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Pancreatic cancer (PC) remains one of the most lethal and incurable forms of

cancer and has a poor prognosis. One of the significant therapeutic challenges

in PC is multidrug resistance (MDR), a phenomenon in which cancer cells

develop resistance toward administered therapy. Development of novel

therapeutic platforms that could overcome MDR in PC is crucial for

improving therapeutic outcomes. Nanotechnology is emerging as a

promising tool to enhance drug efficacy and minimize off-target responses

via passive and/or active targeting mechanisms. Over the past decade,

tremendous efforts have been made to utilize nanocarriers capable of

targeting PC cells while minimizing off-target effects. In this review article,

we first give an overview of PC and the major molecular mechanisms of MDR,

and then we discuss recent advancements in the development of nanocarriers

used to overcome PC drug resistance. In doing so, we explore the

developmental stages of this research in both pre-clinical and clinical

settings. Lastly, we discuss current challenges and gaps in the literature as

well as potential future directions in the field.
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Introduction

Pancreatic cancer (PC) accounts for 2.5% of all cancer cases worldwide, making it the

fourth leading cause of cancer mortality (Siegel et al., 2019). An estimated 495,773 patients

were diagnosed with PC in 2021 (Cancer.Net, 2022), with approximately 50% of the cases

were diagnosed with metastatic disease (Bray et al., 2018). The location of the tumor
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within the pancreas can influence the symptoms and clinical

presentation (Ryan et al., 2014; Ducreux et al., 2015; Tempero

et al., 2019). Almost 65% of PC tumors develop in the head and

the neck of the pancreas, and patients commonly present with

jaundice and abdominal pain due to bile obstruction (Ducreux

et al., 2015; Tempero et al., 2019). In some cases, PC can either be

located in the pancreas body (15%), and the tail (10%), or can be a

multifocal tumor (2%). Furthermore, patients can present with

other non-specific symptoms, including late-onset type II

diabetes, abdominal pain, weight loss, and steatorrhea

(Gheorghe et al., 2020).

Pathologically, PC originates from two types of cells: exocrine

or endocrine cells (Bardeesy and DePinho, 2002; Ghaneh et al.,

2007; Corbo et al., 2012; Aguirre and Collisson, 2017). Over 95%

of all PC types are of exocrine origin, where the majority of these

cases are pancreatic adenocarcinomas (PDAC) (Cowgill and

Muscarella, 2003; Li and Jiao, 2003). Less common cells are

those of acinar and cystadenocarcinoma origin (Table 1). The

endocrine tumors include neuroendocrine tumors (PNET),

which account for 5% of all PC cases (Hackeng et al., 2016).

PNETs grow slowly and are less aggressive than the PDAC

(Bardeesy and DePinho, 2002; Ghaneh et al., 2007). PDAC is

a complex disease with poorly differentiated histological features.

The high intertumoral heterogeneity, genomic instability, and

stromal desmoplasia formation cause significant challenges in

the early diagnosis and treatment of PDAC (Ghaneh et al., 2007;

Corbo et al., 2012; Aguirre and Collisson, 2017). Pancreatic

intraepithelial neoplasia (PanIN) is the most common early

non-invasive precursor lesion of PDAC, in addition to

mucinous cystic neoplasm and intraductal papillary mucinous

neoplasm. The precursor’s progression from low-grade to high-

grade is due to genetic and epigenetic alterations that lead to the

formation of invasive PDAC. When PDAC lesions form, the

genetic mutations will continue to progress beyond primary

mutations (Ghaneh et al., 2007; Rishi et al., 2015; Hackeng

et al., 2016; Dreyer et al., 2017).

Drug resistance, both intrinsic (innate) and acquired (in

response to drug therapy), is a key contributing factor to the

poor prognosis of PC (Binenbaum et al., 2015). The survival rate

of PC has remained almost unchanged for several decades, and it

is considered among the lowest, with a 5-year survival rate for a

maximum of 9% of cases for all stages combined (Rawla et al.,

2019; Siegel et al., 2019). Such a low rate of survival is attributed

to two major factors: 1) late diagnosis of typically advanced/

metastasized and unresectable PC due to a lack of early

diagnostic biomarkers; and 2) lack of effective therapeutic

intervention (Siegel et al., 2019). There are fundamental

reasons why pancreatic tumors are difficult to treat in PC.

Firstly, pancreatic tumors, such as PDAC, are solid tumors

comprised of a dense stromal environment of cancerous cells,

non-cancerous cells such as fibroblasts, and a dense extracellular

matrix. The density of these arrangements impedes drug

permeation. Additionally, if a drug can permeate the

cancerous stroma, the drug molecules are typically unable to

differentiate between cancerous and non-cancerous cells due to

the dense tumor stroma (Heidemann and Kirschner, 1978;

Sofuni et al., 2005). An important determinant of peritoneal

metastasis is the anatomical position of the primary tumor

(Baretti et al., 2019). In some cases, cells directly attach to and

invade organs and tissues in the peritoneal cavity (Avula et al.,

2020) or result in intraperitoneal metastases via blood vessels or

lymphatic absorption through the hematogenous route (Ge et al.,

2017). In most cases of PC, metastasis has already occurred by the

time of diagnosis. Furthermore, even when surgical intervention

is applicable, following chemoradiotherapy, rapid relapse is often

seen due to the presence of pancreatic satellite cells that promote

carcinogenesis (Hosoki, 1983; Sofuni et al., 2005; Zhi et al., 2014;

Binenbaum et al., 2015).

The stromal desmoplastic reactions induced by the

pancreatic stellate cells (PSC), when activated by growth

factors, lead to the secretion of collagen, hyaluronic acid, and

other components of the extracellular matrix. Thus, PSCs induce

stromal fibrosis, reduce cellular vascularity, and induce hypoxia.

The stromal barrier created by PSC elevates the interstitial fluid

pressure and compresses the blood vessels, preventing passive

transportation of chemotherapeutic agents and eventually

leading to treatment failure (Erkan et al., 2012; Hackeng et al.,

2016). Efficacy of Trans-arterial chemoembolization (TACE)

with TACE + radiofrequency ablation (RFA) and/or 125I

radioactive seed implantation for unresectable pancreatic

TABLE 1 Pancreatic cancer pathological types. Pancreatic cancer pathologically originates from exocrine or endocrine cells. The prevalence and
common mutations are different depending on the tumor type and cell origin. Invasive ductal adenocarcinoma is a common type of PC in cells
with an exocrine origin.

Type Category Prevalence Mutations

Invasive ductal adenocarcinoma Exocrine 95% KRAS, P16/CDKN2A, TP53, SMAD4

Acinar cell carcinoma Exocrine 1–2% APC/β-catenin
Serous Cystadenocarcinoma Exocrine 3% VHL

Neuroendocrine (PENT) Endocrine 5% MEN1

KRAS: Kirsten rat sarcoma viral oncogene homolog; CDKN2A: Cyclin-dependent kinase inhibitor 2A; TP53: Tumor protein p53; SMAD: an acronym from the fusion of Caenorhabditis

elegans Sma genes and the Drosophila Mad; APC: Adenomatous polyposis coli; VHL: Von Hippel-Lindau; MEN1: Multiple endocrine neoplasia type 1.
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cancer are other approaches that have been studied

retrospectively and TACE combined with either 125I seed

implantation and/or RFA, was shown to have improved

treatment response and overall survival rate compared with

TACE alone (Das et al., 2019). However, in the same study,

the overall survival rates were better in the case of RFA. To

summarize, based on these previous data, the sequence of use and

the best combination therapy in the case of PC remains to be

investigated.

While there are numerous drugs available for the treatment

of PC, two nanoparticle formulations, Abraxane® and Onivyde®

(irinotecan liposome injection) have been approved as of July

2022 by the US FDA for the treatment of metastasized cancers, in

combination with gemcitabine. Abraxane® is a Paclitaxel

Albumin-stabilized Nanoparticle Formulation, approved for

the treatment of metastasized PC in combination with

gemcitabine hydrochloride as a first-line treatment. More

recently, the use of nanotechnology for delivering drugs to

targeted sites in the body is an inexpensive and effective

system for treating diseases and other conditions. Indeed, the

use of nanotechnology can revolutionize the treatment of cancer,

by enabling diagnostic tools for early detection of the disease (Hu

et al., 2021) as well as improving drug delivery. In PC, the delivery

and distribution of drugs to the tumor are compromised due to

intrinsic physical and biochemical barriers, which result in

increased interstitial fluid pressure, vascular compression, and

hypoxia. Moreover, therapies based on targeting immune

responses including therapeutic vaccines, immune checkpoint

inhibition, and CAR-T cell therapy often do not show expected

responses due to a highly immunosuppressive tumor

microenvironment. These two factors present as a major

challenge for developing effective therapies against PC.

Nanoparticles have been extensively studied as delivery

platforms and adjuvants for cancer and other disease

therapies. Knowledge gained through using nanocarrier-based

systems in other cancer types, combined with the ability to

modulate nanocarriers toward targeting multiple MDR

mechanisms simultaneously provides an opportunity to enable

improvement in drug delivery and enhancing therapeutic

outcomes for PC.

Mechanisms of resistance in
pancreatic cancer

Numerous alterations at the genetic, epigenetic, and protein

levels are implicated in PC drug resistance (Binenbaum et al.,

2015). Although different therapy regimens exist, the current

standard of care regimen therapy for PC remains largely

dependent on gemcitabine (GEM), which is considered a gold

standard in chemotherapy. GEM is a nucleoside analog, which

provides only a modest clinical benefit (Burris et al., 1997).

Multiple combination regimens of chemotherapeutics such as

GEMwith 5-fluorouracil (5-FU), cisplatin or paclitaxel (PTX), or

FOLFIRINOX (i.e., fluorouracil, leucovorin, irinotecan, and

oxaliplatin alone or alongside targeted therapies [e.g.,

cetuximab and bevacizumab]) have failed to demonstrate

significant clinical benefits (Berlin et al., 2002; Cascinu et al.,

2006; Heinemann et al., 2006). Despite the initial response to

chemotherapy in the different forms of PC, the rapid

development of drug resistance remains a major challenge in

the treatment of PC (Binenbaum et al., 2015).

It is now well established that a variety of cancers mediate

their aggressiveness and resistance to chemoradiotherapy via

modulating key cellular regulatory pathways that control cell

proliferation and differentiation, inflammation, and

programmed cell death pathways, including apoptosis and

autophagy (Xia et al., 2014). PC shows a significant up-

regulation of ATP binding cassette (ABC) transporters

ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10, and

ABCG2 at the RNA level in tumors relative to the normal

pancreas (Mohelnikova-Duchonova et al., 2013). Additionally,

drug efflux pump MDR1/P-gp is highly expressed in PC cells

(O’Driscoll et al., 2007), which may play a critical role in the

development of resistance to chemotherapeutic agents.

Therefore, it is equally important to understand the

underlying molecular mechanisms of PC drug resistance for

unraveling novel therapeutic interventions with improved

efficacy. In addition, somatic mutations in key genes such as

many proto-oncogenes (e.g., Ras, Myc, Cdk4) are critical in the

initiation and progression of malignant tumors. However, cancer

treatment is even more challenging because tumor exposure to

therapy, including chemoradiotherapy and targeted therapy, is

often associated with further mutations and the development of

compensatory mechanisms that render cancer refractoriness to

therapy and increased aggressiveness and metastasis (Binenbaum

et al., 2015). Therefore, understanding the molecular

mechanisms of drug resistance is crucial in order to intervene

and eventually win the battle against cancer.

The main mutations of PDAC include KRAS, CDKN2A,

TP53, and SMAD4 (Hackeng et al., 2016). Over 90% of PC is

associated with KRAS mutations, most commonly KRASG12D,

during both the initial stage (i.e., precursor lesions that develop

into invasive pancreatic ductal adenocarcinoma, also known as

pancreatic intraepithelial neoplasia) and progression stage (di

Magliano and Logsdon, 2013). There have been efforts to

discover new PDAC targeting agents. A phase 1 clinical trial

(NCT04117087) used a long peptide vaccine combined with

Nivolumab and Ipilimumab for resected MMR-p colorectal

and pancreatic cancer patients. Interestingly, Govindan et al.

discovered that AMG 510 is a novel small molecule that can bind

specifically and irreversibly in KRASG12C (Govindan et al., 2019;

Alzhrani et al., 2021). KRASG12C is a mutation that is

predominantly found in non-small lung cancer. However, the

use of AMG 510 is limited in PDAC because KRASG12C mutation

only accounts for 2%. These findings will motivate the scientific
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community to develop new drugs that can target inactive

KRASG12D and KRASG12V, which account for 80% of PDAC

(Govindan et al., 2019; Alzhrani et al., 2021).

It is worth noting that tremendous efforts over the past years

have revealed numerous molecular components and intricate

signaling networks that are deregulated in PC, contributing to

chemoresistance. These include, but are not limited, drug

transporters (e.g., hENT and hCNT), intracellular enzymes

(e.g., deoxycytidine kinase), dCK, which is critical for GEM

bioactivation, DNA repair mechanisms (e.g., excision repair

cross-complementation 1), ERCC1, antioxidant response (e.g.,

Nrf and HSPs), signaling pathways that regulate cell-cycle and

programmed cell death (e.g., Nuclear Factor κB [NFκB], MAPK,

PI3K/Akt and p53), epigenetic components (e.g., histone

deacetylase), HDAC and more recently, noncoding RNAs

(ncRNAs) [e.g., microRNAs (miRNAs), long noncoding RNAs

(lncRNAs) and circular RNAs (circRNAs)] (Binenbaum et al.,

2015; Xie et al., 2020a; Lin et al., 2020; Pandya et al., 2020). More

recently, differential upregulation and functional role of the

transmembrane mucin MUC4 in PC is an attractive target for

immunotherapy and MUC4β encapsulation in polyanhydride

nanoparticles has been shown to provide long-term protection

against rapid phagocytic and proteolytic clearance in circulation.

Stable MUC4β release from these nanoparticles and its

immunogenic capacity has recently been demonstrated by Liu

and colleagues in mice models (Liu et al., 2021). Discussing the

specific molecular mechanism is beyond the scope of this review

and is discussed in detail elsewhere, but here we give an overall

overview and describe three key themes involved in PC drug

resistance. These are epithelial-mesenchymal transition (EMT),

expansion of pancreatic cancer stem cells (PCSCs), and dynamic

state of the tumor microenvironment (TME), as illustrated in

(Figure 1) (Binenbaum et al., 2015; Zeng et al., 2019).

Epithelial-mesenchymal transition (EMT) is a dynamic

process that involves the transitioning of differentiated

epithelial cells into the mesenchymal cell phenotype. During

this transformation, cells lose key features of epithelial cells such

as intercellular junctions while simultaneously undergoing

cytoskeletal rearrangement of the mesenchymal cell phenotype

(Nieto et al., 2016). EMT is particularly critical during cancer

progression and the generation of stem-like cells with a high

capacity for metastasis (Nieto et al., 2016). Notably, previous

literature has demonstrated the key role of EMT in conferring

drug resistance against chemoradiotherapy and targeted therapy

in a variety of solid tumors, including PC (Shah et al., 2007;Wang

et al., 2009; Singh and Settleman, 2010; Nieto et al., 2016). For

instance, chemoresistance to GEM in PC cells has been

associated with increased expression of mesenchymal markers

such as vimentin and ZEB1, in contrast to GEM-sensitive cells

with a high E-cadherin expression: a common epithelial

phenotype maker (Li et al., 2009). Similar findings have been

found with other chemotherapeutics, such as 5-FU and cisplatin

(Arumugam et al., 2009). Although the underlying molecular

mechanisms of EMT-induced chemoresistance are not fully

understood, accumulating evidence suggests the involvement

of multiple signaling pathways, including NFκB, TGFβ, and
Notch pathways (Ellenrieder et al., 2001; Min et al., 2008;

Wang et al., 2009). Another key molecular regulator of EMT

in PC cells is miRNAs: small non-coding RNAs that regulate gene

expression (Yonemori et al., 2017). A multitude of miRNAs has

been shown to be implicated in regulating major cellular

signaling pathways involved in the development of PC

(Yonemori et al., 2017). For instance, a low expression of

miR-200 was found in the GEM-resistant but not in the

GEM-sensitive PC cell lines (Li et al., 2009). Together, these

findings indicate the critical role of EMT in the development of

PC drug resistance in transformed cells.

Previous evidence has demonstrated that cancers are

heterogenous in nature, with subpopulations of cells of

varying phenotypes. Cancer stem cells (CSCs) represent a

small subpopulation of tumor cells with a high capacity for

self-renewing, differentiation, and tumor progression (Yu

et al., 2012). Indeed, CSCs display a high capacity for

FIGURE 1
Major molecular contexts underlying drug resistance in
pancreatic cancer. This figure illustrates the three major molecular
contexts underlying drug resistance in pancreatic cancer. These
include: 1) the process of epithelial-mesenchymal transition
(EMT) in which cancer cells lose their epithelial phenotype (such as
cell-to-cell contact) to gain more aggressive and metastatic
mesenchymal phenotypes; 2) expansion of subpopulation of
pancreatic cancer stem cells (PCSCs); and 3) dynamic tumor
microenvironment (TME). The tumor stroma surrounding cancer
cells and PCSCs consist non-cellular components including
extracellular matrix (ECM) and multiple cell types including CAF,
MDSC, Th-cells, Treg, TAM and DC. Cytokines released from the
different cell types help maintaining the TME in dynamic state that
supports tumor growth and metastasis. Th-cells exist in TME but
are suppressed. DCs, which are key in the processing and
presentation of cancer neoantigens, exist in TME but they are
suppressed as well. EMT: epithelial-mesenchymal transition;
PCSC: pancreatic cancer stem cell; TME: tumor
microenvironment; CAF: Cancer-associated fibroblast; MDSC:
myeloid-derived suppressor cell; Th-cells: Helper T cells; Treg:
Regulatory T-cell; TAM: tumor-associated macrophage; DC:
Dendritic cell.
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tumorigenesis when transplanted into a host compared to other

tumor subpopulations (Yu et al., 2012). Several cellular surface

markers have been identified to be expressed by CSCs in various

cancers, including CD44, CD24, CD133, aldehyde

dehydrogenase1 (ALDH1), and epithelial-specific antigen

(ESA) (Yu et al., 2012). In PC, previous work has

demonstrated that CD44, CD24, and ESA-expressing PCSCs,

represented only by a small percentage of the cancer cell

population (~1%), were associated with high tumorigenic

potential, and it is likely that PCSCs at least partially mediate

chemoradiotherapy-induced drug resistance, as evident in PCSC

enrichment in response to chemoradiotherapy treatment (Du

et al., 2011). Similar findings were also found in another report,

demonstrating that within a pancreatic tumor, a subset of

undifferentiated, stem-like cells expressing the surface marker

CD133, was associated with high tumorigenic potential and

chemoresistance (Hermann et al., 2007). Although there is an

overlap between the two subpopulations of PCSCs in the two

reports (CD44/CD24/ESA-vs. CD133-expressing PCSCs), they

were not identical (Hermann et al., 2007). Additionally, another

subset of cells with exclusive migratory properties expressing

CD133 and CXCR4 were identified at the invasive front of

pancreatic tumors. It was found that without these CD133+/

CXCR4+ cells, metastasis was almost completely abrogated

(Hermann et al., 2007). Together, these findings indicate the

existence of different subsets of PCSCs within pancreatic tumors

with a high capacity for tumorigenesis and drug resistance. Such

findings demonstrate the heterogenic nature of cancers which

has been long disregarded in cancer research. It is worth noting

that EMT transformed cells can share cellular and molecular

features of CSCs, which could explain an increased tumorigenic

profile of EMT transformed cells as well as drug resistance.

Nonetheless, these cells, unlike PCSCs, were sensitive to

conventional chemotherapy. Furthermore, it is now widely

accepted that subpopulations of CSCs exist in a dynamic state

(quiescent vs. slow-vs. rapid-cycling CSCs), which is constantly

influenced by signals and cues from their surroundings (the

tumor microenvironment (TME). With their large plasticity and

ability to switch to a quiescent state, CSCs can resist

chemoradiotherapy (Batlle and Clevers, 2017).

The tumor microenvironment (TME) consists of cellular and

non-cellular components (extracellular matrix (ECM)) and plays

a crucial role in drug resistance. Indeed, one major obstacle in the

treatment of PC is the dense fibrotic stroma, also known as

desmoplastic stroma, surrounding tumor cells that act as a

physical barrier. As such, they prevent drugs from infiltrating

tumor core cells (Dauer et al., 2017). Thus, the dense fibrotic

stroma is considered a histopathological hallmark of PC. It is

worth noting that TME is composed of several types of cells,

including fibroblasts, pancreatic stellate cells (myofibroblast-like

cells), and a variety of immune cells and despite the considerable

efforts made to target a multitude of cellular and noncellular

components within TME, yet it was associated with limited

clinical success (Ho et al., 2020). For instance, within the

stromal cells, cancer-associated fibroblasts (CAFs), which are

the major source of ECM, are associated with

immunosuppressive properties (Kraman et al., 2010).

Depletion of CAFs was associated with enhanced efficacy of

immune checkpoint inhibitors (ICIs) (Feig et al., 2013). In

addition to CAFs, other cell types within the TME including

regulatory T-cells (Treg), myeloid-derived suppressor cell

(MDSC), and tumor-associated macrophage (TAM) also

possess immunosuppressive properties (Ho et al., 2020).

Cancer immunotherapy has revolutionized the field over the

past couple of decades. Notable success has been made against

multiple solid cancers, particularly those with high tumor

mutational burden (TMB) within the tumor genome, such as

melanoma and lung cancer (Goodman et al., 2017; Yousefi et al.,

2017). This success has not been evident in PC (Schizas et al.,

2020), which has largely been attributed to the non-

immunogenic nature of most types of PC. In other words,

most PC types are not readily recognized by the immune cells

due to low TMB and thus a low number of neoantigens, a tumor-

associated antigen, and subsequent presences of TILs (Bailey

et al., 2016; Danilova et al., 2019). Additionally, as mentioned

earlier, PC is typically contained in a highly dense fibrotic stroma

consisting of multiple cell types with immunosuppressive

properties (Ho et al., 2020; Schizas et al., 2020).

Unsurprisingly, together, these two factors make cancer

immunotherapy less effective in PC. Utilizing the properties of

TME for controlling local therapeutic delivery is an area of active

research (Alshememry et al., 2017).

Nanotechnology for the treatment of
pancreatic cancer

Nanomaterials and nanoparticles (NPs) are extremely small

(1–100 nm) in size and hence can directly interact with biological

molecules (Hosein et al., 2013). Engineered NPs are an excellent

tool for drug delivery due to their unique structural properties

which include a large surface-to-mass ratio, capacity to be

modulated to bind different cellular targets, and ability to

carry different cargo including proteins, nucleotides, and

drugs. Advances in the field of nanotechnology have created

tremendous prospects for improving therapeutic drug delivery

(Schroeder et al., 2011; Melancon et al., 2012; Prabhu and

Patravale, 2012). Currently, the use of nanotechnology in drug

delivery typically involves a combination of nanomaterials and a

drug of interest, and a significant number of nanoplatforms are

being employed and are under testing in the different phases of

clinical trials (Ogawa andMiura, 2014; Rebelo et al., 2017). These

combinations utilize different types of nanomaterials such as

polymeric NPs, liposomes, amphiphilic polymer NPs, small

interfering RNA (siRNA), graft polymers, dendrimers,

thermo-responsive polymers, mixed micelles, ultrasound-
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responsive nano-emulsions, carbon nanotubes, quantum dots

and inorganic NPs (magnetic-hybrid NPs, and gold NPs)

(Manzur et al., 2017; Rebelo et al., 2017; Sielaff andMousa, 2018).

Nanotechnology has been largely utilized in cancer research

to improve the delivery of drugs to the tumor site exploiting the

leaky vasculature of the tumor via passive or enhanced

permeability and retention (EPR) effect. However, a major

challenge in PC is its hypovascularization, and hence, other

strategies must be utilized, such as using targeted (active)

delivery (Xie et al., 2020b). As a result of this insufficient

vascularization, ineffective distribution of drugs may account

for much of the chemotherapy resistance seen in PC treatment.

The use of nanotherapy may bypass the inefficient

vascularization issues by delivering chemotherapeutic drugs

directly to the pancreatic tissue, for example, by targeting

stromal hedgehog receptors rather than relying on blood flow,

a methodology that provides a tunable distribution of

chemotherapeutic agents throughout pancreatic tumor tissue,

thereby increasing drug solubility, half-life, and stability (Jiang

et al., 2020). Moreover, NPs delivering chemotherapeutic drugs

can bypass multidrug-resistant (MDR) efflux pumps present on

the surface of most tumor cells (Lobato-Mendizabal and Ruiz-

Arguelles, 1990; Blanco et al., 2011; McCarroll et al., 2014). This,

among other reasons that will be discussed in later sections,

supports the use of nanotechnology in PC treatment.

Nano-based intervention to
overcome MDR-PC in pre-clinical
and clinical settings: Key examples

The use of NPs has several advantages, including minimizing

MDR and drug-related toxicities. Nanoparticles can target a wide

range of physiological and metabolic characteristics of the

targeted tissues, thereby increasing biodistribution and

bioavailability of drugs and enhancing their plasma half-life

and EPR (Parhi et al., 2012; Poon et al., 2015; Gad et al.,

2016; Liu et al., 2022). Recently, the potency of the

chemotherapeutic agents for the treatment of PC has been

improved through the use of RNA interference (RNAi)

technologies, including miRNA and siRNA, which selectively

suppress the expression of target genes leading to increased drug

efficacy and enhancing anti-cancer activity (Tang et al., 2021).

Integrating RNAi with NPs can therefore be extremely effective

at treating PC (Hiss et al., 2007; Gurunathan et al., 2018). Studies

have recently shown that nano-sized exosomes are an efficient

RNAi carrier, making them an attractive delivery cargo to

cancerous cells (Farran and Nagaraju, 2020) Exosomes have

intrinsic advantages over liposomes, as they are less toxic and

can be dosed at higher concentrations in the blood to work as

molecular cargos which could be used to inhibit oncogenes,

activate tumor suppressor genes and modulate immune

responses to control tumor cell growth (Oliveira et al., 2021)

(Zhao et al., 2021b). As researchers continue to uncover the

cellular and molecular basis of PC drug resistance,

nanotechnology used for the delivery of drugs can be further

engineered to provide effective solutions for mitigating MDR in

the treatment of PC (Zhang et al., 2017). Table 2 summarizes key

nano-based systems used for the delivery of antitumor drugs to

mitigate MDR.

Albumin-based nanoparticles in PC

Albumin-based nanoparticles can be utilized as theranostics

(i.e., to deliver therapeutic agents and simultaneously used for

diagnosis). Albumin is the most abundant plasma protein and

known ligand to be associated with a caveolae-mediated

endocytosis mechanism. Albumin-based nanoparticles when

internalized by the cell via caveolae-mediated endocytosis, can

overcome the issue of MDR by bypassing and evading ATP-

binding cassette (ABC) transporters, which are responsible for

the efflux of anticancer drugs and subsequent MDR once released

into the cytoplasm (Yuan et al., 2016). Nanoparticle albumin

(Nab) is made by mixing human albumin in an aqueous medium

under high pressure to form 100–200 nm albumin NPs. These

NPs are mixed with chemotherapeutic alkaloids such as PTX

(Macarulla et al., 2019). As shown in Table 3, Nab-based delivery

systems are the most extensively studied nanocarrier system in

the treatment of PC in human clinical trials (Von Hoff et al.,

2011; Hosein et al., 2013; Von Hoff et al., 2013; Goldstein et al.,

2015; Vogel et al., 2016; Macarulla et al., 2019). A common

example of albumin-based nanoparticles is Nab-PTX, an

albumin-binding PTX and a microtubule-stabilizing agent

known to enhance microtubule polymerization during mitosis

leading to cell cycle arrest in the G2/M phases. Based on these

properties, Nab-PTX can stop rapid and uncontrollable cell

division and help overcome MDR receptor-mediated

endocytosis (Demidenko et al., 2008; Guo et al., 2018).

Importantly, Nab-PTX has been shown to mitigate MDR in

PC (Guo et al., 2018). In 2018, Guo et al. created GEM-resistant

pancreatic cells by inducing lower rates of hENT1 expression.

These cells were then exposed to free GEM or GEM delivered

using human-serum albumin nanoparticles (HSA-NPs). Their

results showed that GEM-HSA-NPs was more effective at

slowing pancreatic cell proliferation and triggering apoptosis

in comparison to free GEM alone, without any increase in

toxicity, as shown in vivo studies. In phase III clinical trial

(MPACT) on previously untreated patients with metastatic

PC, a combination of Nab-PTX and GEM increased the

median OS of patients receiving nab-PTX and gemcitabine to

8.7 vs. 6.6 months in patients treated with gemcitabine alone (p <
0.0001) (van Horssen et al., 2006; Libutti et al., 2010).

Furthermore, the combination showed an increase in the

cumulative delivery of gemcitabine by 2.8-fold compared to

gemcitabine alone (Von Hoff et al., 2011; Von Hoff et al.,
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TABLE 2 Selected examples of nano-based formulations used to overcome MDR in tumor cells.

Type of
nanocarrier

Objective Cargo Cell/Animal model Effects on
MDR

Outcomes/results

M1Exo-GEM-DFX
(Zhao et al., 2021a)

M1Exo was engineered as a
drug carrier to co-delivery
DFX and GEM to
overcome the
chemoresistance of GEM
and improve its therapeutic
potential

DFX and GEM PANC-1 cells Inhibit cell P-glycoprotein
expression

M1Exo-GEM-DFX was
able to overcome GEM
resistance induced by
P-glycoprotein expression
in vitro

s (DGL)n@Apt
NPs(Chen et al., 2022)

Modulation of PDAC
stromal structure and send
chemotherapy drugs to the
deep tumor vis the use of
Aptamer-decorated
hypoxia-responsive
nanoparticle s
(DGL)n@Apt

GEM +
STAT3 inhibitor
(HJC0152)

Pan02 multicellular
spheroids (MCSs) cells /
Pan02 xenograft mice

Inhibition of the
STAT3 pathway

Triggered by hypoxia, the
ultra-small dual-loaded
DGL NPs exhibited
excellent deep-tumor
penetration, promoted
drugs endocytosis, and
autophagy induction

PEG-Gem-cisPt-MSNs
(Tarannum et al., 2022)

Development of two
versions of mesoporous
silica nanoparticles
(MSNs), a dual loaded
PEG-functionalized NPs,
and MSNs containing
Sonic Hedgehog (SHh)
inhibitor for stroma
modulation and improved
delivery

GEM + CisPt HPAF II and Miapaca-2
cells / HPAF II xenograft
mice

Inhibition of sonic
hedgehog (SHh) signaling
pathway

The sequential
combination of CyP-
MSNs followed by PEG-
Gem-cisPt- MSNs led to (i)
effective stromal
modulation (ii) increased
access to secondary PEG-
Gem-cisPt-MSNs at the
tumor site (iii) enhanced
therapeutic performance
in HPAF II xenograft mice

TPMILs (Obaid et al.,
2022)

Development of cetuximab
(anti-EGFR mAb) targeted
photoactivable multi-
inhibitor liposomes
(TPMILs) co-loaded with
lapidated benzoporphyrin
derivative (BPD-PC)
photosensitizer and
irinotecan to remediate
desmoplasia, a major
contributor to
chemoresistance

(BPD-PC) + irinotecan MIA PaCa-2 + PCAF
tumor model

Reduction in stromal
collagen density and
collagen fiber alignment

Synchronized
chemotherapeutic and a
photodynamic insult to
PDAC tissue was achieved
with doubled overall
survival

HSA NPs(Guo et al.,
2018)

Enhancing the antitumor
effect of GEM by the
encapsulation into HSA-
NPs to overcome GEM
resistance in GEM-resistant
PC induced by low
hENT1 gene expression

GEM BxPC-3 and SW1990 cells/
patient-derived xenograft
BALB/c-nu/nu mice model

Inhibit cell proliferation,
arrest cell cycle, and
trigger apoptosis

GEM-loaded HSA-NPs
was able to overcome
GEM-resistance induced
by low hENT1 expression
in vitro and in vivo

HSA NPs(Han et al.,
2017)

Development of tumor
microenvironment
targeting HSA-GEM/
IR780 complex with the
redox-responsive release of
GEM using GFLG cleavable
peptide

GEM + IR780
(NIR dye)

BxPC-3 cells Induction of apoptosis and
Inhibition of cells
proliferation

The developed theranostic
nanoplatform showed high
tissue accumulation and
retention with: (i) targeted
intracellular drug release,
(ii) enhanced tumor
inhibition activity (iii)
insignificant side effects

Pheophorbide-a
conjugated albumin
NPs(Yu et al., 2017)

Inhibit PC with lymphatic
metastases by the
combination of
chemotherapy with
photodynamic
therapy (PDT)

GEM (BxPC-3-LN7) cells Increase in drug
accumulation in primary
tumors as well as
metastatic lymph nodes

Developed triple
functional system
efficiently controlled the
release of GEM from the
modified NPs and
possessed imaging-guided
theranostic properties

Nanovector- albumin-
bound PTX (MSV/nAb-

Enhancing drug transport
by increasing caveolin-1

PTX + GEM Increase cellular uptake as
a result of GEM-induced

GEM enhanced the
transport of MSV/nAb-

(Continued on following page)
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TABLE 2 (Continued) Selected examples of nano-based formulations used to overcome MDR in tumor cells.

Type of
nanocarrier

Objective Cargo Cell/Animal model Effects on
MDR

Outcomes/results

PTX) (Borsoi et al.,
2017)

expression (albumin
transporter) via
combination therapy of
MSV/nAb-PTX with GEM

L3.6 pl human cells/
L3.6 pl—bearing nu/nu
nude mice

high cav-1 expression,
which leads to increased
transport of nAb-PTX into
tumor tissue

PTX in GEM-resistant
pancreatic ductal
adenocarcinoma

Chitosan coated solid-
lipid NPs (c-SLN)
(Thakkar et al., 2018)

To use nano-encapsulated
c-SLNs combinations to
determine the efficacy of
the ACS therapeutic
regimen

Aspirin (ASP)+
curcumin (CUR)+free
sulforaphane
(SFN); ACS

Panc-1 and MIA PaCa-2
cells/LSL-KrasG12D/+; Pdx-
1Cre/+ transgenic mouse
model

Increase in drug efficacy Due to enhanced
bioavailability of the
combined ACS
chemopreventive agents,
the dosage for this
therapeutic regimen can
substantially be reduced,
which by virtue reduces
any potential serious side
effects

SN38 (irinotecan active
metabolite) polymeric
prodrug-based
NPs(Wang et al., 2017)

Development of a nano-
based system for effective
synergistic therapy to
overcome fibroblast-
induced drug resistance

GDC-0449 (hedgehog
pathway inhibitor)

BxPC-3 cells and MIA
PaCa-2 cells/PSCs and
BxPC-3—bearing BALB/c
nude mice

Increase in drug efficacy
by modulating the
fibroblast-enriched tumor
microenvironment

size-tunable nanoparticles
were obtained and
controllable loading
efficiency, which was
directly correlated to the
length of the hydrophobic
SN38 block

(PLGA-ORM NPs)
(Khan et al., 2015)

Providing effective
endosomal release to the
cytosol

Ormeloxifene (HPAF-II, AsPC-1, BxPC-
3, Panc-1, and MiaPaca)/a
BxPC-3 xenograft mice
model

Increase in drug efficacy PLGA-ORM NPs showed
substantial antitumor
efficacy and effective
endosomal release resulted
in PC tumor suppression

PLGA-PEG
NPs(Elgogary et al.,
2016)

Targeting the glutamine
metabolism

BPTES P8, A6L, A32, P198, E3,
P215, P10, and JD13D
human PC cells/Foxn1nu
athymic tumor-bearing
nude mice

Increase in drug
accumulation

Combination therapy of
BPTES-loaded NPs and
metformin were shown to
be effective in blocking the
metabolism of glutamine
and glucose

Redox-responsive Apt/
CPP-CPTD NPs(He
et al., 2018)

Development of
sequentially responsive
NPs with redox-responsive
on-demand drug release
and ECM-responsive
tumor penetration

Camptothecin prodrug,
CPTD

MIA PaCa-2 cells/MIA
PaCa-2 orthotopic human
PC xenograft bearing nude
mice

Enhance cytotoxicity and
cellular accumulation

Formulated NPs showed
selective accumulation at
the tumor site with mild
in vitro cytotoxicity and
good in vivo antitumor
efficacy

PLGA
NPs(Lucero-Acuna
et al., 2014)

Enhanced PH-427 delivery
to the PC harboring K-ras
mutation to overcome the
protective stromal layer
surrounding the pancreatic
tumor

PH-427 (AKT/
PDK1 inhibitor)

MiaPaCa-2 harboring K-ras
mutation/Orthotopic
MiaPaCa-2—bearing mice

Increase in cellular uptake
and drug efficacy

PH-427- loaded PLGA
NPs resulted in the
enhanced therapeutic
effect of PH-427 in vitro
and in vivo

PEGylated colloidal gold
NPs(Libutti et al., 2018)

Targeting components of
the tumor
microenvironment
responsible for creating
high interstitial fluid
pressure to improve the
delivery of anticancer drugs

TNF and a PTX
prodrug

Genetically engineered
mice with pancreatic ductal
adenocarcinoma

Increase in drug efficacy
by tumor IFP reduction

The combination of TNF
(targeting tumor
vasculature) with PTX
(either loaded on the NPs
or administered
separately) increased the
efficacy of the cytotoxic
agent

Superparamagnetic iron
oxide nanoparticle
(SPION) (Khan et al.,
2019)

Development of (SPION)
loaded with curcumin (SP-
CUR), which is known for
its anti-inflammatory and
antitumor activity, to
overcome GEM resistance
and enhance its therapeutic
potential in vitro and in
vivo

Curcumin + GEM Panc-1, HPAF, CPSC, and
HPSC cells / HPAF-II
human PSCs—bearing
athymic Nu/Nu mice

Suppression of sonic
hedgehog (SHH) signaling
pathway and oncogenic
CXCR4/CXCL12 signaling
axis

Efficient delivery of
curcumin was achieved,
which also played a role in
sensitizing cells to
standard GEM therapy

Cisplatin

(Continued on following page)
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2013; Goldstein et al., 2015). Based on the findings of the trial,

GEM plus nab-PTX became the first therapy recommended by

the National Institute for Health and Care Excellence in the

United Kingdom for the management of previously untreated

metastatic PC (Von Hoff et al., 2011).

Metal-based nanoparticles in PC

Metal-based NPs such as gold, silver, iron, platinum, and

titanium are commonly used for imaging, as drug delivery

carriers, and as radiosensitizers in radiation, proton, or

photodynamic therapy (Klebowski et al., 2018). Due to their

inherent physicochemical properties, metal NPs could overcome

MDR via different mechanisms (Sharma et al., 2018), as shown in

Figure 2. The endosomal-based cellular uptake mechanism can

be considered one of the main advantages of metal-based NPs in

overcoming MDR. This is achieved by selectively releasing

intracellular drugs after evading the membrane-embedded

multidrug efflux pumps (Ayers and Nasti, 2012). Khan et al.

developed a nanoformulation of superparamagnetic iron oxide

nanoparticles (SPION) loaded with curcumin (SP-CUR), an anti-

inflammatory and anti-tumorigenic compound. They tested the

activity of this nanoformulation in combination with GEM on

GEM-resistant pancreatic cells. Efficient delivery of curcumin

was achieved using their formulation, and they found that SP-

TABLE 2 (Continued) Selected examples of nano-based formulations used to overcome MDR in tumor cells.

Type of
nanocarrier

Objective Cargo Cell/Animal model Effects on
MDR

Outcomes/results

Nanogels (NGs) (Soni
et al., 2019)

Development of Cisplatin-
loaded mAb-coated NGs
for targeted delivery to PCs
and the evaluation of
antitumor activity in
combination with GEM

T3M4/Luc cells/ T3M4/
Luc—bearing Nu-Nu nude
mice

Increase in drug efficacy
by targeted therapy using
an anti-STn antibody
(TKH2 mAb)

Enhanced drug delivery, as
well as synergistic
cytotoxic effect, was
observed after sequential
exposure of PC cells to
GEM followed by CDDP

Fucose-bound
liposomes (Yoshida
et al., 2012)

Development of liposomal
formulation functionalized
with L-fucose to target the
fucosylated antigens highly
expressed on the surface of
cancer cells to enhance
cisplatin delivery

Cisplatin BxPC-3, AsPC-1, PK59,
and HuCCT1 cell lines/
Subcutaneous model:AsPC-
1-bearing mice; Liver
metastasis and orthotopic
models: BxPC-3-Luc-
bearing mice

Increase in cellular uptake
and cytotoxicity

Cisplatin-loaded Fucose-
bound liposomes were
effectively delivered to PC
cells and resulted in
effective inhibition of
tumor growth as well as
extending survival in the
mouse xenograft models

Au-GO@ZC-DOX
stealth nanovesicles
(Thapa et al., 2018)

development of pH-
triggered stealth
nanovesicles for
chemophototherapy

DOX Panc-1 cells and Mia PaCa-
2 cells/PANC-1- bearing
BALB/c nude mice

Increase in cellular uptake
and cytotoxicity

The multi-componential
nanovesicle showed
effective Macrophage
opsonization inhibition,
resulting in anti-cancer
and anti-migration effects

HA-SMA Micelles
(Kesharwani et al., 2015)

Development of
functionalized micelles
with HA to target the PC
overexpressed
CD44 receptors to
overcome MDR

3, 4-
difluorobenzylidene
curcumin (CDF)

MiaPaCa-2 and AsPC-1
cells

Inhibition of NF-κB in
CD44+ cells

The developed nanosystem
showed remarkable
colloidal stability and
sustained drug release and
potent anticancer activity

Polymeric Micelles (Xu
et al., 2015)

Development
(TPGS–GEM) prodrug
micelles to protect the drug
from enzymatic
metabolism

TPGS–GEM (prodrug) BxPC-3 cells Enhanced drug efficacy as
the micellar formulation
protected the drug from
enzymatic metabolism

Long circulation half-life
of GEM was obtained in
addition to enhanced
anticancer activity

Ultra-pH-sensitive
micelles (UPSM) (Kong
et al., 2019)

Development of UPSM
improved pH buffer
capacity for simultaneous
inhibition of lysosomal
acidification and
enhancement of
therapeutic delivery

Triptolide prodrug- KRAS mutant PANC-1 and
MIA PaCa-2/MIA PaCa-2-
luc—bearing BALB/C nude
mice

Disruption of lysosomal
catabolism and growth
inhibition of KRAS
mutant

The newly developed
nanosystem revealed more
efficient lysosomal
catabolism when
compared with
conventional
lysosomotropic agents. In
addition, pH-sensitive
UPSM showed significant
cytotoxicity when
compared to non-pH-
sensitive micelles
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TABLE 3 Selected examples of clinical trials applying nano-based formulations in PC treatment.

Study Testing Study
type

Dosing regimen Median survival Main outcomes

Von Hoff et al., 2011
(Von Hoff et al., 2011)

GEM +
Nab-PTX

Phase I/II 67 patients 100, 125, and 150 mg/m2

nab-paclitaxel plus 1,000 mg/m2

gemcitabine on days 1, 8, and 15 every
28 days

12.2 months Response rate 48%, Overall Survival (OS)
12.2, and 1-year survival rate 48%

NCT00844649

Hosein et al., 2013
(Hosein et al., 2013)

nab-PTX Phase II 19 patients were treated with nab-
paclitaxel 100 mg/m2 on days 1, 8, and
15 of a 28-day cycle

7.3 months 6 months OS 58%, median OS
7.3 months

Von Hoff et al., 2013
(Von Hoff et al., 2013)

GEM + Nab-
PTX vs. GEM

Phase III Group 1: 431 patients given nab-PTX
(125 mg/m2) followed by GEM
(1,000 mg/m2) on days 1, 8, and
15 every 4 weeks

Median survival was
8.5 months in GEM + Nab-
PTX vs. 6.7 months in the
GEM group

Group 1 vs. Group 2: Median survival
8.5 vs. 6.7 months; 1-year survival rate
35vs. 22%; 2-year survival rate 9 vs. 4%;
higher risks of peripheral neuropathy and
myelosuppression with group
1 compared to group 2

NCT00844649 Group 2: 430 patients given GEM
monotherapy (1,000 mg/m2) weekly
for 7 of 8 weeks (cycle 1) and then on
days 1, 8, and 15 every 4 weeks
(cycle 2)

Goldstein et al., 2015
(Goldstein et al., 2015)

GEM + Nab-
PTX vs. GEM

Phase III Patients (n = 861) randomly assigned
to receive GEM + Nab-PTX vs. GEM

Median survival was
8.7 months in GEM + Nab-
PTX vs. 6.6 months in the
GEM group

OS and long-term survival (>3 years)
were higher amongst GEM + Nab-PTX
compared to the GEM monotherapy
group

Update on OS of
NCT00844649

Vogel et al., 2016
(Vogel et al., 2016)

GEM + Nab-
PTX vs. GEM

Phase III Patients randomly assigned to receive
GEM + Nab-PTX vs. GEM alone

Median survival was
9.8 months in GEM + Nab-
PTX vs. 7.5 months in the
GEM group

OS 8% with GEM + Nab-PTX vs. 4%
from GEM alone; Overall Response Rate
27 vs. 9% with GEM + Nab-PTX vs.
GEM alone respectively

Sub-analysis of
NCT00844649

Macarulla et al., 2019
(Macarulla et al.,
2019)

GEM + Nab-
PTX vs. GEM

Phase I/II 6 groups inducted in phase I and
2 groups in phase II both using GEM
+ Nab-PTX at different doses (100 g/
m2 or 125 mg/m2 Nab-PTX +
1,000 mg/m2 GEM)

NA Improvement in overall survival
irrespective of the dose of Nab-PTX used

NCT02382263

Libutti et al., 2010
(Libutti et al., 2010)

CYT-6091
(colloidal gold)

Phase I 3 participants were given 50 mg/m2 to
600 mg/m2 of rhTNF via the CYT-
6091 delivery system

NA CYT-6091 delivery system led to great
tumor tissue concentration of rhTNF
compared to normal tissues

NCT00356980

Stathopoulos et al.,
2005 (Stathopoulos
et al., 2005)

Lipoplatin Phase I Dose starting at 25 mg/m2 and was
increased by 25–125 mg/m2

NA No significant nephrotoxicity or systemic
toxicity noted with this preparation

Greek trial

Stathopoulos et al.,
2005 (Stathopoulos
et al., 2005)

Lipoplatin Phase II GEM dose 1,000 mg/m2 and the
lipoplatin dose was escalated from
25 mg/m2 to 125 mg/m2

3 months Partial response (>50% tumor reduction)
was seen in 2 patients. Stable disease
(<25–50% reduction in the tumor) was
seen in 14 patients

Greek trial

Syrigos et al., 2002
(Syrigos et al., 2002)

Docetaxel and
liposomal
doxorubicin

Phase II 21 patients given docetaxel (80 mg/
m2), and liposomal doxorubicin
(30 mg/m2) was administered on day
1, every 3 weeks

10 months Median survival 10, 1-year survival 33.3%

Greek trial

Hamaguchi et al.,
2007 (Hamaguchi
et al., 2007)

NK105 (PTX-
polymeric
micelles)

Phase I Initially given 10 mg/m2 and
successively increased the dose

NA The size of liver mets reduced by 90% in
patients receiving a dose of 150 mg/m2 or
higher dose
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CUR increased the effectiveness of GEM therapy through

suppressing two signal transduction pathways that are

implemented in MDR: 1) sonic hedgehog (SHH) and 2)

oncogenic CXCR4/CXCL12. Following their endosomal

escape, SPION particles showed increased cellular

internalization where they were observed to be more closely

associated with cytosol/mitochondria to prevent lysosomal

degradation (Khan et al., 2019). In 2010, Libutti et al. used a

novel drug delivery system, CYT-6091, surface-modified

colloidal gold nanoparticles, to increase tumor levels of rhTNF

and reduce its systemic metabolism and toxicity (Libutti et al.,

2010). CYT-6091 is constructed by combining rhTNF and

thiolyated glycol to the surface of 27 nm gold colloidal

particles. CYT9061 was studied at doses between 50 mg/m2 to

600 mg/m2 in a phase I clinical trial conducted with three

patients with pancreatic adenocarcinoma. Using the gold

colloidal nanoparticles, researchers were able to administer

extremely high concentrations of rhTNF compared to when

given in isolation: the highest isolated tolerated concentration

of pure rhTNF is 1 mg per cycle. After treatment, examination by

electron microscope of normal and tumor tissues was carried out

and found gold particles isolated within tumor tissues or at

anticipated clearance sites (Ladd et al., 2017). These findings

suggest that gold-based, colloidal nano-delivery systems can be

used to deliver chemotherapy drugs to target tissues. However,

subsequent clinical trials remain to be conducted to prove their

efficacy and safety.

Polymeric micelles in PC

Polymeric micelles, including both hydrophobic and

hydrophilic moieties (Manzur et al., 2017), are the largest class

of nanomaterials being investigated for PC treatment in pre-

clinical settings. These nanoparticles contain linear or highly

branched and symmetrical polymers, with hydrophilic dendritic

extensions and a hydrophobic core. The terminal groups at the

dendritic extensions can be adjusted to allow for better solubility

depending upon the carrier medium and allow for superior

anchorage and permeability into target tissues (Chiba and

Twyman, 2017; Ladd et al., 2017). Polymeric micelles are NPs

formed by the self-assembly of amphiphilic block copolymers

when present in certain solvents with a surfactant

concentration above a critical micelle concentration (c.m.c).

They are efficient drug delivery systems for cancer treatment

with the ability to inhibit P-gp action, alter drug internalization,

enable selective drug targeting, and enable subcellular localization.

Polymeric micelles can circumvent MDR through a combination

of mechanisms, including the EPR effect, endosomal-triggered

active internalization, and drug escape (Kapse-Mistry et al., 2014).

FIGURE 2
Common nanomedicine strategies to overcome multidrug-resistant tumors. Reprinted from Pharmacological Research, 126, Manu S. Singh,
Salma N. Tammam, Maryam A. Shetab Boushehri, Alf Lamprecht, MDR in cancer: Addressing the underlying cellular alterations with the use of
nanocarriers, 2-30, Copyright (2017), with permission from Elsevier.
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In our literature review, we found at least seven published studies

using polymeric micelles for the delivery of anti-tumor drugs in

clinical trials, including Genexol®-PM, NK105, NC-4016, NK012,

NC-6004, NK911, and SP1049C (Gong et al., 2012). NK105 is a

nanoparticle formulation that incorporates PTX into a “core-shell-

type” polymeric micelle. In a phase I trial conducted by

Hamaguchi et al. (2007), the pharmacokinetics of NK105, a

micelle carrier for PTX, was studied. The study included

19 patients with advanced PC who were given an initial dose of

10 mg/m2 of NK105; this dose increased successively. The size of

metastatic liver tumors was reduced by 90% in patients given a

150 mg/m2 dose of the drug (Hamaguchi et al., 2007).

Lipid-based nanoformulations in PC

Lipid-based nanoformulations have been extensively studied

for the delivery of antitumor agents, including natural products

(Kashyap et al., 2019). Liposomes are lipid bilayer systems that can

cross the lipid bilayer to selectively target cancer cells based on

biomarkers, overly expressed on PC cells (Urey et al., 2017). There

are several strategies whereby liposomes can enhance drug

bioavailability and efficacy in drug-resistant cancer. These

include 1) liposomes modified for controlled and on-demand

release; and 2) ligand-targeted liposomes such as

immunoliposomes, which facilitate intracellular drug delivery

into tumor cells. Liposomes can also directly inhibit P-gp

through endocytosis and consequently enhance intracellular drug

accumulation (Kapse-Mistry et al., 2014). In 2012, the use of

liposomes in PC treatment was explored by Yoshida et al. They

targeted fucosylated antigens that are highly expressed on the

surface of PC cells. They engineered L-fucose-bound liposomes

that encapsulated Cy5.5 or cisplatin. In vitro studies on CA19-9

expressing PC cells showed that L-fucose-bound liposomes

encapsulating either Cy5.5 or cisplatin were effectively delivered

and in mouse xenograft models, cisplatin-loaded liposomes were

successfully delivered to PC cells and inhibited tumor growth

(Yoshida et al., 2012). Furthermore, in the second-line setting of

metastatic PDAC following administration of GEM-based

regimens, nanoliposomes irinotecan (nal-IRI) was approved by

the FDA in combination with 5-FU and leucovorin (5-FU/LV)

in 2015. In phase III, the NAPOLI-1 trial, the median progression-

free survival (PFS) was 3.1 and 1.5 months (p < 0.001) in patients

who received nal-IRI + 5-FU/LV and patient’s 5-FU/LV alone,

respectively (Wang-Gillam et al., 2016). In the final OS analysis of

the NAPOLI-1 trial, the median OS was increased by 2 months (p =

0.042) in the nal-IRI + 5-FU/LV group (Wang-Gillam et al., 2016).

Nanogels in PC

Nanogels can utilize the unique characteristics of tumor

microenvironments such as pH and temperature, to release

drugs within the cell, resulting in efficient drug delivery

(Damaghi et al., 2013). In a study by Damaghi et al., a

nanogel-based platform for PC therapy was reported (Soni

et al., 2019). They developed a cisplatin-loaded, mAb-coated

nanogel for targeted delivery and used it in combination with

GEM. In vitro results revealed an increase in drug efficacy.

Additionally, enhanced drug delivery and synergistic cytotoxic

effect were observed after sequential exposure of PC cells to

GEM. Together, these studies have all demonstrated the

advantage and improved therapeutic outcomes with the use of

nanomaterials and nano-drug platforms, particularly and most

importantly against MDR in experimental models and clinical

trials (Kesharwani et al., 2015; Borsoi et al., 2017; Guo et al., 2018;

Kong et al., 2019). Such advantage to the use of nanomaterials is

mediated through a wide range of mechanisms, including

enhanced cellular uptake, evading endosomal-lysosomal drug

breakdown, inhibition of drug efflux, and increasing plasma half-

life.

Key limitations on the clinical translation
of nanomedicine in PC

There has been a tremendous effort to understand the

structural and functional properties of nanoparticles directed

against cancer but their translation to clinical practice has been

largely limited. This can primarily be attributed to a poor

understanding of the biological barriers and nanomaterial

behavior inside the body and cells, as well as the

overemphasis and relying on animal models during pre-

clinical evaluation, which does not necessarily represent the

same disease phenotype in humans (Gonzalez-Valdivieso

et al., 2021).

There are several major challenges in the treatment of PC,

which need to be overcome to make the use of nanotherapies a

success against PCs. These include off-target toxicity, low

bioavailability of chemotherapeutic drugs, and undesirable

pharmacokinetics. One way to address these obstacles is

through the use of nanotechnology as an effective vehicle for

chemotherapeutic drugs. Currently, only 16 nano-based cancer

drugs are approved by FDA and around 75 nanoformulations are

being investigated in clinical trials (He et al., 2019). It is extremely

important to narrow the gap between preclinical toxicity studies

and toxicity studies in patients, as nanomedicines have been

shown to exert additional unintended and often toxic effects on

normal cellular function. Moreover, there has been a lack of

convincing data on the process of excretion of nanomedicines

from the human system, as most data is available from animal

disease models. Nanomedicines can pose safety issues at different

levels (apart from the intrinsic toxicity of the API itself).

Furthermore, the biodistribution of nanoparticles changes

unpredictably resulting in uptake and accumulation in certain

organs, which may result in target off-target effects and local
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overexposure. Indeed, some nanoparticles have a known

tendency to accumulate in lymphoid organs and kidneys (for

some polymer-bound drugs) (Metselaar and Lammers, 2020).

Furthermore, there remains a general lack of understanding

on the cost-effectiveness, manufacturing, and scaling up, as well

as regulation with regard to using nanomedicines for cancer (van

der Meel et al., 2017). As the science behind the structural-

functional relationship provides clarity on the interaction of

nanomedicines in vivo, the regulatory challenges must be

addressed simultaneously to bring these potentially game-

changing therapeutics to the frontline against fighting

pancreatic cancer.

Conclusion and future directions

Numerous noncarriers have been developed and investigated

for the treatment of PC to overcome the problem ofMDR seenwith

chemotherapy and other therapeutic options, however, with limited

success Even though nano-based carriers show great promise in

treating various cancers, they have several limitations, including

potential toxicity, difficult scalability, and low loading efficiency

that could be responsible for their low success rate reaching clinical

settings. Notably, the albumin-based nanocarrier was the most

successful in clinical studies for PC. This is mainly because albumin

nanoparticles were successful in encapsulating widely used

chemotherapeutics that are less soluble/insoluble in water.

Additionally, albumin is highly biocompatibility and

biodegradability, making it an attractive material for drug

delivery applications. The development of future therapies for

cancer and nano-based therapeutics should not be limited by

designing nanocarriers only for passive targeting of cancerous

cells. Internalization of chemotherapeutic agents into tumor cells

can be further improved via the utilization of an active targeting

approach to enhance drug delivery efficacy. Additionally, research

into novel biomarkers to enable active targeting will empower

delivery strategies of nanocarriers to combat cancer resistance.

While we have certainly made huge progress in understanding

the drug resistance mechanisms in PC and the signaling pathways

responsible for PC cell metastases, investigations on the use of

nanomedicine in this field lag behind. Currently, the majority of

work in the field of nanomedicine is largely focused on increasing

drug stability, accumulation, and targeting, which is yet of critical

importance, particularly in nucleoside transporter (e.g., ENT1 and

CNT1)-mediated drug resistance against GEM (Hung et al., 2015;

Poon et al., 2015). Future studies utilizing nanotechnology against

MDR pancreatic cancers should integrate multiple modalities and

exploit the rapidly accumulating mechanistic knowledge in this

cancer model (e.g., targeting PCSCs, dual delivery of potential drug

modalities, etc.). In addition, utilizing the endogenous properties of

the TME to trigger the release of cancer therapeutics from

nanocarriers should be considered during the delivery system

design. Such a design will add another dimension of controlled

release that can impact clinical efficacy, where adverse effects can

be minimized while retaining therapeutic benefits.

The main goal of PC treatment is to enhance the efficiency of

drug delivery and minimize drug resistance. Despite the

tremendous effort in making novel nanocarriers in pre-clinical

settings, the development of clinical translation to the bedside

remains laborious. Extrapolation of scientific findings from

animals to humans is extremely challenging, mainly due to

differences in physiology and anatomy between species,

making direct extrapolation unreliable. Furthermore, unlike

the experimental settings in clinical studies, animals are

designed with syngeneic backgrounds, and disease models are

designed to produce as homogenous a population as possible. On

the other hand, heterogeneity is the basis of ineffectiveness in

clinical trials. Moreover, individual variability in lifestyle and

disease progression plays key roles in the overall efficacy, unlike

the well-controlled animal experiments.

The promise of nanomedicine will be realized by moving

away from designing a targeting strategy against a single target to

including targeting approaches that address multiple signaling

mechanisms and molecular targets, considering the complexity

of both the human physiology and the tumor microenvironment,

including the development of MDR mechanisms.
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