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Abstract

The mutation risk of a DNA locus depends on its oligonucleotide context. In turn, mutability

of oligonucleotides varies across individuals, due to exposure to mutagenic agents or due to

variable efficiency and/or accuracy of DNA repair. Such variability is captured by mutational

signatures, a mathematical construct obtained by a deconvolution of mutation frequency

spectra across individuals. There is a need to enhance methods for inferring mutational sig-

natures to make better use of sparse mutation data (e.g., resulting from exome sequencing

of cancers), to facilitate insight into underlying biological mechanisms, and to provide more

accurate mutation rate baselines for inferring positive and negative selection. We propose a

conceptualization of mutational signatures that represents oligonucleotides via descriptors

of DNA conformation: base pair, base pair step, and minor groove width parameters. We

demonstrate how such DNA structural parameters can accurately predict mutation occur-

rence due to DNA repair failures or due to exposure to diverse mutagens such as radiation,

chemical exposure, and the APOBEC cytosine deaminase enzymes. Furthermore, the

mutation frequency of DNA oligomers classed by structural features can accurately capture

systematic variability in mutagenesis of >1,000 tumors originating from diverse human tis-

sues. A nonnegative matrix factorization was applied to mutation spectra stratified by DNA

structural features, thereby extracting novel mutational signatures. Moreover, many of the

known trinucleotide signatures were associated with an additional spectrum in the DNA

structural descriptor space, which may aid interpretation and provide mechanistic insight.

Overall, we suggest that the power of DNA sequence motif-based mutational signature anal-

ysis can be enhanced by drawing on DNA shape features.

Introduction

Advances in analysis of mutation signatures are transforming genomics of cancer [1–5],

human populations [6], and model organisms [7]. Tumor evolution is characterized by
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distinctive somatic mutational processes resulting from mutagen exposures (environmental or

endogenous) or defects in DNA repair mechanisms that result in genome instability [8–10].

Identification of these mutational processes can add to our knowledge of DNA damage and

repair mechanisms that operate in human cells [11, 12]; it can contribute to understanding the

etiology of various tumor types, with implications for predicting cancer risk [13, 14]; it can

improve statistical methodologies for detecting cancer driver genes by refining baseline esti-

mates of mutation rates [15, 16]; and finally, it has the potential to identify mutational bio-

markers that can aid diagnostics [17, 18] and personalized treatment of tumors [19–21].

The genomic landscapes of individual cancers result from a combination of multiple over-

lapping mutational processes, making their deconvolution from genomic data a difficult chal-

lenge. There are many existing approaches to address this task [22], which apply a

factorization technique to a frequency table of occurrences of mutations in various DNA con-

texts. The resulting mutational signatures can identify known examples of mutagenic mecha-

nisms operative in certain cancer types [1, 2, 19]. However, many outstanding issues remain

with methodologies for extracting mutational signatures. Firstly, many of the signatures were

not matched with a mechanism or a clear biological covariate [1], which could represent novel

biology but can often result from either incompletely/inaccurately resolved mixtures of muta-

tional processes, or sequencing/alignment/mutation calling artefacts. Additionally, the existing

mutational signature extractions do not appear very robust: various statistical approaches to

infer mutational signatures do not necessarily extract consistent sets of mutational signatures,

and moreover even with the same method, minor perturbations to the input data (e.g. same

biological process across different tissues) can result in different extracted signatures. One rea-

son for the lack of robustness is that the somatic mutation frequency data tend to be sparse;

noise due to low mutation counts can overwhelm biological signal. This is aggravated when

changing the tabulation of oligonucleotides from the commonly used trinucleotide (3 nt)

DNA sequence representation, to longer, more informative representations–pentanucleotides

(5 nt) or heptanucleotides (7 nt)–where the combinatorially increasing number of possible oli-

gonucleotides aggravates sparseness. In addition to these statistical considerations, there are

difficulties with interpreting the signatures: DNA sequence is usually not in obvious ways

related to the biochemical aspects of the DNA damage and repair processes, and so the

sequence-based mutational signatures do not facilitate insight into underlying mechanisms.

To address the challenges above, there may be benefits to enhancing the DNA oligomer

representation for mutation signature analysis. Firstly, robustness (towards noise and system-

atic biases) of the methodologies for signature inference may be improved by reducing data

sparseness. Secondly, the ability to interpret the signatures and link them to biological mecha-

nisms may benefit. Thirdly, new representations can help identify additional mutational signa-

tures that are not ‘visible’ to the standard trinucleotide/pentanucleotide approach. Here, we

propose a framework to integrate information about DNA structure [23, 24] of the DNA oligo-

mers to predict their mutability and to infer mutation signatures. We were inspired by the

known examples of DNA structural features susceptible to certain mutagens, such as DNA

hairpin structures vulnerable to the APOBEC3A cytosine deaminase [25], various other types

of DNA repeats with tendency to form non-B-DNA conformations [26], high curvature of lon-

ger DNA segments that associates with mutation rates [27], or DNA structure changes upon

AP-1 transcription factor binding that sensitizes to UV damage and consequently mutation

[28, 29]. Our framework generalizes over many of these examples, employing a diverse set of

ds DNA shape features to describe neighborhoods of mutated loci in human cancer. Our

implementation utilizes precalculated base-pair, base-pair step, and minor groove shape

parameters of DNA oligomers [30, 31]. Such structural parameters are considered to be an

accurate description of DNA conformation, summarizing atomic coordinates of nucleotides
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in a compact representation [32–34]. DNA susceptibility to mutagenic agents or recognition

by DNA repair enzymes might be enhanced or disrupted by genetic differences in the regions

flanking the mutation site [35, 36]. Because DNA predictably acquires a sequence-dependent

local conformation, this provides a rationale for implementing sequence-derived DNA shape

parameters into a framework to predict and classify mutagenic processes.

Materials and methods

Obtaining somatic mutations from cancer genomic data

We extracted somatic single-nucleotide variants (SNVs; henceforth: mutations) from the

whole-genome sequences (WGS) of tumors from 30 cancer types; we did not consider indels

or structural variation. The called mutations from cancer WGS were collected from: (i) The

Cancer Genome Atlas (TCGA, https://www.cancer.gov/tcga), studies: BLCA, BRCA, CESC,

COAD, DLBC, GBM, HNSC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PRAD,

READ, SARC, SKCM, STAD, THCA, UCEC; (ii) International Cancer Genome Consortium

data portal (ICGC, https://icgc.org), including somatic mutations from studies CLLE-ES, ESA-

D-UK, LIRI-JP, MALY-DE, MELA-AU, PACA-IT, RECA-EU; and (iii) samples downloaded

from the websites of individual WGS study of MDBA [37]. The final list included over 1,600

tumor samples, for which the chromosome number and coordinate of each somatic mutation

were extracted using R 3.6 [38]. Next, DNA motifs up to +/- three nucleotides flanking each

mutation site were retrieved using human GRCh37/hg19 as reference genome. This resulted

in tri, penta, and heptanucleotide sequences (“3nt”, “5nt”, “7nt”, respectively) with the muta-

tion placed in the central position of the oligonucleotide. For the Poisson regression analyses

(see below), all three types of DNA sequence motifs were further processed to count their

mutation frequency in each tumor sample, and, as a baseline, their overall occurrence in the

human genome. For the Principal Component (PC) analysis, each set of mutations (sorted by

tri, penta or heptanucleotide) in a given tumor sample was further separated into six mutation

outcomes: C>A, C>G, C>T, T>A, T>C and T>G (these are equivalent to, and were consid-

ered together with G>T, G>C, G>A, A>T, A>G and A>C, respectively, due to DNA strand

symmetry).

DNA representation using structural features

Within pentanucleotide DNA motifs, we extracted various structural parameters thereof. This

produced: one minor groove width parameter defined for the central nucleotide (mgw0); six

base pair (bp) parameters: propeller (prop0), opening (open0), buckle (buck0), stretch (stre0),

stagger (stag0), shear (shea0); and additionally six base-pair step parameters, each preceding

and following the central nucleotide (thus times two), resulting in total of twelve base-pair step

parameters: twist (tw-1, tw+1), roll (ro-1, ro+1), tilt (ti-1, ti+1), slide (sl-1, sl+1), rise (ri-1, ri
+1), and shift (sh-1, sh+1) [30]. DNA shape parameters extraction was performed using DNA-

shape R routine [39, 40], which uses the Curves+ algorithm [41]. The total number of parame-

ters increased from nineteen (1+6+12) for the pentanucleotide-based DNA structure

representation (“5nt-str”) to forty five for the heptanucleotide-based DNA structure represen-

tation (3+18+24; “7nt-str”). Although all shape parameters includingmgw, 6 base pair parame-

ters, and 6 base pair step parameters could in principle generate predictive features for

mutation risk, four of these (mgw, twist, roll, and propeller) were previously considered more

relevant for evaluating protein-DNA interactions [42–45] and thus by analogy we focus on

these features also for mutation risk prediction. Additionally, using a more focused set of DNA

structure features allowed us to match the number of features on the sequence-context side,

and to reduce the number of free parameters in the signature analyses. An illustration of the
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relationship between nucleotide position and the DNA structural parameters is shown for

minor groove width, base-pair parameter propeller, and the base-pair step parameter roll in

Fig 1. After extraction of the most informative parameters: minor groove width, propeller,

twist, and roll, values of each parameter were normalized to range from 0 to 1, and discretized

into three equally distributed bins: high (“H”), medium (“M”), and low (“L”), based on the

known, nearly symmetrical distributions of the shape parameters around their equilibrium

values [31].

Modelling mutation counts in oligonucleotides by Poisson regression

The DNA sequence features on the one hand, and DNA shape parameters on the other hand,

were applied to the task of predicting the mutation propensity of each oligonucleotide, for six

individual hypermutated tumor samples (described below in the Results section), using count

modelling and in particular the Poisson regression analysis as implemented in the R environ-

ment via the glm function [46]. Poisson regression is commonly used for modeling count data.

The model is given by:

log li ¼ b0 þ b1xi1 þ . . .þ bpxip; ð1Þ

where λi is a countable response variable, modelled as the linear combination of the covariates

corresponding to the ith observation of the predictor variable x. Similarly to linear and logistic

regression, the covariates are fixed, and the regression coefficients β = (β0,. . ., βp) are the

model parameters to be estimated. The countable response variable λ can be substituted with

the ratio λ/D of the count of the events (here mutations) and total number of opportunities D
that the event had to occur. This leads to an extra term–an offset log D–added on the right-

hand site of the equation and an adjustment of the regression coefficients.

For DNA sequence features, particular each trinucleotide or pentanucleotide was a data

point in the regression and was described by (i) the DNA sequence motif features (henceforth

referred to as “3nt-seq” or “5nt-seq”, respectively; these are simply variables indicating occur-

rence of A, G, C or T at each position; the motifs are considered DNA strand-symmetrically

i.e. the reverse-complementary tri/pentanucleotides are collapsed together, thus the central

nucleotide can have only 2 [instead of 4] values which were here chosen to be C and T to keep

with the convention in mutation signature analysis), (ii) the mutation count of the tri/pentanu-

cleotide in that tumor sample, and (iii) its occurrence within the human reference genome

GRCh37/hg19 (the latter was introduced as an offset value into the regression, thus adjusting

for the differential occurrence of oligonucleotides in the genome sequence). For DNA struc-

tural features, the sets of all structural parameters extracted for pentanucleotide and heptanu-

cleotides (henceforth, “5nt-str” and “7nt-str”), each divided into L, M, and H bins, was used in

Fig 1. Mapping of the structural DNA parameters on DNA sequence. N can be any of A (adenine), C (cytosine), G (guanine), or T (thymine). Structural features

considered: minor groove width (mgw), base-pair parameters (bp, shown example for propeller), and base-pair step parameters (bp step, shown example for roll) and their

position within the (A) 5nt-long and (B) 7nt-long DNA motifs. Considering the DNA pentamer sequence is an approach to derive DNA structural features at a locus,

while accounting for the nearest and next-nearest neighbors of the central nucleotide. The structural features:mgw, the one bp, and the two bp step parameters, at a given

central base pair are the function of its pentamer environment.

https://doi.org/10.1371/journal.pone.0262495.g001
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place of the 3nt-seq or 5nt-seq in the DNA sequence analysis. The mutation type is not explic-

itly considered in the Poisson regression as implemented, but instead all mutations occurring

at a C:G pair are considered jointly (C>A, C>T and C>G), and all mutations considered at

an A:T pair are considered jointly (T>A, T>C and T>G). The assumption underlying this is

that in a tumor predominantly affected by a single mutagenic process, different mutation types

are likely to originate from the same or a shared mechanism. This provides a rationale for

treating various mutation types as a single set, thus increasing statistical power to find associa-

tions. Of note, the more commonly observed mutation types in a particular tumor sample will

have a higher weight towards determining coefficients in the regression run on that tumor

sample. The McFadden pseudo-R2 (henceforth, pR2) statistic was used to evaluate model per-

formance (fit to data), for each set of features and for each of the six tumors. All Poisson

regression analyses and visualization were performed with R 3.6 [38].

Estimating systematic variation in mutational patterns by factorization

techniques

A principal component (PC) analysis was performed jointly for blocks of features describing

the DNA sequence, and features describing DNA structure. On the DNA sequence side, 96

mutation contexts were considered within each tumor sample. In order to keep the number of

structural features the same, thus making the estimations of relative contributions of sequence

and shape parts toward each principal component balanced, we prepared 96 mutation contexts

on the DNA shape side. This was achieved by focusing only on the L/M/H binned (see above)

features of the six DNA structure parameters with the highest potential for interpretation:

mgw0, prop0, ro-1, ro+1, tw-1, and tw+1. Six parameters could sample a conformational space

assigned to one of the three bins: L, M, and H, generating 18 features, which were examined

separately for six mutation types (C>A, C>G, C>T, T>A, T>C, T>G; considered DNA

strand symmetrically) and thereby a total of one hundred eight contexts were obtained. After

removing energetically forbidden (not sampled), conformational parameters: prop0(L) and ro-
1(H) on the C sites, and prop0(H) and tw+1(L) on the T sites, the number 108 was reduced by

12 and resulted in 96 mutation contexts on the DNA structural side. Next, mutation counts in

the structural block of each tumor sample were adjusted to match the sequence contribution

to mutation burden in the corresponding sample, i.e., sampled to sum to the same values for

the DNA sequence feature block and the DNA structure feature block. Additionally, the DNA

structural features block was adjusted to have equal counts to the DNA sequence feature block,

using a sampling function with the UPmultinomial function in R package sampling [38]. In

this way, the noise due to low mutation counts will be equal in the two feature blocks and will

not bias the PC analysis toward one block of features.

Our application of non-negative matrix factorization (NMF) to extract mutational signa-

tures in parallel from trinucleotide mutational spectra and from DNA structural features

(same set as for the PC analysis) was performed as follows. We extracted cancer cell line muta-

tional signatures from 96 component trinucleotide mutation spectra and 96 DNA structural

features of WGS samples. To extract mutational signatures we used custom R [21] implemen-

tation of the non-negative matrix factorization (NMF) based methodology, broadly as

described by Alexandrov et al. [1] From the matrix containing mutation spectra and DNA

structural features of samples, we generated 300 bootstrap samples. One bootstrap sample is

obtained with sampling function of theUPmultinomial R package [38] applied to each sample’s

spectrum. Next, we used the NMF algorithm to each of the bootstrap samples (nmf function of

the nmfgpu4R R package) to get different NMF runs; we used theMultiplicative update rules
algorithm [47] with 10000 as the maximal number of iterations). For each bootstrap sample,
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we varied the number of signatures. We used the ‘hierarchical extraction’ procedure proposed

by Alexandrov et al. [1] where NMF is iteratively repeated while removing the well-recon-

structed samples (cosine similarity above 0.97) from a previous iteration to discover new signa-

tures. We allowed a maximum of 3 iterations.

From all the candidate mutational signatures obtained, we first searched for the signatures

that closely resembled the ones that were previously found in human cancers [1] (referred to

as PCAWG signatures). We compared the individual signatures obtained by all the different

runs of NMF (given the different bootstrap samples and the different number of signatures) to

the PCAWG signatures. For this comparison we calculated the cosine similarity on the 96 tri-

nucleotide spectra (the 96 DNA structural features were not used). For each PCAWG signa-

ture, we searched for the closest matching NMF run. As a final set of mutational signatures, for

each PCAWG signature we kept the closest matching NMF run if its cosine similarity to the

best matching PCAWG signature exceeded 0.85. We use the NMF scores as the signature

exposures across different tumor samples.

This procedure yielded 54 mutational signatures. The obtained signatures are named

according to the PCAWG signatures they resemble, e.g., the signature name SBS15/6L denotes

this signature was the closest match to PCAWG SBS15 (i.e., SBS15 is the primary signature);

6L denotes that the signature also resembled PCAWG signatures SBS6 (cosine

similarity > 0.85). The “SBS” stands for “single base substitution”; here we do not consider

indels or structural variation signatures. The suffix “L” (for “like”) denotes 0.85� cosine

similarity < 0.95 (a somewhat less-close match), while the absence of the suffix “L” means

cosine similarity� 0.95. Names of signatures other than the primary signature (if present) are

ordered by decreasing cosine similarity.

We next searched for signatures specific to our dataset, i.e., signatures that commonly

appear in our data but do not resemble any of the known tumor signatures. To this end, we

employed k-means clustering (clara function in clusters R package, with Euclidean distance,

standardization, “pamLike” options and the number of samples to be drawn from the dataset

set to 10%). Each batch of the NMF solutions (from the signature extraction method selected

as final by the evaluation) obtained as described before (one batch consists of 300 x n solutions,

where n is the number of signatures; varies from 2 to 40) was clustered into k clusters with k-

means clustering varying k from 2 to 40. We chose the clustering result (i.e., a set of signatures)

where the agreement with PCAWG signatures was maximized in terms of the number of clus-

ters medoids that resemble PCAWG signatures (at cosine similarity >0.85). From such a set of

signatures we selected the ones dissimilar from any of PCAWG signatures (cosine similarity

<0.8), yielding in total 6 structural signatures denoted as SBS-SS (SBS structural signature).

Results

Based on the known individual examples of DNA structural features associated with mutation

occurrence via specific mechanisms [25–28], we hypothesized that a broad set of diverse DNA

structural features would be able to predict mutation rates due to many different mutagenic

exposures. To test this hypothesis, we predicted mutational frequency of DNA segments using

count models (Poisson regression). In brief, in this approach a certain DNA oligonucleotide

can be defined either by the DNA sequence features (occurrence of A, G, C or T in each posi-

tion of the flanks of a locus), or by the DNA structural features (listed in Methods), while

adjusting for the total number of occurrences of that oligonucleotide in the human genome

sequence. We selected six hypermutated tumor samples as representatives of important muta-

genic processes: (i) microsatellite instability (MSI) caused by defective DNA mismatch repair

(MMR) in a representative colorectal tumor sample; (ii) activity of the proofreading-deficient
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DNA polymerase epsilon (POLE) in another colorectal cancer sample bearing a S297F hotspot

mutation; (iii) a bladder tumor sample bearing the mutational signature of the APOBEC cyto-

sine deaminase [23]; (iv) a lung adenocarcinoma sample highly enriched with the tobacco

smoking mutational signature; (v) ultraviolet (UV) light-induced mutagenesis in a melanoma

sample; and (vi) the hypermutation induced by therapy by the DNA methylating drug temozo-

lomide (TMZ) in a glioblastoma sample. Such hypermutated tumors derive most of their

mutations from a single mechanism. This allowed to examine the mutagenic processes indi-

vidually and to identify the sequence features and/or structural features of highly mutable

DNA oligomers. To check consistency of results across individuals, we considered additional

samples affected by the same mutational processes (S1 Table and S1 Fig; 4 additional tumors

per process, except for TMZ exposure, where there were 2 additional tumor samples available).

As a negative control, we further considered tumor samples originating from matched tissues,

but not affected by the single-process hypermutation (S1 Table and S1 Fig).

Sequence and structural features of oligonucleotides that hypermutate

upon DNA repair failures

The Poisson regression coefficients corresponding to DNA sequence features–derived from

trinucleotide (Figs 2A and S1, “3nt-seq”) and pentanucleotide (Fig 2B, “5nt-seq”) neighbor-

hoods–quantify the impact of flanking DNA sites on mutational risk of the central site. For

example, in the MSI tumor (Fig 2A), the central cytosine, C, (or, equivalently, the guanine, G,

it pairs with) is more mutable than the thymine, T (equivalently, adenine, A). Furthermore, a

guanine in the immediate 3’ flanking position (“+1” in Fig 2A, MSI tumor) is further associ-

ated with a higher mutation rate of the central nucleotide in this tumor, consistent with very

Fig 2. DNA sequence as predictor of mutational burden in tumor samples by mutagens: MSI, POLE, APOBEC,

smoking, UV, TMZ. N can be any of the four DNA bases: A, C, G, or T (color coded respectively: dark green, light

green, light blue, or dark blue). Poisson regression coefficients for (A) 3nt-seq, and (B) 5nt-seq. Error bars

superimposed on each symbol show 95% C.I.

https://doi.org/10.1371/journal.pone.0262495.g002
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high mutation rates of the (commonly methylated) CpG dinucleotide in MMR-deficient can-

cers [48], and consistent with the mutational signature SBS6 previously detected for many

colorectal cancers with MSI [1]. The extended pentanucleotide neighborhood appears to have

more subtle associations with the MSI mutagenesis, at least in this particular MSI tumor; none-

theless some enrichment with cytosine at -2 and +2 positions was observed (Fig 2B).

Next, we turned to examine the DNA structural features that associate with mutation

occurrence in the MSI tumor sample (top row, Fig 3A, “5nt-str”). We examined Poisson

regression coefficients for the high “(H)”, medium “(M)” and low “(L)” bins of each structural

feature, as derived from the pentanucleotide neighborhoods (see Methods). Among other fea-

tures, we observed a slight positive association with themgw0(H) bin (pentanucleotides with

high minor groove width at the central position), as well as with the tw+1(L) bin (a low value

of twist parameter for the +1 position; see Fig 1 for schematic). A further analysis using struc-

tural features derived from an extended, heptanucleotide neighborhood (“7nt-str”; top row,

Fig 3B) confirm the above and further suggest a narrowing of the minor groove at the position

+1. To quantify the overall utility of DNA structural features for predicting mutation rates, we

examined the overall fit of the model via the McFadden pseudo-R2 statistic (pR2; see Methods)

(Tables 1 and S1). The DNA structural features exhibited a higher predictive ability (pR2 =

0.60 for the 7nt-str) compared to the composition DNA sequence features (highest pR2 = 0.56

for the 5nt-seq). We note that our shape features were computed from the DNA sequences by

employing data resulting from previous simulations of DNA structures of various oligonucleo-

tides (see Methods). This increase in model fit by using the DNA structural features indicates

that they capture those statistical interactions between sites in a DNA motif that are relevant

Fig 3. Poisson regression coefficients describing mutation rates resulting from six mutagenic processes (MSI, POLE, APOBEC,

SMOKING, UV and TMZ). These were evaluated from (A) 5nt-str, and (B) 7nt-str representations. Parameters were normalized and

divided into 3 equally spaced bins: high, medium, and low. Error bars are 95% C.I.

https://doi.org/10.1371/journal.pone.0262495.g003
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for predicting mutability of the oligomer. In other words, this representation of DNA shape

preserves the important information for describing mutation rates while ignoring the less

important information, suggesting that DNA structural descriptors may be a useful represen-

tation for mutational signature analysis. In addition, structural features highlighted by the

regression (see above) may have potential for interpretation of mutagenic mechanisms in

MMR-deficient, MSI tumor samples.

Next, we turned to examine mutations resulting from another sort of DNA repair failure

common in tumors–deficient proofreading activity of the replicative DNA polymerase epsi-

lon due to a mutation in the POLE gene [49]. In the POLE-signature enriched colorectal

tumor sample (POLE row, Fig 2), the landscapes of regression coefficients from DNA

sequence features contain many noticeable signals located further from the central nucleo-

tide, consistent with previous work that suggested that up to nonanucleotide (9-mer) sized

DNA motifs are informative for POLE mutagenesis [15]. We detected enrichments of thy-

mine and to some degree adenine at -2, -1, +1 and at +2 positions next to the mutated cen-

tral cytosine (Fig 2). The observed pattern resembles the mutational signatures SBS10a and

SBS10b detected in colon and uterus cancers [1], further supporting the use of our method-

ology based on count models (here, Poisson regression) to model mutation risk. More inter-

estingly for the matter at hand, the DNA structural analyses of the mutated loci in the POLE

tumor (Fig 3) show strong signal in the twist at -1 and +1 positions, where DNA is over-

twisted and under-twisted, respectively. This suggests there is a local deformation at the

POLE hypermutable sites, tapering off towards a more regular shape further away from the

center. As with the MSI tumor, also in the POLE tumor the structural DNA features yielded

a similarly well-fitting model (pR2 = 0.81 for 7nt-str, Table 1) as the sequence DNA features

did (pR2 = 0.81 for 5nt-seq). This further supported that the structural features we examined

are appropriate to describe the propensity of DNA sites to mutate in DNA repair-deficient

tumors. The overall predictive accuracy was higher for the POLE tumor than for MSI tumor

(Tables 1 and S1). This suggests that mutational risk can be predicted from DNA shape to a

variable degree across different mutational processes, similarly so as when predicting muta-

tional risk from DNA sequence.

Structural features associated with mutagenesis due to an endogenous

DNA damaging activity of the APOBEC3A enzyme

In addition to examples of DNA repair deficiencies that result in hypermutation (MSI, POLE),

we next turned to examining DNA structural features of sites mutated by DNA damaging

agents. This included examples of both endogenous (APOBEC cytosine deaminases) or exoge-

nous agents: radiation (UV) and chemicals (tobacco smoke, and the DNA methylating drug

TMZ). Regression on trinucleotide contexts in the APOBEC-enriched bladder cancer sample

Table 1. Performance of four models: 3nt-seq, 5nt-seq, 5nt-str, and 7nt-str. Representative of distinct mutational processes, each row is a tumor sample with one strong

mutational exposure.

Predominant signature Cancer type Hypermutation type McFadden R2

3nt-seq 5nt-seq 5nt-str 7nt-str

SBS6 COAD MSI 0.57 0.56 0.55 0.60

SBS10 COAD POLE 0.86 0.81 0.76 0.81

NA BLCA APOBEC 0.94 0.92 0.77 0.85

SBS4 LUAD SMOKING 0.98 0.83 0.85 0.50

SBS7 SKCM UV 0.89 0.82 0.66 0.74

NA GBM TMZ 0.78 0.58 0.52 0.28

https://doi.org/10.1371/journal.pone.0262495.t001
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shows a very strong association of thymine at -1 position with mutation risk (Fig 2A, APOBEC

row), as expected from known mutational signatures SBS2 and SBS13 [2]. The pentanucleotide

regression (Fig 2B) finds enrichment of pyrimidines at position -2, supporting the role of the

APOBEC3A enzyme [50] rather than the APOBEC3B paralog in mutagenizing this particular

tumor. This is consistent with high propensity towards APOBEC3A mutagenesis in bladder

cancer [51]. With respect to the DNA shape analysis, we note that APOBEC binding and

deamination occurs on single stranded DNA, where DNA shape parameters have altered inter-

pretation or are not well defined. However, the steps following the APOBEC-mediated DNA

damage (i.e., cytosine to uracil conversion), involving repair by the base excision repair path-

way (e.g., the UNG protein), can involve double-stranded DNA, making the structural features

we examined also pertinent to APOBEC mutagenesis. The local tendency towards over-twist-

ing at -1 and then under-twisting at +1 position is evident from the DNA structure coefficients

(Fig 3A). Structural features in a broader DNA context (Fig 3B, 7nt-str) additionally show that

position -2 exhibits under-twisting at APOBEC3A mutated sites. Considered together with

over- and under-twisting at positions -1 and +1, respectively, this suggests that DNA motifs

experiencing APOBEC mutagenesis may be more prone to have flipped out bases. There are

no notable changes in the roll parameter, suggesting it is not DNA bending that affects APO-

BEC mutation frequency but rather the tendency toward exposing a single (here, central)

nucleobase. Further supporting that a broader DNA oligomer context is predictive for APO-

BEC mutagenesis, the model fit of the 7nt-str descriptors is higher than for 5nt-str descriptors

(Table 1). We note that the simple trinucleotide representation of DNA sequence is highly pre-

dictive (Table 1), probably reflecting the strict requirement for 3’ T in APOBEC mutagenesis.

The C>T APOBEC mutation type presented broadly similar associations with sequence and

structural features to those of the C>G mutation type (S2 Fig).

DNA structural features confer risk of mutation resulting from exogenous

DNA damaging agents

Turning towards exogenous mutagenic agents, we examined a tobacco smoking-enriched lung

adenocarcinoma sample. Such tumors are predominantly associated with the signature SBS4,

consisting of C>A mutations in various trinucleotide contexts [1, 2]. In accordance with SBS4,

the trinucleotide and pentanucleotide DNA sequence coefficients do not indicate preferences

towards certain nucleotides in the flanking sequence of the central C (Fig 2, “smoking” row; of

note there is a slight preference towards upstream C). This is also reflected through the DNA

shape, where the associations with mutational burden are likewise subtle when considered

individually (Fig 3, “smoking” row). There are, for instance, positive associations of higher val-

ues of propeller and roll parameters at positions 0 and +1, respectively, with mutation risk due

to smoking chemicals. When considered jointly however, the DNA structural features do con-

vey much information with predictive potential, which matches or exceeds the other consid-

ered mutational signatures (pR2 = 0.85 for the 5nt-str approach, Table 1).

In addition to the chemical mutagenesis in lung, we also examined mutagenesis due to

radiation (here, UV light) in a melanoma skin cancer genome using the Poisson regression

analysis (Fig 2, “UV” row). It is known that pyrimidine base pair steps define the hotspots

for electron excitation by UV light, leading to the formation of cyclobutane dimers [52–54].

The condition of having TC or CC steps for the excitation process is reflected in the known

mutational signatures SBS7a and SBS7b, as well as in our regression analysis using trinucle-

otides (3nt-seq, Fig 2A). Moreover, we observe the association of mutation risk with flank-

ing T at positions -2 and +2 (5nt-seq, Fig 2B). This is consistent with previously reported

pentanucleotide contexts for the C>T UV-associated mutations [55]. The DNA shape
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analysis also reflects related trends: for example, a strong signal is observed for “tw-1(H)”
(high twist at the -1 position), which is known to reach its highest values at TC base pair

steps [32, 56]. Overall, the UV radiation induced mutation propensity of a site was highly

predicable from the heptanucleotide-derived DNA shape features (7nt-str, pR2 = 0.74,

Table 1), similarly as for the DNA repair-related POLE (0.81) and APOBEC (0.85) mutagen-

esis. Thus, DNA shape features are useful to predict occurrence of mutations resulting from

various causes, although we recognize this will not necessarily be the case for every mutagen

to the same extent.

We examined a further chemical mutagenic agent by studying a temozolomide (TMZ)-

treated glioblastoma tumor genome (Figs 2 and 3, TMZ row). TMZ is a DNA alkylating

agent and its signature SBS11 has been detected in copious amounts in TMZ-pretreated

tumors [1]. We note subtle associations with individual descriptors in all four groups of

DNA shape features (mgw, prop, roll and twist; Fig 3). Compared to the other mutagenic

agents considered, the DNA shape features considered jointly appeared less predictive for

TMZ mutations (Table 1). This suggests that either DNA shape is less important for activity

of this chemical mutagen, or that our set of shape features does not incorporate those fea-

tures that are relevant for TMZ mutagenesis. However, an overall pR2 of 0.52 (at 5nt-str)
implies there is still some signal relevant for predicting TMZ mutations embedded in the

DNA shape descriptors.

A comparison of performance of the Poisson regression models in predicting mutability of

oligonucleotides suggests that the 7nt-strmodel tends to be more predictive (higher pR2) than

5nt-str, at least for four of the six considered types of hypermutation. This indicates that the

shape of DNA in broader, heptanucleotide neighborhoods is relevant for the intensity of many

mutational processes. The pentanucleotide-based DNA structure model has overall similar

accuracy to the sequence-composition based (3nt-seq and 5nt-seq) predictors, although their

relative ranking is variable across different mutagens. Consistently across samples, we noticed

that performance of the trinucleoide DNA sequence models (3nt-seq) outperforms perfor-

mance of pentanucleotide sequence models (5nt-seq) (Tables 1 and S1). This may be due to

data that are sparser, i.e. many more of the mutation count values in the regression tables for

5nt-seq are zero, due to pentanucleotide motifs being longer and an individual pentanucleotide

occurring less frequently genome-wide compared to an individual trinucleotide.

For each of the six types of hypermutators studied, we considered additional tumor

genomes affected by the same mutational process. The outcomes of the analyses were con-

sistent across individuals, in terms of the overall fit of regression models, both the struc-

ture-based and the sequence-based ones (S1 Table), with some variability noted across MSI

samples. Furthermore, the statistical associations of individual structural features with

mutation rates appeared overall consistent across tumors affected by the same hypermuta-

tion mechanism (S1 Fig). As a control, we considered tumor samples matched by tissue but

not affected by the same hypermutation mechanism; instead, the mutations in these control

samples likely originated from a mixture of similarly prevalent mutagenic mechanisms. As

expected, the fit of the regression models–either sequence or structure-based one–was

poorer on the control tumors (S1 Table). Additionally, these control samples did not exhibit

the same patterns associations of structural features with mutation rates as the original

hypermutator samples (S1 Fig).

Overall, the set of DNA shape features we examined is broadly reflective of oligonucleo-

tide properties relevant for mutagenesis resulting from particular mutational processes.

Nonetheless we recognize that this set of structural features may be further refined, thus

possibly improving its accuracy in predicting DNA mutational hotspots for a broader range

of mutagens.
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DNA shape features capture the variability in mutational exposures across

individuals

Above, we have shown that DNA structure-based descriptors were associated with mutation

risk resulting from exposure to diverse mutagens. Some of the shape features appeared to com-

monly predict higher mutation rates resulting from different mutagens (e.g., under-twisting at

+1 position, Fig 3). However, many other features appeared associated with some mutagens

but not with others (e.g., high roll at +1, low minor groove width at +1, high propeller at -1,

etc.; see Fig 3). Thus, we hypothesized that DNA shape descriptions of mutated loci in a

genome sequence could be used to quantitate mutagenic exposures that cell has undergone

previously. In other words, use of DNA shape features would enable a novel conceptualization

of mutational signatures [1, 2]. Mutational signatures are usually defined via trinucleotide

neighborhoods of mutated loci, but broader neighborhoods were also considered previously

(which however means that statistical interactions between nucleotides may need to be

ignored) [57]. To derive mutational signatures, various forms of factor analysis can be applied

to the mutation frequency data; commonly, non-negative matrix factorization (NMF) was

used [2] although not exclusively [22]. Here, we evaluated the potential of DNA shape descrip-

tors to generate informative mutational signatures. To this end we employed a principal com-

ponents (PC) analysis to generate mutational signature PCs and measure the amount of

systematic variability in the data, here implying the differential exposures to mutagenic effects

across tumor samples. In the PC analysis, we used either the mutability of various DNA trinu-

cleotides (sequence descriptors, 3nt-seq) or mutability of various DNA shapes (5nt-str features;

for the PC analyses, DNA shape features were adjusted to match the number of the DNA

sequence features, see Methods for details). Both sets of features were included simultaneously

in a PC analysis of somatic mutations from 1637 whole-genome sequences of tumors of vari-

ous cancer types. Results showed that DNA structure features could explain a higher amount

of the systematic variance than the DNA sequence features, when considering four out of the

five dominant PCs: PC1, PC2, PC3, and PC5 (the PC analysis scree plot, broken down into the

DNA sequence-feature part and the DNA shape-feature part, is shown in Fig 4A). Overall, the

top five PCs explained 85.6% variance in the mutation rates of DNA oligonucleotides across

tumors, with the sequence features covering 40.6%, and structural features 45.0% variance (Fig

4B). The excess of variance-explained by the structural features amongst the top PCs (Fig 4B)

suggests they are more descriptive markers of the variability in mutagenic processes between

human tumors, when compared to a standard DNA sequence representation using trinucleo-

tides. Thus, DNA structural features are well-suited for inferring mutational signatures.

Over 45% of the variation that is explained by the dominant, first PC contains contributions

from both the DNA shape features (23.7% variance) and from the DNA sequence features

(21.8% variance). All mutation features had positive loadings on the PC1 (S1 Table), indicating

that the PC1 reflects the overall mutation burden across tumors, rather than the differential

mutational signatures. We noted a consistently high PC1 loading on the various types of muta-

tions at loci with low DNA roll at -1 position (“ro1L”; S2 Table) suggesting this structural fea-

ture may be associated with higher DNA mutability generally i.e., in a manner not related to a

particular mutagen. Furthermore, high-mgw and low-twist loci mutation frequencies had high

PC1 loadings across multiple mutation types (S2 Table), suggesting additional structural fea-

tures that characterize mutation-prone DNA loci, either due to being prone to various types of

DNA damage, and/or less accurately copied or less efficiently repaired.

In PC2 and the following PCs (Fig 4C–4F), both positive and negative loadings of different

DNA sequence features and structural features were observed. This means that these PCs can

distinguish relative contributions of mutational processes across individual tumors i.e., the
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PCs constitute mutational signatures in a broad sense. Expectedly, these PCs distinguish

between abundance of six different mutation types across individuals, for instance PC2 con-

trasts genomes rich in C>G and/or C>A changes, from the genomes rich in A>C or A>G

changes (see S2 Table). In addition to contrasting mutation types, the PC mutational signa-

tures further distinguish between DNA structure and/or sequence contexts within each muta-

tion type (see S2 Table). For instance, the PC2 –the dominant direction of differential

mutability in our analysis–has high loadings (absolute value) for DNA under-twisting at the

+1 position (“tw+1L” feature; S2 Table), mostly across the C>G and A>C mutation type.

Thus, diverse types of structural features appear to describe the differential mutation rates of

DNA oligomers across individuals. We note that DNA sequence features may also have high

contributions to some of the top PCs (particularly PC4, PC7; Fig 4A), suggesting that both

DNA sequence features and DNA structural features should be considered jointly when infer-

ring mutational signatures.

To further examine how the dominant mutational processes (here: first two PCs) vary

across different types of cancer, we divided the full dataset (from Fig 4C) into smaller groups

containing diverse cancer types (Fig 4G and 4H; The PC loadings of each original variable are

plotted in Fig 4I and 4J). Again, the PC1 components have only positive loadings, describing

overall mutation burden, while the PC2 and following describe differential mutation rates

Fig 4. PC analysis of mutation-associated DNA sequence and structural features in 1,637 cancer genomes in 30 cancer

types. (A) Top 10 PCs separated into sequence and structural contribution (baseline is the half of a ‘broken stick’ estimate). (B)

Numerical representation of each PC’s contribution to the overall variance in the sequence or structure block. (C) PC1 vs. PC2

scores, (D) PC2 vs. PC3 scores, (E) PC3 vs. PC4 scores, (F) PC4 vs. PC5 scores, (G-H) Examples of PC1 and PC2 scores of

cancer samples separated into smaller groups of tissues, (I-J) Examples of loadings between PC1 –PC2 and PC2 –PC3

corresponding to the (C) and (D) PC scores.

https://doi.org/10.1371/journal.pone.0262495.g004
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across DNA structural features (Fig 4I and 4J). In the various groupings of cancer types tested,

the PC2 separates between cancer types: colorectal cancer versus others or uterus cancer versus
others (Fig 4G and 4H), suggesting the ability of the DNA shape descriptors to capture tissue-

specific mutational processes.

Deriving mutational signatures by combining DNA trinucleotide sequence

and DNA pentanucleotide structural features

The above analyses based on PC analysis suggest that DNA structure features of mutated loci

can disentangle mutational processes affecting genomes of individuals. Mutational signature

studies commonly employed NMF, a technique assuming additivity of the biological processes

generating mutations [58]; this is seen as a desirable property for generating robust catalogs of

mutagenic mechanisms. We adapted the NMF-based methodologies for mutation signature

extraction (see Methods) to jointly incorporate a selected set of 96 oligonucleotide structural

features, alongside the more standard set of 96 trinucleotide-based mutation types (16 trinucle-

otides x 6 mutation types). Our method can extract signatures that resemble the known “SBS”

(single-base substitution) signatures from the Catalogue of Somatic Mutations in Cancer (Cos-

mic) [59] in their trinucleotide spectrum, while additionally having a contribution from a set

of DNA structural features, which may aid signature inference and interpretation. From the

somatic mutations in 1637 considered cancer WGS, we recovered 48 such known signatures

(matching one or more Cosmic SBS at a cosine similarity >0.85 in the trinucleotide spectrum).

We further extracted 6 additional SBS-SS (structural signatures) which were novel i.e., their

trinucleotide spectrum did not match a known Cosmic SBS, meaning that they were not previ-

ously identified using trinucleotide analysis. The spectra of the composite structure-trinucleo-

tide signatures are shown in Figs 5 and S3, and their exposures across cancer types in S4 Fig

(underlying data for spectra and exposures is in S3 Table). While many extracted mutational

signatures closely resembled their Cosmic counterparts in the trinucleotide spectrum, we rec-

ognize that inference of some of known signatures may be able to be further improved. For

example, the signature SBS29 was previously associated with tobacco chewing. In our analysis,

SBS29L may be a mix of the two similar, C>A-rich signatures: the tobacco chewing SBS29,

and the tobacco smoking signature SBS4 (judging by its exposure in two lung cancer types, S4

Fig). A further methodological consideration is that these NMF signatures were derived from

raw mutation counts, thus their shapes in part reflect also the number of genomic nucleotides-

at-risk encompassed by each feature in the spectrum (S5 Fig and S4 Table). This holds true

both for the trinucleotide part of the spectrum (e.g. the NCG trinucleotides are rare in the

human genome), and also for the structural features (e.g.mgwL bin, using the current defini-

tion of L,M andH threshold, is rarer thanmgwM andmgwH bins, S5 Fig). This may result in

an apparent similarity of the profiles across different signatures.

Firstly, we examined the DNA structure part of the spectra of some of the known SBS signa-

tures (S3 Fig), suggesting possible insights into mechanisms of mutagenesis. Several examples

are highlighted below:

SBS4 (tobacco smoking associated, likely resulting from bulky adducts e.g., by benzo[a]pyr-

ene metabolites and related chemicals, typically onto guanine bases). This mutational process

impacts regularly organized DNA structure, i.e., upon mutation, no specific deformations at

C:G nucleotide pairs seem necessary for the mutagens to bind DNA. The less common muta-

tions that occur at the A:T nucleotide pairs suggest slight preferences toward narrower minor

groove and lower twisting at -1 position versus lower twist at +1 position, and higher propeller

at the central base pair for A mutations to T or G respectively, suggesting an increased expo-

sure at these sites.
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SBS6/1L (one of the signatures associated with DNA MMR failures). With the expanded

minor groove, there is a potential for kinks occurring on DNA due to the positive or increased

roll values at the adjacent bases, leading to a simultaneous compression of the major groove. It

is conceivable that MMR proteins might act preferentially upon DNA with certain subtle con-

formational variations, increasing efficiency of repair at these loci.

SBS 7a, and similarly but to a lesser extent SBS 7b (UV exposure-associated mutational sig-

natures, likely resulting from cyclobutane pyrimidine dimer formation). Series of positive roll

values at the bases to the C>T mutation suggest a DNA structural motif with propensity

toward the three-dimensional writhe, but a smooth curvature, which may either increase expo-

sure to the damaging agent, or disfavor error-free lesion bypass or repair.

SBS 10a (associated with mutations in the proofreading domain of the replicative DNA

polymerase epsilon). Signature 10 mutated loci have a characteristic combination of a high

twist at -1 position followed by a low twist at +1 position, suggesting untwisting of DNA at the

mutated base pair step immediately before overtwisting. This, together with a slight preference

toward themgwH and moderate roll values at the adjacent base pair steps, suggest a stronger

kink or bending may occur. Such large conformational bias can conceivably impede replicative

DNA polymerases, increasing mutation rates during their proofreading activity.

Fig 5. NMF mutational signatures based on DNA sequence and structural features. The composite mutational

signatures consist of 96 DNA structural features: mgw and propeller at the central nucleotide (dark brown and light

brown bars, respectively), roll and twist at -1 and +1 sites (dark yellow and light yellow bars, respectively), and the

standard 96-component trinucleotide spectrum (blue, black, red, grey, green, pink bar colors). See S3 Fig for additional

signatures extracted.

https://doi.org/10.1371/journal.pone.0262495.g005
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SBS2 and SBS13 (resulting from the activity of the APOBEC3A and/or APOBEC3B cyto-

sine deaminases). The set of DNA shape descriptors employed results in a nondescript signal

for these signatures, when compared with other mutators considered. Given that APOBECs

are active exclusively on ssDNA, this relative lack of utility of double-stranded DNA shape

information is perhaps expected to some extent and suggests that additional descriptors may

be helpful to better model the APOBEC proteins recognition of DNA.

Next, we examined the spectra of 6 novel mutational structural signatures (SBS-SS) (Fig 5).

These did not closely match an existing Cosmic SBS trinucleotide profile, suggesting that anal-

ysis of the DNA structural descriptors helps identify these novel signatures. We comment on

these examples below:

SBS-SS1 signature somewhat resembles signature SBS12 in the trinucleotide spectrum, in

that they are enriched mainly in the A>G block, however SBS-SS1 does additionally encom-

pass some C>A, C>T and A>T changes (Fig 5). The SS1 shape analysis suggests higher pro-

pensity for DNA bending caused by stretching of the minor grove (mgwH) supported by

potential kinks due to high at roll +1 (ro+1H). Preference of low twist values at -1 and +1 addi-

tionally suggest unwinding of DNA, increasing the exposure of DNA bases. These structural

changes are indication of deviation from the canonical B-DNA structure toward A-DNA.

Such deviations could not be detected with the DNA trinucleotide signature analysis only. In

terms of exposures, this SBS-SS1 is widespread across tissues with a somewhat similar distribu-

tion as SBS-SS3 (S4 Fig). This suggests that both SBS-SS1 and SBS-SS3 might have resulted

from variations on a common mechanism of DNA replication or repair, present across various

cell types.

SBS-SS2 is characterized by mutations occurring mainly in the A>G block (Fig 5), where

the trinucleotide spectrum (WAW, where W = A or T) resembles that of the error-prone DNA

polymerase eta (POLH protein). This was seen in clustered mutational signatures in many can-

cer types, predominantly skin, liver, bladder, the digestive system and lung [51], as well as in

the lymphoid cells because of the (non-pathogenic) process of somatic hypermutation. Simi-

larly, the SBS-SS2 has the highest exposures in skin, liver, bladder and lymphocytes (S4 Fig),

supporting the connection, and suggesting a structural basis for the mutability due to use of an

error-prone DNA polymerase.

SBS-SS3 has a recognizable structural feature across A>C and A>T blocks where the

minor groove is compressed (mgwL, Fig 5). SS3 shows less DNA distortion in the A>G block,

with a weaker signal for disrupted hydrogen bonding that can be recognized through the high

values of propeller base pair parameter (proH). These observations suggest that within the

SBS-SS3 signature, conformational DNA changes might occur on the larger scale (because of

the compression of the minor groove repeated in two blocks, which might have an impact on

the neighboring steps), without large displacements in the local base pair arrangements. With

respect to the exposures (S4 Fig), SBS-SS3 is commonly observed across many different cancer

types, with highest values in lung squamous cell carcinoma, in B-cell lymphoma, in ovarian,

stomach and bladder cancers. The wide occurrence suggests this signature is due to a ubiqui-

tous, endogenous process in replicating or repairing DNA, rather than an exposure to a partic-

ular carcinogen.

SBS-SS4 signature’s distinguishing feature is the proximity of low twist values in the adja-

cent base pairs associated with low roll values. Typically, the similar trends in twist and roll–

either both low or both high–are rarely observed at the same base pair step, suggesting preva-

lence of purine-purine (RR) motifs. The presence of RR steps is supported by the signals

observed in the SBS-SS4 trinucleotide spectra where a higher mutational frequency of GAA,

GAC, GAG, GAT and TAA sequences is detected.
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SBS-SS5 displays a variety of structural geometries depending on which type of A>N muta-

tion is considered; the A>C changes appear dominant (Fig 5). Within the A>C block there is

a preference for either compressed or extended minor groove width, with a lower preference

toward regular width. This changes when mutations occur in the A>T or A>G block: com-

pressed or extended minor groove widths (mgwL,mgwH) are preferred, respectively. These

observations suggest influence of both DNA sequence and the DNA conformation on the rec-

ognition of DNA by the mutagenic agents. The high exposure of this signature in the esopha-

gus, stomach, colon and lymphoma (S4 Fig) suggests a relationship with the known signature

SBS17b (which is also A>C rich and occurs in these tissues) however the trinucleotide spectra

are sufficiently different that it was identified as a separate SBS.

SBS-SS6 contains mutations of the A>C and C>T types (Fig 5) and is rarely occurring (S4

Fig). The strong compression of the central minor groove might suggest a preference for helix-

turn-helix binding protein domains, or for proteins further compressing the minor groove, yet

the preference for the simultaneous expansion of minor groove is intriguing and could be fur-

ther explained by different content of purines and pyrimidines in the adjoining bases.

Discussion

Our work highlights the ability of DNA shape features to predict mutational risk of individual

genomic loci in cancers exposed to various mutagenic processes, ranging from DNA repair

failures to mutagenic chemicals or radiation. Our predictive models further showcase the abil-

ity to identify DNA structural determinants associated with each mutagenic process. Many of

the known trinucleotide mutational signatures appear to have informative structural compo-

nents of the spectra. Such associations of mutation risk with DNA structural features may fur-

ther our understanding of the underlying mechanisms of DNA damage and repair.

Furthermore, we demonstrate that the DNA shape features of the mutated loci can capture a

higher amount of systematic variability in mutational processes across cancer samples than a

naive representation of DNA sequence via oligonucleotides, as commonly employed. Consis-

tently, using structural features, novel mutational signatures can be extracted that may not be

within reach of oligonucleotide-based approaches. We note that these two groups of features

(DNA shape and DNA sequence) are to some level redundant–expectedly so, given that the

shape features were derived using a method based on oligonucleotide dictionaries. Impor-

tantly, however, the DNA shape features represent a tradeoff between complexity and informa-

tiveness; they capture certain interactions across neighboring nucleotides within a

pentanucleotide or longer neighborhood, while keeping the overall representation relatively

simple (not all statistical interactions between nucleotides are modeled). This makes DNA

structure useful for analysis of—relatively sparse—mutation count data. If the full set of statis-

tical interactions was included for DNA sequence representations, the number of features

would rise exponentially, making it unfeasible to apply to contexts longer than pentanucleo-

tides (we note that for the exome sequencing data, which is most abundant, even the pentanu-

cleotides are out of reach because of small number of mutations per tumor). Use of structural

DNA features however makes such analyses of broader contexts feasible. This is clearly of

interest, given that heptanucleotide and even nonanucleotide contexts appear relevant for

some mutagenic processes, such as UV mutagenesis [55], POLE mutagenesis in cancers [15],

and also certain mutational processes in the human germline [60, 61]. Overall, we suggest that

use of structural DNA features may help overcome hurdles for analyzing the roles of longer

oligonucleotide neighborhoods as determinants of DNA mutability.

One caveat of the set of structural features currently employed is that their intended use is

for ds DNA, however they are ill-defined in ss DNA segments. This means that the framework
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presented here, in its current implementation, would not be able to adequately address those

mutational processes mediated by structured ss DNA. One known example are the hypermu-

table hairpin structures in DNA, where the loop is a target of the APOBEC3A cytosine deami-

nase [25] and is thus hypermutable (we note that only a minority of APOBEC3A mutations

genome-wide is mediated by these stem-loop structures [62]). Future work building upon our

study may incorporate DNA structural descriptors pertinent to ss DNA, as well as increase the

DNA oligomer length by drawing upon the ever-increasing amounts of cancer genomic data

to increase statistical power.

There is a growing awareness that analysis of somatic mutation data may be able to pro-

vide markers to guide personalized therapy for cancer patients. Current focus is on refining

drug selection to match the underlying genetic profile of tumors, particularly in terms of

driver mutations [63–65]. However, because mutational signatures reflect ongoing genomic

instability, which is common in tumors and recognized as a targetable vulnerability of can-

cer, mutational signatures could help better stratify patients for targeted therapies e.g.

immunotherapy for MMR-deficient tumors [66, 67]. The mutational Signature SBS3 and

also a pattern of deletions with microhomology signal failures in the homologous recombi-

nation repair (HRR) pathway, which is targetable by PARP inhibitors [19, 20]. This princi-

ple may extend beyond MMR and HRR deficiencies: in an analysis of mutational signatures

across cancer cell line panels screened for drug activity, many signatures were associated

with drug response, suggesting that some of the signatures might constitute useful genomic

markers in patients [21]. For example, given that the error-prone DNA polymerase eta

(POLH protein) can cause resistance to treatment with cisplatin [68], identification of

POLH mutational signatures–previously via DNA sequence features [51] but possibly also

by the affinities of this error-prone DNA polymerase(s) towards certain DNA shape features

(Fig 5)–could inform treatment decisions. In summary, there is great promise for clinical

use of genomic predictive markers in tumors even though often the underlying mechanisms

remain elusive [65]. Among such genomic markers, the utility of mutational processes in

particular merits more attention.

With a joint DNA sequence and structure representation as a basis for mutation signature

inference, we posit that future work will be able to disentangle the mutagenic mechanisms at

increased accuracy compared to current, oligonucleotide-based representations. Moving

beyond examining the relatively simple mutational landscapes of hypermutator tumor sam-

ples–as we have done here to establish a proof-of-principle–future methods to predict muta-

tion risk of genomic loci should also be able to accurately deconvolute mutational processes in

tumors where more than one process was active. Next, our current implementation of the

multi-tumor analysis to extract mutational signatures is based on a broadly standard NMF

approach. Conceivably, this may further benefit from applications of sophisticated statistical

approaches for mutational signature deconvolution that use e.g. topic models [69, 70] and that

can jointly analyze multiple ‘channels’ in the mutational signature signal. In conclusion, we

propose a general framework for quantifying mutational signatures via use of DNA shape

descriptors, which may advance mechanistic understanding of mutagenesis and identify novel

processes shaping mutational landscapes across individuals.
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S1 Fig. Poisson regression coefficients for 3nt-seq, 5nt-seq, and 5nt-str representations, for
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color coded. For the structural block, parameters are normalized and divided into 3 equally

spaced bins: high (light pink), medium (medium), and low (dark). Error bars superimposed
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