (81) and IL-
10 (82) production, and inhibiting TH1 cells differentiation
(83, 84). With these results established from EAE, experimental
basis supports the beneficial role of VitD in modulating disease
progression. Yet, there are numerous studies that indicate that
VitD supplementation in MS patients has little, if any benefit
to reducing symptoms (85). The SOLAR trial found that VitD
supplementation (14,000 IU/d) in MS patients on interferon
beta-1a was beneficial in reducing new lesions, but no change in
progression of disability or annualized relapse rate was observed
(86). In the 2-year CHOLINE trial, MS patients on interferon
beta-1a were given 100,000 IU of oral cholecalciferol or placebo
biweekly. The end point (changed in annualized relapse rate) was
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not met, yet there were positive benefits observed on imaging and
the average EDSS score was significantly lower in the treatment
group (87). Analysis of 12 random controlled trials evaluating
VitD supplementation concluded that VitD supplementation had
no significant benefit on relapse rates, progression of disability
or MRI lesions (88). Thus, the benefit of VitD supplementation
in MS patients is unclear, but given that most MS patients are
VitD deficient, supplementation is prudent and likely benefits
that overall health of the patients.

VITAMIN D AND THE IMMUNE SYSTEM

The first evidence that VitD may affect the immune system came
from a study in 1983 in which VitD promoted the fusion of
macrophages (89). In 1986, it was shown that VitD inhibited IL-
2 production and proliferation by T cells (90), providing solid
evidence that VitD had the capacity to regulate T cells. There is
now substantial evidence that VitD is a major regulator of both
innate and adaptive immune cells and influences the outcomes of
infections, cancer and autoimmunity.

Innate Immunity
Activated macrophages and monocytes upregulate expression of
CYP27B1, the gene that encodes 1α-hydroxylase, the enzyme
that converts 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin
D3 (calcitriol), the active form of VitD (Figure 1), indicating
that macrophages/monocytes have the capacity to increase VitD
at site of inflammation (91). The local expression of VitD by
activated macrophages/monocytes sets up an autocrine pathway
since macrophages/monocytes express VDR, resulting in the
production of anti-microbial products such as cathelicidin
and defensins. Cathelicidin is particularly important against
infections by destablilizing microbial membranes and disrupting
viral envelopes (92–94). Equally important, VitD regulates the
maturation and activation of macrophages and dendritic cells,
compromising their ability to be effective antigen presenting cells
(Figure 3). Upon TLR engagement, macrophages and dendritic
cells upregulate MHCII, CD80/CD8, CD40 and cytokines which
are critical to antigen presentation to T cells. VitD suppresses
these molecules, promoting macrophages and dendritic cells
that are immature and somewhat tolerogenic (95, 96). This
suppression of macrophages and dendritic cells may be due to the
suppression of toll-like receptors (97–99) or inhibition of IL-12
via NF-κB (100) mediated by VitD.

VitD affects the function of microglia which are known
to secrete inflammatory mediators that contribute to myelin
damage during CNS autoimmunity. Mice with EAE treated
with calcitriol immediately following EAE induction have
reduced microglia activation and oxidative stress, and less blood
brain barrier permeability (101). Partial deletion of VDR in
young mice attenuated microglia activation and reduced the
incidence and severity of EAE (102). In various models of CNS
diseases and injury, VitD has been shown to regulate microglia
phenotype and oxidative stress (103–106). Thus, vitD appears
to effectively skew microglia from a pro-inflammatory M1
phenotype to a reparative M2 phenotype, reducing inflammation
and limiting demyelination.

Adaptive Immunity
Both T cells and B cells can express VDR and respond to
VitD (Figure 3). There is actually very little, if any, VDR
expression on resting human T and B cells; however, VDR is
rapidly upregulated upon activation (107–109). Similar to innate
immune cells, activated T cells express CYP27B1 and can make
active VitD. VitD suppresses T cell proliferation via reduced
IL-2. In addition, VitD alters the differentiation of CD4T cells
by skewing CD4T cells toward Th2 and away from Th1 and
Th17, the phenotypes associated with MS (110, 111). Also of
particular relevance to MS, VitD promotes the differentiation of
Tregs (112), which are known to be defective in MS patients
(113–118). The mechanism by which VitD promotes Treg
development appears to be via altered APCs, since VitD added
to human dendritic cells alters glucose metabolism favoring the
differentiation of Tregs over Teff cells (119). VitD status in MS
patients positively correlates with Treg function, supporting the
observation the VitD promotes Treg development (120). VitD in
association with CD46 was shown to promote Type I regulatory
T cells (Tr1) cells in MS patients (121), indicating that optimal
VitD may be an important component of immune regulation.

B cell differentiation and maturation into plasma cells is
also regulated by VDR, thus affecting antibody production. In
addition, VitD downregulates co-stimulatory molecules on B
cells, similar to what is observed for macrophages and dendritic
cells (122). Thus, optimal VitD may compromise the ability
of B cells to act as antigen presenting cells. B cell –depletion
therapies have been very beneficial in the treatment of MS. Given
that the beneficial affects appear to be independent of antibody
production, there is speculation and evidence that B cells are
critical antigen-presenting cells in MS (123–125). An immune
profile study onMS patients on B cell depletion therapy indicated
that the T cell profile showed a favorable change, reflected by a
reduction in memory T cells and an increase in Tregs (124, 125),
consistent with the role of B cells as antigen-presenting cells.
Thus, low VitD may enhance the ability of B cells to drive the
activation and differentiation of T cells, increasing the probability
developing MS.

VITAMIN D AND THE CENTRAL NERVOUS
SYSTEM

Substantial evidence indicates that VitD acts as a neurosteroid.
VDR is expressed throughout the developing and mature brain,
including the hippocampus, amygdala, hypothalamus, cortex and
cerebellum (49, 126, 127), implicating VitD as an important
modulator of gene expression throughout the CNS. Furthermore,
1α-hydroxylase and 25-hydroxylase are both expressed in the
brain providing the critical enzymes to generate VitD locally
(49, 128). While a major role of VitD is gene regulation, it also
has non-genomic functions, particularly regulation of calcium
signaling which is critical in normal cellular function.

Vitamin D and Neurogenesis
VitD promotes cell differentiation and apoptosis which are
critical for embryonic development. When VitD is removed
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during gestation in model systems, multiple regions of the brain
have increased cell proliferation and decreased apoptosis, as well
as enhance cell proliferation, leading to CNS anomalies (129–
131). The increased proliferation was mediated by increased
expression of cyclin genes which were regulated by VDR
signaling (132), while the reduction in apoptosis may have
been due to increased levels of BAX and Bcl-2 (131). Low
VitD also leads to more neural stem cells which may be
due to a loss of regulation of cell proliferation or a failure
in neural stems to efficiently differentiate into neural cell
progenitors (133). Changes in brain morphology have been
observed in rodents with VitD deficiency (129, 134). In humans,
VitD deficiency is associated with decreased brain volume
and enlarged ventricles in older adults (135). Ex vivo studies
illustrated that VitD inhibits the proliferation of hippocampal
neurons, while promoting neurite outgrowth (130). Analysis
of dopaminergic neurons found that VitD-deficiency reduced
Nurr1 and P57kip2 gene expression during embryogenesis
which are critical to the development and homeostasis of
dopaminergic neurons (136). In addition, VitD has been found
to regulate the expression of genes essential in the normal
function of dopaminergic neurons (137, 138). Interestingly, while
it appears that VitD promotes the differentiation of neurons,
astrocyte differentiation appears to be impaired by VitD when
using adult neural stem cells (139). VitD also promotes the
differentiation of neural stem cells into oligodendrocytes (139),
the myelinating cells of the CNS. Oligodendrocyte precursor cells
fail to differentiate into oligodendrocytes when VDR signaling
is blocked (140). These studies implicate VitD as an essential
regulator of neuron and oligodendrocyte development. The
signaling between neurons and oligodendrocytes is essential to
the development of a properly myelinated CNS during early life,
as well as remyelination that occurs following CNS damage.

Functional Consequences of Low VitD in
the CNS
In addition to the development and differentiation of CNS
cells, VitD plays a role in their ability to function properly.
The release of several neurotransmitters is affected by VitD. In
dopaminergic neurons, VitD promotes the release of dopamine
(141). VitD appears to regulate neurotransmitter synthesis,
for example, VitD regulates the inhibitory neurotransmitter
GABA, via upregulation of GAD65 and GAD67 (142–144).
Neurotrophic factors, which are essential for CNS homeostasis
and communication between cells in the CNS, are also regulated
by VitD. VitD appears to induce nerve growth factor (NGF)
expression in neurons (129, 135). Neural stem cells upregulate
brain-derived growth factor (BDNF), Glia cell line-derived nerve
factor (GDNF), and ciliary neurotropic factor (CNTF) in the
presence of VitD (139). In astrocytes, VitD appears to regulate
the expression of neurotrophin receptors, as well GDNF, NT-3
and NT-4 (145–147).

VitD also plays a role in neuronal plasticity. In cultured
cortical neurons, VitD increased the expression of microtubule
associated protein-2, growth-associated protein-43, and synapsin
1 which are important in synaptic vesicle transport and axonal

growth (148). Low VitD during embryogenesis resulted in
altered expression of proteins important in cytoskeletal integrity,
organelle transport, and synaptic plasticity (149, 150), suggesting
that VitD is critical to the normal development and function of
the CNS.

Calcium Regulation
VitD plays a vital role in regulating calcium levels in the CNS
which is particularly important given that high levels of calcium
are neurotoxic. In neurons, VitD modulates L-type voltage-gated
calcium channels by downregulation of A1C subunits (151).
Mice lacking VitD have upregulated L-type voltage-gated calcium
channels and elevated calcium influx in neurons (152) (Figure 2).
In vitro treatment of neurons with VitD downregulated L-type
voltage-gated calcium channels and protected neurons from
excitotoxicity (153). VitD was shown to very rapidly increase the
uptake of extracellular calcium via L-type voltage gated calcium
channels (154). Since this occurred within a few minutes, it was
clear that the effect was independent of gene transcription. The
increase in calcium influx was dependent on the PKA, pI3K,
and p38MAPK. The non-genomic effects of VitD have largely
been attributed to VitD interaction with PDIA3 (also known as
1,25D3-Marrs) on the plasma membrane (155, 156). In addition,
VitD regulates the expression of numerous genes associated with
calcium homeostasis vital to the proper regulation of calcium in
the CNS and other tissues (150, 154, 157).

Vitamin D and Neuroprotection
Epidemiological data indicate that VitD has neuroprotective
properties. Optimal VitD levels during early life appear to
be important to minimize the risk of several psychiatric
and neurodegenerative diseases. Schizophrenia, depression and
autism spectrum disorders have all been associated with low
VitD, particularly during embryogenesis and infancy (158–162).
There is an inverse correlation between Parkinson’s disease
risk and VitD levels (163, 164). Given that VitD protects
dopaminergic neurons by upregulating genes numerous genes
associated with the function of dopaminergic neurons (137, 138),
it is logical that VitD may be a critical factor in minimizing
the risk of developing Parkinson’s disease. Similarly, Alzheimer’s
disease patients tend to have low serum VitD levels compared
to matched healthy controls (165). The risk of dementia and
symptoms of neurodegenerative diseases, such as cognitive and
memory impairments and impaired motor function, increases
with low serum VitD levels (166–169). Serum VitD deficiency
is linked to greater infarct volumes, increased overall stroke
severity, and worse long-term outcomes in stroke patients (170–
172). Impacts on the risks and outcomes in these neurological
conditions are clearly multifactorial, but it stands to reason that
VitD plays a role in susceptibility and outcome.

The neuroprotective properties of VitD take effect though
several mechanisms. Direct neuroprotective action of VitD is
associated with the regulation of neurotrophic factors and
reduction in oxidative stress. Neurotrophic factors are critical
for the differentiation, survival and maintenance of neural and
glial cells. VitD stimulates expression of nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF), glial cell
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line-derived neurotrophic factor (GDNF) and neurotrophin-3
(NT3) (173). Neurotrophic factors downregulate their expression
into adulthood, therefore remaining levels have critical cell
maintenance functions. Reduction in VitD-assisted neurotrophic
factor expression due to deficiency may leave neurons more
vulnerable to insult.

Neurons are particularly susceptible to oxidative damage
because of increased oxygen consumption, bi-products of
neurotransmitter production, excitotoxicity and high overall
lipid content (174). Additional neuroinflammation will increase
the reactive oxygen species (ROS) load. Adequate VitD levels
downregulate intracellular oxidative-stress related activities,
while suboptimal levels result in increased oxidative damage
and neuronal apoptosis (175). Increased reactive oxygen
production has been implicated in the pathogenesis of multiple
neurodegenerative conditions, including Parkinson’s disease
(176), Alzheimer’s disease (177), Huntington’s disease (178),
stroke (179) and Multiple Sclerosis (180), and suboptimal serum
VitD levels have been linked to these conditions. VitD is a potent
regulator of the nuclear factor erythroid-2-related factor 2 (Nrf2)
antioxidant pathway in neurons and glial cells, and intracellular
Nrf2 levels are inversely correlated with the accumulation of
mitochondrial ROS. Within the CNS, upregulation of Nrf2
target genes superoxide dismutase (SOD), catalase (CAT) and
heme oxygenase-1 (HMOX1) to make neurons more resistant
to oxidative insults (181). Furthermore, neurotrophic signaling
pathways, such as the BDNF-TrkB pathway that is essential for
mature neuron survival and normal function, also signal Nrf2
activation (182, 183). VitD then has double the influence on
neuronal survival – first in neurotrophic action by increasing
levels of BDNF, and second in oxidative defense by direct
activation of Nrf2. The neuroprotective properties of VitD
center around its antioxidant function, and in conjunction with
neurotrophic factor expression, likely enhances neural defense
and repair mechanisms.

Vitamin D as a Neuroprotective Agent in
MS Through Antioxidant Pathways
Oxidative stress and mitochondrial dysfunction are prominent
features of MS. T cells can produce ROS and T cell activity and
proliferation are influenced by ROS, adding an increased level of
complexity to the impact of ROS inMS (184). Activatedmicroglia
and macrophages are the major contributors to the elevated ROS
observed in the disease. These cells produce oxidating radicals
such as superoxide, hydrogen peroxide and nitric oxide with
the help of ROS-generating enzymes, such as myeloperoxidase,
NADPH oxidase and nitric oxide synthase. ROS have shown to
mediate demyelination in both MS and its animal models (184,
185). Studies in postmortem brains of MS patients have identified
myeloperoxidase expression in activated macrophages and
microglia near lesions. Elevated expression of myeloperoxidase
was detected in demyelinated regions of postmortem MS
brain homogenates when compared to unaffected regions from
the same individual (186, 187). Other markers of oxidative
damage, such as 4-hydroxy-2-noneal (4-HNE), produced by lipid
peroxidation of cell membranes, and nitrotyrosine, the product of

nitric oxide and superoxide reactions, increase and accumulate in
macrophages and astrocytes in MS lesions (188–190).

ROS in later stages of MS stems from mitochondrial
dysfunction within neurons themselves. Mitochondrial
dysfunction and associated ROS have been implicated in
non-inflammatory mediated axonal degeneration that occurs
with chronic demyelination. It is believed that mitochondria
become taxed after sodium channel redistribution in response
to demyelination. Sodium channel redistribution causes large
influxes of sodium, taxing the ATP dependent sodium-potassium
pump (191). Increased ATP needs trigger mitochondria
production and proliferation, resulting in increased ROS
(192, 193). Notably, increased mitochondrial heat shock protein
70, a marker of mitochondrial stress, has been observed
in astrocytes and axons within MS lesions (192). There is
some controversy regarding whether increased ROS from
mitochondria exists primarily due to mitochondrial proliferation
and ATP production after demyelination (chronic injury) or
if mitochondria actually acquire oxidative damage during the
inflammatory stage of the disease (acute injury) (194).

Antioxidant enzymes are the endogenous ROS defense
system in the CNS. ROS exposure activates Nrf2, which then
translocates to the nucleus and activates antioxidant response
element promoters (ARE) for antioxidant enzyme production.
Expression of hundreds Nrf2 responsive antioxidant genes have
already been identified (195). Numerous studies have suggested
a role for Nrf2 inactivity in the pathogenesis of MS. Nrf2
knock-out EAE mice experience more rapid disease onset, a
more severe clinical course, increased glial activation, increased
pro-inflammatory cytokine expression and increased axonal
degeneration compared to Nrf2 inclusive controls (196–198).
Conversely, increasing the activity of Nrf2 in the CNS of
EAE mice lessened the clinical severity (199). In postmortem
brain tissue of MS patients, NRF2 is strongly upregulated
in active MS lesions and expression is most pronounced in
degenerating neurons and glial cells, including oligodendrocytes
(200, 201).

NRF2 activity is already relevant in MS clinical treatment.
Both VitD and dimethyl fumerate (DMF or TecfideraTM) are
NRF2 activators. DMF treatment is an approved oral RRMS
therapy known to reduce disease activity and progression,
and accomplishes these outcomes via immunomodulatory
and neuroprotective mechanisms (202–207). VitD and DMF
both signal through the NRF2/KEAP1 pathway to generate
antioxidant action and specifically increase glutathione signaling
for neuroprotection. DMF and VitD can also exert protective
effects by reducing proinflammatory cytokine expression and
increasing neurotrophic factor expression (208). DMF and VitD
derivatives have demonstrated a cooperative effect on increased
VDR expression andNrf2 activity that limit leukemia progression
(209). Although mechanisms of action overlap, DMF is a
safer therapeutic option for avoiding calcemic toxicity that
can occur with long-term use of high levels of VitD. In fact,
excess VitD can exacerbate EAE, emphasizing the point that
a measured approach to VitD-based therapies is critical (210).
It should also be noted that melatonin which is produced
during the dark has similar anti-oxidant properties as VitD in
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EAE (211, 212). There is contradicting data on the relationship
between melatonin and VitD, yet both appear to be beneficial
in reducing CNS inflammation. Thus, the interplay between
appropriate sunlight to optimize VitD levels and appropriate
darkness to optimize melatonin to maintain circadium rhythm
should be considered in strategies to prevent and/or treat MS.
It is unlikely that DMF mimics every function of VitD, but
similarities in function between DMF and VitD suggest that VitD
has a critical role as an endogenous neuroprotective mediator
in MS.

An important consideration is the temporal influence
of VitD, NRF2 activity, and the endogenous antioxidant
system during the course of MS. Upregulated expression of
NRF2 in MS brain lesions suggests that the NRF2 pathway
is already highly active in distressed cells (200, 201) and
it appears that endogenous antioxidant mechanisms are
not enough to halt demyelination and axonal degeneration
at end stages of disease. However early in the disease,
VitD and NRF2 signaling may have increased potential
for neuroprotection because less neuroinflammatory-
induced oxidative damage has occurred. Understanding the
neuroprotective potential of VitD in early stages of MS is
complicated by the striking frequency of VitD deficiency
in patients at the time of diagnosis. Therefore, whether
preventing VitD deficiency prior to disease onset can enhance
neuroprotection and alter disease progression warrants
further investigation.

IMMUNOREGULATION VS.
NEUROPROTECTION

MS is a complex disease in which immune and nervous
system components interact to form and sometimes, resolve
CNS inflammatory, demyelinating lesions. Genetic studies have
largely implicated immune genes as susceptibility factors,
supporting the hypothesis that MS is an immune-mediated
disease and that the CNS is the unfortunate target of
the aberrant immune response. There is significant data to
support that VitD has a profound immunoregulatory role
on both innate and adaptive immune cells, indicating that
low VitD may alter normal immune regulation leading to
autoimmunity. Given that the CNS is the sole target of the
aberrant immune response in MS, it is important to consider
if the CNS is somehow more vulnerable to inflammation in
some individuals that may make them at an increased risk
of developing MS. While the answer is still unknown, the
literature clearly indicates that VitD impacts CNS development
and function.

The epidemiology studies indicate that optimal VitD is
particularly important during embryogenesis and childhood in
determining risk of developing MS. During childhood, our
immune system is repeatedly being challenged by pathogens,
most of which are cleared with minimal clinical consequences.
Some childhood viruses, such as Epstein-Barr, varicella zoster,
and some strains of influenza, can infect neurons, yet they
typically do not cause clinical CNS manifestations. Even in

the absence of CNS clinical signs of illness, do these viruses
affect the CNS differently in children with low VitD? Our
recent study in which partial VDR deletion was induced in
young mice specifically in neurons resulted in an enhanced
susceptibility to EAE in adult mice, suggesting that low VitD
signaling in neurons in early life may increase the vulnerability
of the CNS to inflammation (102). There is substantial evidence
that viral infections are affected by VitD levels. Of particular
interest in MS is EBV which has been long speculated to
be a vital risk factor for the onset of disease and this has
been confirmed in a new study of >10 million young adults
(213). While many theories have been explored, a recent
study identified EBV infection as a precipitating factor that
may be driving molecular mimicry (214–217). EBV antibody
titers are negatively correlated with VitD levels in MS patients
(218) suggesting that these two environmental factors may be
synergistic. EBV is also associated with activating endogenous
retroviruses (ERVs) and ERV levels in MS plaques correlates with
disease activity (219). These ERVs may act as novel antigens
that drive CNS inflammation. VitD supplementation mitigates
EBV reactivation (220), which may in turn limit ERV activation
and the associated inflammation. In a humanized mouse model,
it was shown that HLA-DR15-restricted T cells fail to control
EBV infection, suggesting that there is potential relationship
between the strongest genetic factor (HLA-DR15) and EBV
with respect to MS risk (221). The relationship between ERVs,
VitD and MS has become of increasing interest and some
speculate that EBV may be the missing link between ERVs and
VitD that trigger the development of MS (222). While many
autoimmune diseases have been associated with low VitD to
some extent, the epidemiology data in MS is far more convincing
suggesting that lowVitD is likely increasing the risk of developing
MS due to the negative impact on immune regulation and
CNS homeostasis.

A recent study of >1,900 subjects demonstrated that sun
exposure negatively correlated with development of MS, and
high VitD levels (>30.31 ng/mL) in MS patients reduced the
risk of relapses and accumulation of disability (223). The
evidence that VitD level is important in risk of developing
MS and disease severity appears well established, yet questions
still remain as to whether VitD supplementation is beneficial
to patients with MS. Since most MS patients have low VitD
levels, supplementation is now common practice. Perhaps the
more important question is how do we prevent low VitD?
Although VitD is currently a common food supplement in
many countries, it is unclear whether we are doing enough to
ensure that children are getting sufficient VitD. Rickets is rare in
countries in which food is supplemented with VitD, indicating
that the levels of VitD provided via food supplementation
is sufficient for bone health. However, it is unclear whether
these levels of VitD are adequate for optimal neuroprotection,
given that countries like the United States still have a high
incidence of MS. Additional VitD supplementation may be
essential for children in higher latitudes where sunlight is very
limited for several months each year, and perhaps in children
with a family history of MS in which genetic risks are highest.
We should also balance pros and cons of sunscreen which

Frontiers in Neurology | www.frontiersin.org 9 May 2022 | Volume 13 | Article 796933

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gombash et al. Vitamin D in Multiple Sclerosis

reduces UVB induced VitD synthesis by 95% and may negatively
impact health of our immune and nervous systems. Sunlight
remains the best source of VitD so ensuring that children play
outside daily may be the best solution to the epidemic of
low VitD.
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