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Abstract
Background: Cell cycle is an important clue to unravel the mechanism of cancer cells. Recently, expression profi les of 
cDNA microarray data of Cancer cell cycle are available for the information of dynamic interactions among Cancer cell 
cycle related genes. Therefore, it is more appealing to construct a dynamic model for gene regulatory network of Cancer 
cell cycle to gain more insight into the infrastructure of gene regulatory mechanism of cancer cell via microarray data. 

Results: Based on the gene regulatory dynamic model and microarray data, we construct the whole dynamic gene regulatory 
network of Cancer cell cycle. In this study, we trace back upstream regulatory genes of a target gene to infer the regula-
tory pathways of the gene network by maximum likelihood estimation method. Finally, based on the dynamic regulatory 
network, we analyze the regulatory abilities and sensitivities of regulatory genes to clarify their roles in the mechanism of 
Cancer cell cycle. 

Conclusions: Our study presents a systematically iterative approach to discern and characterize the transcriptional regula-
tory network in Hela cell cycle from the raw expression profi les. The transcription regulatory network in Hela cell cycle 
can also be confi rmed by some experimental reviews. Based on our study and some literature reviews, we can predict and 
clarify the E2F target genes in G1/S phase, which are crucial for regulating cell cycle progression and tumorigenesis. From 
the results of the network construction and literature confi rmation, we infer that MCM4, MCM5, CDC6, CDC25A, UNG 
and E2F2 are E2F target genes in Hela cell cycle.

Introduction
The losses of cellular regulation give rise to most case of cancer. In cells, intricate genetic control 
systems regulate the balance between cell survival and death in response to growth signals, growth-
inhibiting signals, and death signals. When some errors occur in the control systems causing cells to 
proliferate continuously, tumor just comes into being (Badawi et al. 2005).

The proliferation of cancer cell into two individual cells must go through cell cycle process (Whitfi eld 
et al. 2002; Valsesia-Wittmann et al. 2004). Cell cycle entails an ordered series of macromolecular 
events that lead to cell division and the production of two daughter cells. So that cell cycle is meaningful 
to the proliferation of cancer cell.

Expression levels of thousands of genes fl uctuate throughout the cancer cell cycle (Cho et al. 2001; 
Ishida et al. 2001; Whitfi eld et al. 2002). Functional genes show periodic transcription to refl ect cell 
growth, DNA synthesis, spindle pole body duplication and migration through the cell cycle (Cho et al. 
1998). These processes and their regulation have been extensively investigated at the molecular level 
(Stillman, 1996; Nurse, 2000; Shah and Cleveland, 2000; Hinchcliffe and Sluder, 2001; Chen et al. 
2004). Systems biology can be described as “integrative biology” with the ultimate goal of being able 
to predict de novo biological outcomes given the list of the components involved (Liu, 2005). Hence 
it is the coordinated study by (1) investigating the components of cellular networks and their interac-
tions, (2) applying experimental high-throughput and whole-genome techniques, and (3) integrating 
computational methods with experimental effort (Klipp et al. 2005). In this situation, characterization 
of the genome-wide transcriptional program of the cell division cycle in mammalian cells is a critical 
step toward understanding the basic cell cycle processes and their roles in cancer. Therefore, it is worth 
investigating how these periodic patterns are regulated in the gene regulatory network of the cancer 
cell cycle from the systems biology perspective.

Gene expression data of Hela cell cycle have been collected (Whitfi eld et al. 2002) and analyzed with 
many clustering methods to organize which gene is associated with the cell cycle (Whitfi eld et al. 2002; 
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Cho et al. 2001). Theoretically, it is possible to 
engineer the cell cycle network reversely, if we take 
cDNA expression levels as the output of gene 
expression networks, and collect cDNA expression 
levels of transcription factors as input. In order to 
realize how genes are regulated by transcription 
factors, we must also understand the interactions 
between target genes and their transcription factors 
(which transcription factor binds to which promoters). 
With all these information and interactive dynamic 
model, we get some clues to piece up the gene 
expression regulatory network in Hela cell cycle.

In this study, we attempt to devise an interactive 
dynamic model to characterize transcriptional regu-
latory network of the Hela cell cycle from the cDNA 
expression data of the human cell cycle in tumour 
(Whitfi eld et al. 2002). Based on our dynamic regu-
latory network, we not only predict the upstream 
regulators but also characterize the signifi cance of 
the regulators depending on quantifying their 
regulatory abilities based on the corresponding 
biochemical kinetic parameters. At fi rst, we construct 
a discrete-time dynamic model system and calculate 
the system kinetic parameters as the regulatory 
ability by using the expression data (Whitfi eld et al. 
2002) and the system identification method 
(Johansson, 1993). Second, based on the interactive 
dynamic model, we detect the transcriptional 
regulatory function of target genes by the maximum 
likelihood parameter estimation method. Third, we 
trace back a group of upstream genes that play a role 
of transcriptional regulators of target genes in the 
Hela cell cycle of Homo sapiens via deducing the 
interactive relationship between the expression 
profi les of regulators and the detected transcription 
regulation of specifi c target genes. The pathway 
kinetic parameters of transcriptional regulatory 
network of Hela cell cycle are also estimated by the 
cDNA expression profi les of target genes and their 
upstream regulatory genes. Finally, these upstream 
regulatory genes are considered as the target genes. 
By a similar method, we construct their upstream 
regulatory genes one by one. Iteratively, we can 
construct the whole gene regulatory network of Hela 
cell cycle.

We applied our method to a publicly available 
data set of HeLa cell with microarray experiment 
on cell cycle (Whitfi eld et al. 2002) to identify the 
transcriptional regulators of cell cycle and to char-
acterize their regulatory abilities on specifi c target 
genes. By means of the quantitative system analysis 
of the transcriptional regulatory network from Hela 

cell cycle genes, several transcription factors were 
identifi ed and their regulatory abilities were deter-
mined. Further, some genes that may be suspected 
of regulators of Hela cell cycle are predicted here 
to be synergistic in harmonizing gene expression. 
Our proposed algorithm provides a novel approach 
to gain insight into the gene regulatory network of 
Hela cell by its gene expression data using system 
identifi cation technique and discrete-time dynamic 
model. Furthermore, we combine the constructed 
Hela cell cycle dynamic network, some experi-
mental reviews and E2F binding site’s research 
(Ren et al. 2002), we not only confi rm the reli-
ability of the dynamic network but also fi nd the 
E2F target genes in Hela cell cycle progression. 
Finally, from the results of this study, we infer that 
E2F directly regulate MCM4, MCM5, CDC6, 
CDC25A, UNG and E2F2 in Hela cell cycle 
progression.

Our approach is so different from the statistical 
clustering method that it not only provides a suit-
able interactive dynamic model to decipher the 
complex signal transduction pathway that regulates 
gene expressions in Hela cell cycle but also predicts 
some potential regulators that have not been found. 
We can also quantify the regulatory abilities of the 
transcription factors by the corresponding kinetic 
activities to their target genes in the Hela cell cycle 
regulatory network. We could construct the cell 
cycle regulatory network in Hela cells quantita-
tively and discuss the sensitivity of regulatory 
genes to the gene regulatory network from the 
system analysis perspective.

System Model and Network 
Identifi cation
The construction of the transcriptional regulatory 
network of Hela cell cycle can be divided into two 
steps. First, the transcriptional regulation should 
be extracted from the gene expression data by the 
dynamic discrete-time model. Second, the upstream 
regulators will be traced back by correlating the 
transcriptional regulation of target genes with the 
expression profi les of possible regulators of Hela 
cell cycle. In this study, 64 transcription regulators, 
as shown in Table 1, are used as candidates of 
upstream regulators to each target gene. Finally, 
the kinetic parameters of gene transcriptional 
regulatory network of Hela cell are estimated by 
the cDNA expression profi les of target genes and 
their upstream regulatory genes.
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Dynamic signaling regulatory model
The second-order difference equation is used in 
the description of dynamic system evolved from 
the causality of gene regulatory function. Let Xi(k) 
denote the expression profi le of the i-th gene at 
time point k. The following second-order differ-
ence equation is proposed to model the cDNA 
expression level of the i-th gene,

 X k a X k b X k

G k k
i i i i i

i i

( ) ( ) ( )
( ) ( )

+ − + −
= +

1 2
ε

 (1)

where Gi(k) is the upstream transcriptional regula-
tory function from regulatory genes to infl uence 
the expression profi le Xi(k) of the i-th gene while 
ai and bi are the parameters that characterize the 
dynamic inherent property of the gene like degra-
dation and oscillation, and εi (k) is the random noise 
of current microarray data or the residue of the 
model. In general, the second-order difference 
equation has been widely used to model dynamic 
discrete-time systems to effi ciently characterize 
the dynamic properties of damping and resonance 
of systems in physics and engineering. The reason 
is that the roots of the characteristic equation of 
second-order dynamic equation may be a real 
double root, two real roots or conjugate roots, 
which could easily describe a system with 
undamping, overdamping, critical damping, under-
damping or oscillation, dependent on the specifi ca-
tion of their coeffi cients (Kreszig, 1993). These 
characteristics can not be easily described by the 
fi rst-order dynamic equation. Therefore the second 
order stochastic equation is employed to charac-
terize the biochemical processing of the gene 
expression.

Evidently, the transcriptional regulatory 
function Gi(k) controls the synthetic rate of cDNA 
and the clue of upstream regulatory pathway is 
involved in Gi(k). Therefore we emphasize on how 
to detect the upstream regulatory function Gi(k) from 
expression data Xi(k) and our dynamic model equa-
tion in equation (1). In general, it is not easy to 
extract transcriptional regulatory function Gi(k). In 
order to extract the input regulatory function Gi(k), 
we apply Fourier decomposition method to decom-
pose Gi(k) to generate some harmonic sinusoid 
functions. When the extraction problem is reduced 
to a simple parameter estimation problem, Gi(k) can 
be decomposed by the following Fourier series.

 G k nk nk
i n n

n

N

( ) [ cos( ) sin( )]≈ +
=

∑ α β
0

 (2)

Then we need to estimate the parameters of Fourier 
series, αn and βn, that are the magnitudes of different 
harmonics of sinusoid functions (cos(nt) and 
sin(nt)) for n = 0, …, N. Fourier series is a good 
tool to synthesize functions with fi nite energy by 
harmonic functions in respect of engineering.

Extraction of the transcriptional 
regulatory function Gi(k)
Since Gi(k) has been decomposed, we combine 
equations (1) and (2) to get the following dynamic 
model equation for the expression profi le of the 
i-th gene,

 X k a X k b X k

nk nk k

i i i i i

n n
n

N

i

( ) ( ) ( )

[ cos ( ) sin( )] (

=− − − −

+ + +
=
∑

1 2

0
α β ε ))

 (3)

In the above dynamic model equation, the param-
eters ai, bi, αn, and βn should be estimated by the 
time profi le of expression data of the i-th gene in 
linear scale, i.e. these parameters should be speci-
fi ed so that the simulating output Xi(k) of the 
dynamic model in equation (3) should match the 
expression profi le of the i-th gene. The maximum 
likelihood estimation method is employed to 
estimate these parameters ai, bi, αn, and βn in
equation (3) from the expression profi le Xi(k) in the 
section Methods.

After the parameters αn and βn of the regulatory 
function Gi(k) have been estimated in the section 
Methods, we can present the regulation detection 
Ĝi(k)as follows,

 ˆ ( ) [ ˆ cos( ) ˆ sin( )]G k nk nk
i n n

n

N

= +
=

∑ α β
0

 (4)

where α̂
n
 and β̂

n
 are the estimates of αn and βn, 

respectively.
We know that the input transcriptional regula-

tory function Gi(k) of the target gene of Hela cell 
cycle is often relative to the bindings of transcrip-
tion factors or some interactions from the upstream 
regulators. In the next step, we will trace back the 
corresponding regulatory genes from the input 
regulatory function Ĝi(k) of the target gene.
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Iterative algorithm for constructing 
gene regulatory network
In biology, the specifi c biochemical reactions are 
usually relative to the concentration of specifi c 
products. For this purpose, we describe the regula-
tory function as the following sigmoid function to 
describe the binding and nonbinding of transcrip-
tion factors to motif binding sites (Chen et al. 2004; 
Klipp et al. 2005)

 �X k
e

j X k Mj j
( ) ( ( ) )=

+ − −

1

1 γ  (5)

where c is the transition rate and Mj is the mean 
expression of the j-th regulatory gene’s profi le 
Xj(k).

We determine Ri regulatory genes whose regula-
tory signals Xj(k) j = 1, … , R are the most correla-
tive to the target gene profi le Xi(k) of the i-th target 
gene. Then, we could reconstruct the gene regulatory 
network by tracing back the upstream regulators 
from the extracted regulatory function Ĝi (k), which 
are contributed by Ri regulatory genes, via the 
following biochemical kinetic relationship,

 ˆ ( ) ( ) ( )G k c c X k e k
i i ij

j R
j i

i

= + +
∈
∑0

�  (6)

where cij is the pathway kinetic parameters from the 
regulatory gene j to target gene i, Ri represents the 
number of the searched upstream regulatory genes 
selected by the absolute value of correlation coef-
fi cient between the target gene expression profi le 
and the regulatory gene expression profi le which 
is more than 0.8 based on the 95% confi dence of 
normalized correlation coeffi cients of expression 
profi les of total cell cycle-related genes in Whit-
fi eld et al. 2002, the constant ci0 is the basal level 
denoting the regulatory function other than 
upstream regulatory genes, for example, due to 
post-transcriptional regulation, and ei(k) is the error 
or the noise of the network model.

Using the maximum likelihood algorithm in 
Method to estimate the parameters ci0 and cij from 
Ĝi(k) and Xi(k), the regulation from the upstream 
regulators is identifi ed as

 
ˆ ( ) ˆ ˆ ( )G k c c X k

i i ij
j R

j

i

= +
∈
∑0

�
 (7)

By combining equation (1) and the above 
equation, the dynamics of transcriptional 

regulatory network of the Hela cell cycle can be 
represented by the following identifi ed difference 
equation,

 
X k a X k b X k

c c
i i i i i

i ij
j Ri

( ) ˆ ( ) ˆ ( )
ˆ ˆ

= − − − −

+ +
∈
∑

1 2

0
��X k

j
( )   (8)

where i = 1, 2, … for all profi le target genes in Hela 
cell cycle.

In fact, equation (8) contains much information 
for exploring the regulatory network of each 
specifi c target gene of the Hela cell cycle. The 
regulatory genes, which belong to a specifi c set, 
Ri, represent the potential upstream regulators for 
target gene i. The estimated chemical kinetic 
parameter, ĉij, characterizes the type and intensity 
of the infl uence of the jth regulatory gene on the 
ith target gene, in which positive sign indicates 
activation and a negative sign indicates repression, 
and the magnitude is defi ned as the regulatory 
ability. After the regulatory pathways of the ith 
target gene is constructed by tracing back their 
upstream regulatory genes, these Ri upstream 
regulators are considered as target genes again to 
trace back their upstream regulatory genes. Itera-
tively, we can construct the whole gene regulatory 
network of the Hela cell cycle globally. The goal 
of reverse engineering gene regulatory network is 
to deduce the possible set of regulators and to 
identify their associated regulation abilities by the 
available data set from the dynamic system 
perspective. For this purpose, we devise a novel 
algorithm based on the dynamic gene expression 
model for searching possible upstream regulators 
and then identifying the relevant regulatory abili-
ties ĉij according to equation (8).

Results

Data processing and analysis
Data were extracted by superimposing a grid over 
each array using GenePix 3.0 software (Axon 
Instruments). Spots of poor quality, determined by 
visual inspection, were removed from further 
analysis. Data of HeLa cell collected for each array 
were stored in the Stanford Microarray Database 
(SMD) and are available from SMD at http://
genome-www5.stanford.edu/ (Sherlock et al. 2001; 
Whitfi eld et al. 2002).
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We combine 775 cell cycle-related genes from 
the Human expression of Hela cell cycle-regulated 
genes according to the classifi cation by Whitfi eld 
et al. (2002) with Human expression of cell cycle-
regulated genes according to the traditional clas-
sifi cation as the target genes. After that, we select 
64 transcription factors (Table 1) from the 775 cell 
cycle genes (Whitfi eld et al. 2002).

The raw data were transformed into a linear 
scale from the original log ratio and applied to 
our approach. Following the dynamic model in 
equation (8), the parameters which characterize 
the dynamic regulatory mechanism are estimated 
successfully for each target gene in the pathway. 
Fig.1 compares the simulation results of the 
dynamic expression model in equation (8) with 
the experimental expression profi les for some 
important cell cycle-related genes regulated by 
E2F family (Bracken et al. 2004), such as 
CDC25A (Stanelle et al. 2002; Muller and Helin, 
2000; Ren et al. 2002), MCM6 (Ren et al. 2002; 
Polager et al. 2002; Ishida et al. 2001), E2F1 
(Bracken, 2004), CDC6 (Stanelle et al. 2002; Ren 
et al. 2002), E2F2 (Ren et al. 2002; Muller et al. 
2001), MCM5 (Ren et al. 2002; Ishida et al. 2001), 
MCM4 (Ren et al. 2002; Ishida et al. 2001), 
PCNA (Muller and Helin, 2000; Ren et al. 2002; 
Polager et al. 2002; Ishida et al. 2001), RFC4 (Ren 
et al. 2002; Polager et al. 2002), and DHFR 
(Ishida et al. 2001). The extracted regulatory 
functions, Ĝi(k) of these genes which are esti-
mated by the maximum likelihood algorithm in 
Methods from their expression profi les are shown 
in Fig. 2. The extracted regulatory function Ĝi(k) 
in Fig. 2 are employed to estimate the kinetic 
parameters of gene regulatory network in
equation (8) by the parameter estimation scheme 
in Methods. Our iterative algorithm can fi nd the 
most likely regulatory genes that may participate 
in the expression program of Hela cell cycle 
genes.

Inference of the regulatory 
pathway
For illustrations, the inferring strategy is applied 
to the E2F target genes (Bracken et al. 2004) in 
Hela cell cycle pathways to recognize their 
upstream regulatory genes. E2F transcription 
factors are well studied owing to their importance 
in both cell cycle (Muller and Helin, 2000; Nevins, 
2001). Their regulatory abilities are shown in the 
upstream regulatory functions Ĝi(k) of dynamic 

equation in Table 2. Parameters of regulatory 
functions ( )G ki

t  in Table 2 represent the regulatory 
abilities and sensitivities of the relative transcrip-
tion factors. It is very exciting that E2F1 and E2F2 
are found to be active regulators in most E2F target 
genes listed in Table 2, which agree very well with 
the previous results (Cam and Dynlacht, 2003; 
Ivey-Hoyle et al. 1993; Lang et al. 2001). The 
regulatory abilities of the related regulators 
implying different degrees of influence are 
converted to the red-colored lines as positive 
regulations (activations) and the black-colored 
lines as negative regulations (inhibitions) for each 
target gene. Then, based on the dynamic regulatory 
equations in Table 2 (see detail in Supplementary 
Table S1), the pathways of E2F target gene in Hela 
cell cycle regulatory system are described in
Fig. 3. The coeffi cients of these dynamic regulatory 
equations represent the kinetic activities of regu-
latory genes. If a regulatory gene is with a large 
kinetic parameter in the dynamic regulatory equa-
tion, it will play an important role in Hela cell 
cycle and is more sensitive to the gene expression 
of target gene.

Based on the dynamic regulatory modeling, the 
152 E2F target genes are found and shown in 
Table 3. In these 152 E2F target genes, 6 genes 
match the E2F target genes found by Elkon et al. 
(2003) from 124 E2F target genes edited by Ren 
et al. (2002) and 17 genes match the E2F target 
genes found by Elkon et al. (2003) from 872 peri-
odic genes edited by Whitfi eld et al. (2002). Ren 
et al. (2002) has found 124 E2F target genes with 
E2F binding promoter. The comparisons of these 
results are shown in Fig. 9.

After fi nishing the construction of the fi rst 
layer network of E2F target genes (Bracken
et al. 2004), we take these upstream regulators 
as target genes. By using similar method, we 
construct the upstream regulatory genes of these 
target genes. In the second layer network, the 
regulatory abilities implying different degrees of 
infl uence are converted into pink-colored lines 
as positive regulations (activations) and blue-
colored lines as negative regulations (inhibi-
tions). Then, we combine the fi rst layer network 
and the second layer network together to form a 
more complete network to E2F target genes in 
HeLa cell cycle as described in Fig. 4. Iteratively, 
we can construct the higher layer network to 
complete the gene regulatory network of Hela 
cell cycle.
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Discussion
The losses of cellular regulation give rise to most 
cases of cancer. The transcription factors are 
crucial for regulating cell cycle progression and 
may be related to the development of a cancer. 
Therefore, to understand these gene regulatory 
processes, we need to unravel the regulatory 
mechanisms of these transcription factors in cell 
cycle. Our study presents a systematically iterative 
approach to discern and characterize the transcrip-
tional regulatory network of 775 cell cycle-related 
genes from the raw expression profi les of Hela 
cell (Whitfi eld et al. 2002). Because the transcrip-
tional regulatory network of 775 cell cycle-related 
genes is very complicated, two miniature gene 
regulatory networks of E2F family during G1/S 

phase in Fig. 4 and the other family during G2/M 
in Fig. 8 are given to illustrate the regulatory 
mechanism of Hela cell.

Our approach also offers the following advan-
tages. First, based on the dynamic regulatory 
model, a gene regulatory network of cancer cell 
could be constructed by the extracted upstream 
regulatory function through microarray data. 
Then, the identifi ed regulatory ability for each 
specifi c regulator could evaluate the contribution 
of this regulator; the positive sign stands for acti-
vation and the negative sign stands for repression, 
and the magnitude represents the signifi cance. 
These advantages of the proposed approach will 
improve the analysis to cope with rapidly growing 
microarray data of human. BRCA1 is one of the 

Table 2. Upstream regulatory TFs and their regulatory function G ( )ki
t  on E2F target genes in cancer cell cycle. 

The positive sign implies activations while the negative sign implies inhibitions for each target gene. The mag-
nitudes indicate their regulatory abilities to the downstream target genes.
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important cell cycle-related genes to play as a 
transcriptional repressor in cell cycle progress 
(Kennedy  et al. 2005). This fi nding matches the 
gene regulatory network constructed by dynamic 
regulatory model (shown in Fig. 4 and Fig. 5). It 
is clear that E2F regulates the expression of a host 
of factors that function during G1/S transition and 
S phase even the whole cell cycle (Bracken et al. 
2004). E2F is best known for its role in regulating 
the transcription of genes that positively affect 
cell cycle progression (Ortega et al. 2002; Sherr 
and Roberts, 1999; Di et al. 2003; Stott et al. 1998; 
Trimarchi and Lees, 2002; Hayashi et al. 2006). 

Our results almost match this fi nding (shown in 
Fig. 4 and Fig. 5). Hayashi with his collaborator 
found that E2F1 activates human MCM8. In our 
study, we found that E2F1 activates human 
MCM5 and MCM6 (shown in Fig. 4 and Fig. 5). 
Elkon et al. (2003) and Ren et al. (2002) have 
found that human MCM5 and MCM6 are two E2F 
target genes (shown in Table 3). As a result of 
these studies, we infer that human MCM5 and 
MCM6 may be positively regulated directly by 
E2F1 in Hela cell cycle. Accumulating evidence 
indicates that cdc25A possesses oncogenic prop-
erties. Recently, overexpression of cdc25A was 

 (1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

XCDC25 A(k) = 0.5096. XCDC25 A(k–1)+0.3936.XCDC25 A(k–2)–1.2221+12.159.XDM1F1(k)+11.804.XE2F1(k)∼

∼

∼ ∼

∼

∼ ∼ ∼ ∼

∼ ∼

∼

∼

∼ ∼
∼

∼ ∼ ∼∼

∼

∼

∼

∼

∼ ∼ ∼ ∼

∼

∼
∼ ∼ ∼ ∼ ∼

∼
∼∼∼

∼ ∼∼

∼ ∼ ∼
∼ ∼ ∼ ∼

∼ ∼ ∼

∼

∼ ∼ ∼ ∼ ∼

–12.473.XBRCA1(k) –4.7281.XPCNA(k) –3.8787.XE2F2(k)

XMCM6(k)=0.5223.XMCM6(k–1)+0.4037.XMCM6(k–2)–4.6131+4.2865.XPCNA(k)+4.1629.XE2F1(k)+3.5672.XMNT(k)+3.5642.XDMIF1(k)+2.4202.XE2F2(k)

XE2F1(k)=0.5273.XE2F1(k–1)+0.3706.XE2F1(k–2)–7.5784+19.97.XE2F2(k)+3.898.XUHRF1(k)

XCDC6(k)=0.5802.XCDC6(k–1)+0.2863.XCDC6(k–2)–7.5759+9.2779.XE2F2(k)+8.1237.XE2F1(k)+8.0354..XUHRF1(k)

XE2F2(k)=0.4709.XE2F2(k–1)+0.4298.XE2F2(k–2)+3.077+5.557.XSPI(k)+4.3598.XNR5A2(k)+3.6731.XE2F1(k)+3.0949.XUHRF1(k)

–12.765.XSP1(k)

–7.0755.XPCNA(k)

–9.5837.XPCNA(k)

–9.2368.XPCNA(k)

–12.012.XBRCAI(k)–9.9406.XPCNA(k)–2.4365.XMNT(k)–1.9962.XDMIF1(k)

–13.12.XSP1(k)–7.1211.XDMTF1(k)–4.6503.XPCNA(k)–4.4148.XLASS6(k)

–16.276.XSP1(k)–11.268.XLASS6(k)–7.872.XE2F1(k)–6.8745.XKLF9(k)–6.1689.XSTAT1(k)–2.7893.XBRCA1(k)–2.4802.XNFE2L2(k)–2.2907.XPCNA(k)

–13.422.XNFE2L2(k)–1.6894.XBCLAF1(k)–1.5479.XBRCA1(k)

XPCNA(k)–0.7077.XPCNA(k–1)–0.2043.XPCNA(k–2)–3.3649+8.1178.XE2F2(k)

XRFC4(k)–0.5079.XRFC4(k–1)+0.404.XRFC4(k–2)–6.843+18.628.XDMIF1(k)+15.158.XPCNA(k)+14.923.XE2F2(k)+12.721.XBCLAF1(k)+5.6902.XHCFC1(k)

XDHFR(k)=0.5226.XRFC4(k–1)+0.3977.XRFC4(k–2)–4.4793+10.711.XMNT(k)+6.9038.XPCNA(k)+5.6045.XSRF(k)+1.6341.XE2F1(k)

XMCM5(k)–0.5946.XMCM5(k–1)+0.3576.XMCM5(k–2)–1.1563+6.7316.XE2F1(k)

XMCM4(k)–0.4833.XMCM4(k–1)+0.4359.XMCM4(k–2)+0.1858+9.8915.XE2F2(k)+8.8902.XPCNA(k)+6.3504.XBRCA1(k)+4.7006.XMNT(k)+2.8582.XNFE2L2(k)

Supplementary Table S1.  A miniature dynamic model network with the identifi  ed upstream regultors and their 
downstream target genes in the pathway of E2F target genes in cancer cell cycle. The coeffi  cients characterize 
the corresponding regulatory abilities and sensitivities of the transcription regulations. The positive sign implies 
activations while the negative sign implies inhibitions for each target gene.
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Figure 1. The second-order dynamic model fi tting of E2F target genes.
The expression profi le with the corresponding second-order dynamic model fi tting for E2F target genes, CDC25A, MCM6, E2F1, CDC6, E2F2, MCM5, MCM4, 
PCNA, RFC4, and DHFR. The red dashed lines are the microarray data from Whitfi eld et al. 2002, and the blue solid lines are the estimated dynamic evolution 
of expression data by the proposed method. Obviously, the proposed second-order dynamic model could effi ciently characterize the dynamic properties like 
damping and resonance of the gene regulatory network. The data have been transformed from the log scale in Whitfi eld et al. to linear scale.
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Figure 2 . The extracted upstream regulatory functions from expression profi les (Whitfi eld et al. 2002) and their fi tting by upstream 
regulatory genes.
The upstream transcriptional regulatory functions Ĝ(t) extracted from expression profi les of corresponding E2F target genes are denoted by the red dashed lines, 
and the blue solid lines are fi tted by their upstream transcriptional regulatory functions in equation (6). These results show that the upstream TF regulatory model 
in equation (6) could match the regulatory function extracted from microarray data. In the fi gure, the gene expressions are expressed in linear scale.
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found in many breast, head and neck cancers (Wu 
et al. 1998). CDC6 plays a critical role in the regu-
lation of the onset of DNA replication in eukaryotic 
cells and Cdc6 expression is down-regulated in 
prostate cancer (Robles et al. 2002). From the 
results of Table 3, we could infer that E2F directly 
regulates MCM4, MCM5, CDC6, CDC25A, UNG 
and E2F2 in Hela cell cycle progression. In Fig. 5, 
we represent some E2F target genes and show the 
importance of E2F transcription factor in Hela cell 
cycle progression. In Fig. 7, we also predict the 
probable transcription regulations in some target 
genes, which express in G2/M phase of human cell 
cycle as shown in the regulatory network of Fig. 8. 
Further, we can construct not only E2F related 

regulatory network but also the whole Hela cell 
cycle network if we have genome-wide microarray 
data and CHIP data. However, at present, we still 
need to get enough evidence and CHIP experiments 
in the same cellular system to confi rm our gene 
regulatory network of Hela cell cycle (Bracken
et al. 2004).

Based on the dynamic regulatory modeling, the 
152 E2F target genes are found and shown in
Table 3. These target genes may be regulated by 
E2F directly or indirectly. In these 152 E2F target 
genes, 6 genes match the E2F target genes found 
by Elkon et al. (2003) from 124 E2F target genes 
with E2F promoter edited by Ren et al. (2002) and 
17 genes match the E2F target genes found by 
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Figure 3. The regulatory pathways of E2F target genes in cancer cell cycle based on the dynamic regulatory modeling in Table 1. 
The related genes are represented as gray ovals and the regulatory abilities of the related regulators implying different degree of infl uence are converted into 
red-colored lines as positive regulations (activations) and black-colored lines as negative regulations (inhibitions) for each target gene. These regulatory pathways 
could be integrated as the regulatory network of cancer cell cycle in Figure 4.
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Figure 4. The network of E2F target genes in cancer cell cycle based on the dynamic regulatory modeling.
The regulatory pathway of the i th target gene is constructed by tracing back its upstream regulatory genes. Then, these upstream regulatory genes are consid-
ered as target genes again to trace back their upstream regulatory upstream regulatory genes. Iteratively, we can construct the whole gene regulatory network 
of cancer cell cycle globally. In the fi rst layer of the upstream regulators, red solid lines represent positive regulation and black solid lines represent negative 
regulation, and in the second layer of the upstream regulators, pink solid lines represent positive regulation and blue solid lines represent negative regulation. 
Based on this procedure, this E2F regulatory network is the interaction of regulatory pathways in Fig. 3.
The enlarged version of Figure 4 and the more clear fi gures of this paper are provided in http://www.ee.nthu.edu.tw/bschen/Li.htm.
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Figure 5. The miniature cancer cell cycle network.
In this fi gure we just list some E2F target genes and show the role of E2F transcription factors in cancer cell cycle (Muller and Helin 2000). Red solid lines 
represent positive regulations and black solid lines represent negative regulations.

Elkon et al. (2003) from 872 periodic genes in Hela 
cell cycle edited by Whitfi eld et al. (2002).

Finally, in order to validate the proposed 
approach, an independent validation is also given 
by randomly reshuffl ing the time order of micro-
array experiment but with the same choices of 
target gene and regulatory genes, to confi rm the 
reliability of the proposed method as shown in 
Fig.6. As previous statement, BRCA1 plays as a 
transcriptional repressor in cell cycle progress 
(Kennedy et al. 2005) (shown in Fig. 5). From the 
shuffl ing results shown in Fig. 6, BRCA1 becomes 
a transcriptional activator. It is clearly seen that
the proposed Hela cell cycle regulatory pathway 

in Fig. 5 is destroyed by reshuffl ing the experi-
mental data.

Methods

Maximum likelihood Estimation
of ai, bi, αn and βn 
The dynamic equation (3) must match the expres-
sion profi le at all time points and then is arranged 
in a vector difference form. Consequently, the 
vector dynamic form of this equation is applied 
to m time points of expression profi le in order to 
make the dynamic model work.
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 Next, we translate equation (M.1) into a matrix 
form,

 Y A Ei i i i= +Φ  (M.2)

where Φi = [ai  bi  α0  β0 g  αN βN]T and Ei = εim are 
in vector forms, and Ai = [–Xim–1 – X im–2 cos(0) 
sin(0) g cos (N) sin (N)]T is a matrix.

Then we use the maximum likelihood estima-
tion to derive the optimal parameters estimation 
of Φ̂

i  (Johansson, 1993).
We assume that each element in the error 

vectors, ( ), { , ... , },k k m3if =  is an independent 
random variable with a normal distribution with 
zero mean and variance σ 2 , and we will estimate 
the parameter Φ̂

i
, by the maximum likelihood 

method.

p Y

Y A Y A

i i

i i i
T

i i i

( | , ) exp

[ ] [ ]

Φ

Φ Φ

σ
πσ

σ

2

2

2

1

2

2

=

−
− −⎧⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 
     

(M.3)

The log-likelihood function for given m data points 
is then described by–
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Here we expect the log-likelihood function to 

have the maximum at  Φ Φ= ˆ  and σ 2 =  σ̂ 2 . The 
necessary condition for maximum likelihood esti-
mates Φ̂  and σ̂ 2 as follows (Johansson, 1993).
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The estimated parameters Φ̂  and σ̂ 2 are shown 
below.

 ˆ ( )–Φ
i i
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i i
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A A A Y= 1  (M.6)
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2
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Theoretically, Ei is just the noise of the gene 
expression profi le of the microarray chips, but 
some modeling errors and approximation errors in 
equation (2) are also involved in Ei. So that taking 
the modeling error and approximation error in our 
consideration makes our dynamic model equation 
more approach the actual situation. The number of 
Fourier series N is determined by tradeoff between 
the computational complexity of parameter estima-
tion in equation (M.6) and the accuracy of approx-
imation in equation (2). According to our expression 
data, we choose N = 16 to make the synthesis of 
these harmonics be the best approximation to the 
expression data.
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Figure 6. The miniature cancer cell cycle network in Fig.5 is repeated as independent validation by randomly reshuffl ing the time 
order of microarray experiment but with the same choices of target and regulatory genes.
Obviously, the proposed regulatory network in Fig.5 is destroyed by the reshuffl ing of experimental data. Red solid lines represent positive regulations and black 
solid lines represent negative regulations. For example, BRCA1 in Fig. 5 plays as a transcriptional repressor in cell cycle progress (Kennedy et al. 2005). From 
Fig. 6, BRCA1 becomes a transcriptional activator.

Parameter Estimation of ci0 and cij
To estimate the pathway kinetic parameters cij in 
equation (6) by  ( )G ki

t  and ( )X kj
u  with m time points 

of upstream regulatory expression profile,
equation (6) is represented with algebraic form as
follows,

 Ĝ B V
i i i i

= +Ω  (M.8)
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We assume that each element in the error vectors, 
ei(k), k = {3,..., m}, is an independent random vari-
able with a normal distribution with zero mean and 
variance σ ei

2. Then by the similar procedure, the 
estimated parameters Ω̂ andσ ei

2are shown below.

 ˆ ( ) ˆ–Ω = B B B G
i
T

i i
T

i
1  (M.9)
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Figure 8. The gene regulatory network of in G2/M phase of cancer cell cycle based on the dynamic regulatory modeling and the 
interactions of regulatory pathways in Fig. 7.
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