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abstract

PURPOSEMolecular tumor profiling is becoming a routine part of clinical cancer care, typically involving tumor-
only panel testing without matched germline. We hypothesized that integrated germline sequencing could
improve clinical interpretation and enhance the identification of germline variants with significant hereditary
risks.

MATERIALS AND METHODS Tumors from pediatric patients with high-risk, extracranial solid malignancies were
sequenced with a targeted panel of cancer-associated genes. Later, germline DNA was analyzed for a subset of
these genes. We performed a post hoc analysis to identify how an integrated analysis of tumor and germline data
would improve clinical interpretation.

RESULTS One hundred sixty participants with both tumor-only and germline sequencing reports were eligible for
this analysis. Germline sequencing identified 38 pathogenic or likely pathogenic variants among 35 (22%)
patients. Twenty-five (66%) of these were included in the tumor sequencing report. The remaining germline
pathogenic or likely pathogenic variants were single-nucleotide variants filtered out of tumor-only analysis
because of population frequency or copy-number variation masked by additional copy-number changes in the
tumor. In tumor-only sequencing, 308 of 434 (71%) single-nucleotide variants reported were present in the
germline, including 31%with suggested clinical utility. Finally, we provide further evidence that the variant allele
fraction from tumor-only sequencing is insufficient to differentiate somatic from germline events.

CONCLUSION A paired approach to analyzing tumor and germline sequencing data would be expected to
improve the efficiency and accuracy of distinguishing somatic mutations and germline variants, thereby fa-
cilitating the process of variant curation and therapeutic interpretation for somatic reports, as well as the
identification of variants associated with germline cancer predisposition.
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BACKGROUND

Precision medicine among oncology patients has
been accelerated by the widespread use of molecular
tumor profiling. In pediatric oncology, tumor profiling
can refine a histologic diagnosis, inform prognosis,
and identify variants that predict response to targeted
therapies.1,2 Many academic and commercial as-
says are designed to detect variants in a panel of
genes commonly associated with cancer. Although
some groups use matched paired tumor-normal
sequencing,3-6 the College of American Patholo-
gists reported that 90% of clinical next-generation

sequencing (NGS) laboratories perform tumor-only
testing.7

For tumor-only assays, analytic pipelines aim to re-
duce the number of germline variants in the output,
often by filtering out variants recurrently reported in
genomic population databases. Rare germline vari-
ants, however, can still be included in reports.6,8-10 By
focusing on somatic events, these computational
filters may also mask germline variants associated
with cancer predisposition, as demonstrated in prior
studies.6,10,11 To further refine tumor variant calls,
sequencing data from tumor-only panels are often
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reviewed and interpreted by molecular pathologists or
geneticists who may identify the possibility that certain
variants are germline in their reports. Together, these
approaches are designed to improve the accuracy of
variant reporting to refine diagnoses, aid in treatment
decisions, and refer patients and families to genetic
counseling when indicated. However, direct assessment
of the effectiveness of computational filters, expert review,
and the potential added value of comparative or paired
tumor and germline analysis has not been extensively
examined in pediatric cancer cohorts.

In this study, we analyzed a subset of patients with
childhood solid malignancies enrolled in a genomic pre-
cision medicine trial, Genomic Assessment Improves Novel
Therapy (GAIN) consortium study (ClinicalTrials.gov
Identifier: NCT02520713). Tumor samples underwent
tumor-only profiling followed by germline profiling, with
separate reports provided to clinicians. Given the se-
quential analysis of tumor followed by germline sequenc-
ing, data from this cohort provide a unique opportunity for a
post hoc analysis to compare how the addition of germline
sequencing may affect clinical variant interpretation and
clinical recommendations. We hypothesized that tumor-
only sequencing could result in the inability to definitively
distinguish germline from somatic variants, potentially
complicating treatment decisions and missing opportuni-
ties to identify hereditary cancer risk in patients and their
families.

MATERIALS AND METHODS

GAIN Trial Enrollment and Selection of Patients for Study

Patients were identified among those enrolled on the GAIN
Consortium trial approved by the Institutional Review
Boards at Dana-Farber Cancer Institute and participating
sites. Eligible patients had a high-risk (defined as an ex-
pected 2-year progression free survival of 50% or less)
newly diagnosed or relapsed or refractory solid malignancy

outside of the central nervous system with an age at initial
diagnosis of 30 years or younger. Written informed consent
was obtained for all study participants. Tumor samples
were acquired from archival material collected as part of
routine clinical care, and peripheral blood was obtained
during a clinical blood draw. Physicians and research staff
provided pathologic diagnosis and demographic informa-
tion, including participant-reported race and ethnicity.
Individuals from the GAIN trial were eligible for inclusion in
this analysis if both tumor and germline profiling results, as
well as completed clinical interpretation and reports, were
available for analysis by April 2019.

Tumor Sequencing and Variant Curation

Tumor samples were sequenced by the Center for Ad-
vanced Molecular Diagnostics at Brigham and Women’s
Hospital using a custom hybrid capture sequencing assay,
OncoPanel, targeting 300 genes (version POPv2) or 447
genes (version POPv3).12 Briefly, extracted DNA underwent
next-generation sequencing of targeted genes using the
TruSeq LT library preparation kit (Illumina, San Diego, CA),
a custom RNA bait set (Agilent SureSelect, Agilent, Santa
Clara, CA), and the Illumina HiSeq2500. Analysis included
the detection of sequence variants, copy-number alter-
ations, and structural variants, as previously described.13-16

The lower limit of detection for sequence variants was 10%
allelic fraction at 50× coverage. Likely polymorphisms and
artifacts were filtered by comparing variant calls to both a
panel of normal samples and in-batch normal controls, as
well as those found in the NHLBI Exome Sequencing
Project (ESP) and/or gnomAD databases at . 0.1% fre-
quency in any subpopulation. Variants flagged for filtering
that were present in Cosmic at least twice were subse-
quently rescued. Variants were interpreted and reported by
a molecular pathologist according to guidelines recom-
mended by the Association for Molecular Pathology, Col-
lege of American Pathologists, and American Society of
Clinical Oncology17 within a 5-tier schema: Variants in tiers
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1-2 associated with strong evidence, tier 3 with weak ev-
idence, tier 4 with uncertain significance of clinical impact,
and tier 5 unlikely to have impact. The potential germline
etiology was commented upon in the report, at the dis-
cretion of the molecular pathologist.

Clinical Interpretation

The GAIN study aims to evaluate whether tumor se-
quencing increases the use of molecularly targeted ther-
apies and whether those therapies are associated with
treatment responses. Such individualized cancer therapy
(iCat) recommendations were made on the basis of peer-
reviewed literature and, in cases with weak or conflicting
evidence, consensus opinion from an expert panel.
Treatment recommendations were tiered (separate from
the variant tiers described above) on the basis of the
strength of the evidence supporting potential response to a
specific therapy.1 The iCat recommendation, including a
comment about possible germline origin if appropriate, was
communicated in a written report.

Germline Sequencing and Variant Curation

Germline profiling was performed on DNA extracted from
peripheral blood samples using OncoPanel version POPv3.
Analysis was informatically restricted to 147 genes known
to be associated with increased cancer risk, as previously
described.18 Germline single-nucleotide variants (SNVs)
and copy-number variants (CNVs) were classified as
pathogenic (P), likely pathogenic (LP), variant of uncertain
significance (VUS), likely benign (LB), or benign (B) by a
molecular pathologist according to guidelines for the in-
terpretation of germline variants, as recommended by the
American College of Medical Genetics and the Association
for Molecular Pathology.19 Although the B/LB variants were
not included in the pathologists’ reports, these were
available for review for the purposes of this study.

Comparison of Tumor-Only and Germline-Only Reports

With Integrated Data Analysis

We compared the variant lists from tumor-only reports to
those of germline reports and the B/LB germline variant list.
We assessed the tumor-only and germline-only sequencing
results for (1) the percentage of variants in the tumor-only
report that were determined to be germline (including P/LP,
VUS, and B/LB), (2) the proportion of P/LP germline var-
iants present in the tumor-only report, and (3) the variant
allele fractions (VAFs) of true somatic events compared with
germline variants in the tumor-only report and germline-
only report using descriptive analyses.

For each germline P/LP variant identified, tumor se-
quencing data were examined for the presence of a second
alteration in the same gene within the tumor, including loss-
of-function SNVs, deletions, or copy-neutral loss of het-
erozygosity (CN-LOH). In addition, for the P/LP variants not
present on the tumor-only sequencing report, we reviewed

the tumor sequencing data, including filtered variants,
within the laboratory variant database.

RESULTS

Germline Variants Identified in the Study Cohort

One hundred and sixty participants enrolled in the GAIN trial
met the eligibility criteria for this study (Fig 1). In this cohort,
the average age at diagnosis was 12 years (range, 1month to
27 years). There were 42 different cancer diagnoses, with
osteosarcoma being the most frequent (Table 1).

Germline sequencing identified a P/LP variant among 22%
of participants (n = 35). Thirty-eight P/LP variants in 22
genes were identified, including 35 SNVs and three CNVs
(Fig 2 and Appendix Table A1). All variants were hetero-
zygous, with 18 variants identified in 12 genes known to
have autosomal dominant inheritance (Fig 2A), including
one oncogene MITF, and 20 variants identified in 10 au-
tosomal recessive genes (Fig 2B). There were 17 different
cancer diagnoses for these 35 patients, with osteosarcoma

TABLE 1. Baseline Characteristics for the Cohort
Variable Mean (SD) or No. (%)

Age at diagnosis mean (SD), years 12 (5.8)

Age at enrollment mean (SD), years 14 (6.3)

Sex, No. (%)

Female 75 (47)

Male 85 (53)

Race, No. (%)

White 113 (71)

Black or African American 14 (9)

Asian 9 (6)

More than one race 1 (1)

Native Hawaiian/Other Pacific Islander 1 (1)

Unknown 3 (2)

Other 19 (12)

Ethnicity, No. (%)

Hispanic or Latino 17 (11)

Non-Hispanic 127 (79)

Unknown 16 (10)

Cancer diagnosis type, No. (%)

Osteosarcoma 58 (36)

Rhabdomyosarcoma 18 (11)

Ewing sarcoma 13 (8)

Other sarcoma 29 (18)

Renal tumor 11 (7)

Neuroblastoma 12 (8)

Liver tumor 4 (3)

Carcinoma 4 (3)

Other 11 (7)

Abbreviation: SD, standard deviation.
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being the most common (n = 12, Appendix Table A1). Ten
(26%) of the P/LP variants were in genes known to be
associated with the patient’s cancer diagnosis. Pathogenic
variants in genes not known to be clearly associated with
the patient’s diagnosis included BRCA1 in a child with
neuroblastoma, MITF in a child with Ewing sarcoma, and
FAM175A variant in a child with osteosarcoma (Appendix
Table A1).

Of the 17 germline P/LP variants in autosomal dominant
cancer risk genes, we identified a second alteration within
the same gene in 9 (53%) of the associated tumors (Fig 2A,
Appendix Table A1). Four patients withDICER1 variants had
a second DICER1 hotspot SNV in the tumor, three patients
had a somatic deletion of the other allele, and two had
CN-LOH associated with overrepresentation of the variant
allele. None of the tumors from patients who were carriers of
an autosomal recessive cancer risk gene had a second
alteration identified.

Variants Identified in Tumor-Only Sequencing Are

Frequently Germline in Origin

To study the potential germline etiology of variants included
in tumor profiling reports, we compared tumor-only and
germline-only sequencing reports from the 160 patients
included in this study (Fig 1). For 9 cases using OncoPanel
version POPv2, our analysis was restricted to 86 genes
analyzed by both tumor and germline pipelines, whereas
our analysis included 147 genes for 151 cases profiled with
POPv3. Four hundred thirty-four tumor SNVs (48 tier 1-2,

43 tier 3, 343 tier 4), 492 germline P/LP/VUS SNVs, and
332 germline B/LB SNVs were identified.

Of the 434 SNVs identified by tumor sequencing, 285
(66%) were reported as P/LP/VUS in the germline se-
quencing report and 23 (5%) were classified as B/LB
variants by the molecular pathologist. Only 126 variants
(29%) were present solely in the tumor sequencing data,
and thus determined to be of somatic origin (Fig 3A).
Fifteen of 48 (31%) variants within tier 1-2, 23 of 43 (53%)
in tier 3, and 270 (79%) in tier 4 were determined to be of
germline origin (Fig 3B).

Next, we investigated how many of the P/LP germline
variants had been noted as potentially germline in the
tumor sequencing report. Of the 285 P/LP/VUS germline
SNVs present in the tumor-only sequencing report, 23 were
P/LP germline variants occurring in nine autosomal dom-
inant genes (APC, CHEK2, DICER1, FAM175A, RB1,
SDHA, SMARCA4, TP53, andUROD) and seven autosomal
recessive genes (BLM, DOCK8, GBA,MUTYH, SERPINA1,
WRN, and XPA). All 23 variants, except one autosomal
dominant LP variant in UROD, were noted as possibly
germline. In 18 of 23 cases, the tumor-only sequencing
reports also emphasized that the sequencing assay could
not distinguish between germline or somatic variants, with
15 of these adding that genetic counseling may be helpful,
clinically indicated, or specifically recommended. Two
referenced previous clinical germline testing that had
identified the same variant.

Enrolled in GAIN study (N = 400)

Eligible for cohort analysis (n = 160)
Tumor and blood sequenced, all reports and variant lists available

Somatic analysis

Variant filtering, curation, and
reporting

447 genes (n = 151)
300 genes (n = 9) 

Germline analysis

Variant filtering, curation, and
reporting

147 genes (n = 160)

Somatic sequencing (tumor) Germline sequencing (blood)

GAIN report

Clinical interpretation of tumor
sequencing reports for tiered
therapeutic recommendations

(n = 160)

FIG 1. Post hoc comparison of tumor and matched
germline sequencing. Of the 400 patients enrolled in
GAIN at the time of this study, 160 had tumor sequencing
reports and separate germline sequencing reports avail-
able. Each tumor-only sequencing report also had a
separate clinical interpretation report (GAIN report) that
conveyed therapeutic recommendations on the basis of
the variants present in tumor-only sequencing. GAIN,
Genomic Assessment Improves Novel Therapy.
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Of 148 SNVs reported as possibly germline in the tumor-only
report, 52 (35%) were not present in the patient’s germline
report or B/LB variant list. These variants were also located
within all four clinical tiers in the tumor report (Fig 3C).

Finally, we found that two of the three P/LP CNVs iden-
tified from germline sequencing were also reported as
variants in tumor-only sequencing (ELANE and FANCA).
Neither of these was flagged as possibly germline.

VAF Is Not Sufficient to Clarify Germline or Somatic Origin

We next investigated to what degree the allelic fraction of
variants from tumor-only sequencing could help predict
which variants were of germline origin. The median VAF
for confirmed somatic variants and confirmed germline
variants within the tumor-only sequencing was 35.6%
(range 3.5%-100%) and 48.3% (range 3.94%-95.3%),
respectively (Fig 4). Although the median VAF was sig-
nificantly different between the two groups (P , .0001,
Mann-Whitney test), we observed considerable overlap,
as 35.1% of true somatic mutations had VAFs inside the
informally accepted range of 40%-60% that, in our ex-
perience, is frequently discussed as indicating a possible
germline origin. Conversely, we found that 30.7% of true
germline variants had a VAF that was either . 60% or
below 40% in the tumor-only sequencing data, of which
only 35% had a called copy-number variant of the gene
(Appendix Fig A1). Interestingly, 94% of germline vari-
ants identified from a normal blood sample were found to
have VAFs between 40% and 60% (Fig 4).

Impact of Germline Variants on

Therapeutic Recommendations

Treatment recommendations were made on the basis of 64
SNVs within tumor-only sequencing for 53 of the 160 cases

included in this study, and 46 were made on the basis of
genes present on both somatic and germline sequencing
panels. Eleven (24%) of these 46 recommendations were
on the basis of variants of confirmed germline origin, in-
cluding seven P/LP SNVs within the genes CHEK2,
FAM175A, SDHA, SMARCA4, and TP53, and four VUS in
AKT1, NBN, TP53, and TSC2 (Table 2). Treatment rec-
ommendations noted that seven of these 11 variants may
be of germline etiology and identified all four of the VUS
alterations as variants of uncertain significance.

Tumor-Only Sequencing May Exclude Significant

Germline Variants

Twelve of the 35 germline P/LP SNVs and one of the three
germline P/LP CNVs were not reported (Appendix Table A1).
Three of these were in autosomal dominant cancer risk genes
(APC, BRCA1, and MITF).

In examining the tumor-only BAM files, all 12 SNVs were
present in the aligned sequencing data but were filtered out
by the somatic analytic pipeline because of their high
population allele frequencies. The pathogenic germline
CNV in BRCA1 was masked in the tumor-only sequencing
by an overlapping somatic copy-gain in 17q.

DISCUSSION

An important goal of precision medicine in cancer is to
improve patient outcomes through a deep understanding of
the potential targetable vulnerabilities present in the tumor.
At present, tumor-only NGS panels are the most widely
used modality to identify biomarkers of response to mo-
lecularly targeted therapies. We sought to identify the
added benefits of paired tumor-germline sequencing in a
pediatric cancer cohort using the availability of sequential
tumor and germline sequencing as a proxy. In our high-
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risk pediatric cohort, 22% of participants had at least one
P/LP germline autosomal dominant or recessive variant,
similar to rates seen in other cohorts.2,20-22 Four major
conclusions from our study emerged: (1) Germline vari-
ants are likely to be included in tumor-only sequencing
reports, (2) some therapeutic recommendations may be
made in reference to germline variants, (3) germline P/LP
variants of clinical significance may be missed by tumor-
only sequencing because of filtering on the basis of

population frequency or masked by copy-number alter-
ations; and (4) patients may be unnecessarily notified of a
potential hereditary risk related to a finding that ultimately
turns out not to be germline.

Within this pediatric cohort, more than half of the SNVs re-
ported from tumor-only sequencing were actually germline,
including 31% of tier 1 and 2 variants. Consistent with prior
reports, we found that the distribution of VAFs of somatic and
germline variants overlap and VAFs alone therefore cannot be
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used to reliably distinguish the germline or somatic origin of
individual variants.23 We also found that 24% of the iCat
recommendations were made on the basis of variants later
confirmed to be germline. Although the utility of targeting
some germline variants remains unclear, there are, on the
other hand, P/LP germline variants that have established
therapeutic relevance: BRCA1 and BRCA2 variants and re-
sponse to poly(ADP-ribose) polymerase (PARP) inhibitors,KIT
and PDGFRB variants and tyrosine kinase inhibitors, and
mismatch repair gene variants and immune checkpoint
inhibitors.24-26 Therefore, accurately identifying variants as
germline first and then determining whether these have
therapeutic relevance remains essential to consider.

Identifying hereditary P/LP variants in cancer predisposition
genes may additionally affect future cancer screening or
family planning for the patient and their family members.
We found that tumor-only sequencing was not sufficient to
identify all the clinically significant germline variants be-
cause of filtering of variants present above predefined
thresholds in population databases, as well as copy-
number gains and losses within the tumor. Although
strategies to recover known P/LP variants in key genes can
be part of the analytic pipeline, it can be difficult to make
such recovery strategies comprehensive. Ideally, a paired
tumor-normal analysis will allow for the optimal identifi-
cation and recognition of significant germline alterations,
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FIG 4. Comparison of somatic and germline VAFs in tumor and normal
samples. Violin plot demonstrating the distribution of AF of variants
identified from tumor-only sequencing (from tumor) and from
germline sequencing (from normal). The height of the violin plot in-
dicates the abundance of variants having AFs indicated along the
x-axis. Vertical dashed lines embedded within the violin plots indicate
the median AFs in the indicated cohort, and vertical dotted lines
indicate the upper and lower quartiles of AFs within the data. Vertical
dashes that run across the entire graph indicate AFs of 40% and 60%.
Variants detected in tumor sequencing with AFs between 40%-60%
are often interpreted to be likely germline when matching germline
sequencing data are unavailable. AF, allelic fraction VAF, variant allele
fraction.

TABLE 2. Treatment Recommendations on the Basis of Tumor-Only Analysis Include Germline Variants
Variant Germline Classification Comments Within Report Tier

CHEK2 c.1100delC (p.T367Mfs*15) P Caveat in report regarding gene association. Flagged as
possible germline.

5

FAM175A c.1106dupG (p.S370Ifs*2) P Flagged as possible germline 4

SDHA c.91C.T (p.R31*) P None 3

SMARCA4 c.948delT (p.A317Pfs*9) P Flagged as possible germline 2

TP53 c.742C.T (p.R248W) P Flagged as possible germline 2

TP53 c.743G.A (p.R248Q) P Flagged as possible germline 2

TP53 c.392A.T (p.N131I) LP Flagged as possible germline 2

AKT1 c.1112C.A (p.T371K) VUS Caveat in report regarding VUS 2

NBN c.456G.A (p.M152I) VUS Caveat in report regarding VUS 4

TP53 c.949C.A (p.Q317K) VUS Caveat in report regarding VUS. Flagged as possible germline. 5

TSC2 c.2656G.C (p.V886L) VUS Caveat in report regarding VUS 2

NOTE. Eleven treatment recommendations were based on single-nucleotide variants that were later confirmed to be germline. Most (64%) were flagged
as possibly germline during clinical review. The therapeutic recommendations were classified within tiers that indicate the level of evidence supporting
recommendations (Tier 2: clinical evidence demonstrating a benefit for targeted therapy in patients with a different tumor and a variant in the same gene.
Tier 3: preclinical evidence demonstrating a benefit for targeted therapy inmodels of the same tumor type. Tier 4: preclinical evidence demonstrating a benefit
for targeted therapy in models of a different tumor type. Tier 5: expert panel feels there is insufficient information to qualify for treatment recommendation).
Abbreviations: LP, likely pathogenic; P, pathogenic; VUS, variant of uncertain significance.
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because of the risk of masking important germline variants
using a subtraction method.26

Our data support that paired tumor-normal sequencing
would be best performed as an integrated analysis within
the NGS pipeline. This approach would drastically de-
crease the workload for the molecular pathologist, shorten
the time to clinical report, and greatly simplify the inter-
pretation of results for the receiving provider or patient,
which are time-intensive and potentially prohibitive.27,28 It is
important to acknowledge that many barriers exist to
performing paired tumor-normal analysis including chal-
lenges in collecting tumor and blood samples simulta-
neously, limited access to molecular pathologists
experienced in curating both somatic and germline cancer
gene variants, and a potentially longer, more complicated
consent process.

Our study had several limitations. First, our study was re-
stricted to patients with pediatric solid tumors, well known
to have lower somatic mutation rates than other cancers.
Data also suggest that germline alterations may contribute
more to the transformation process of early-onset cancers.29

In addition, our study was limited to the analysis of variants

within 147 of 447 genes included in the tumor sequencing. It
is possible that the proportion of germline variants would be
different if every gene were examined within the larger gene
list. We also observed that there were very few cases within
our cohort of tumor samples with elevated tumor mutational
burden and, therefore, were unable to assess the impact that
tumor-only sequencing may have had on these estimations,
but we acknowledge that this remains another important
consideration.30 Finally, it is important to note that se-
quencing assays and associated analytic pipelines may be
distinct, such that the results shown here may not overlap
perfectly with other precision medicine programs that rely on
different analytic tools for their tumor-only sequencing.
Despite these limitations, the benefits of integrated germline
sequencing, when feasible, are expected to be broadly
applicable.

In summary, we demonstrate several potential gaps in the
interpretation of tumor-only sequencing data in pediatric
high-risk tumors and suggest that paired tumor-normal
sequencing and analysis may offer substantial benefits
for cancer precision medicine programs.
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APPENDIX
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FIG A1. Pairwise comparison of germline VAFs in tumor versus normal tissue. Pairwise comparison of the AF of
germline variants identified from tumor-only sequencing (tumor tissue) to the AF from germline sequencing
(normal tissue). Each variant is color-coded to indicate the copy-number status (amplification, gain, single copy
deletion, or neutral) of the corresponding gene. Copy-number gains and loss could not explain many germline
VAFs outside of 40%-60% in tumor tissue. AF, allelic fraction; CN, copy number; VAF, variant allele fraction.
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TABLE A1. Pathogenic or Likely Pathogenic Germline Variants

Gene (Ensembl Reference
Transcript), Variant

Cancer Risk
Classification Tumor Diagnosis

Present on
Tumor-Only
Sequencing

Report Second Mutation in Tumor

Gene Previously
Associated With
Cancer Type

APC (ENST00000457016),
c.3920T.A (p.I1307K)

AD Osteosarcoma No No No

APC (ENST00000457016),
c.3920T.A (p.I1307K)

AD Wilms tumor Yes No No

BLM (ENST00000355112),
c.1933C.T (p.Q645*)

AR Ewing sarcoma Yes No No

BRCA1 (ENST00000357654),
CNV intron9/exon 10 partial
deletion

AD Neuroblastoma No No No

CHEK2 (ENST00000404276),
c.1100delC
(p.T367Mfs*15)

AD Wilms tumor Yes No No

DICER1
(ENST00000393063),
c.3591C.A (p.C1197*)

AD CNS sarcoma Yes DICER1 c.5125G.A (p.D1709N) Yes

DICER1
(ENST00000393063),
c.1525C.T (p.R509*)

AD Pleuropulmonary blastoma Yes DICER1 c.5113G.A (p.E1705K) Yes

DICER1
(ENST00000393063),
c.2781C.A (p.Y927*)

AD Uterine embryonal
rhabdomyosarcoma,
botryoid type

Yes DICER1 c.5125G.A (p.D1709N) Yes

DICER1
(ENST00000393063),
c.904-1G.C

AD Sertoli-Leydig cell tumor of
the ovary

Yes DICER1 c.5439G.T (p.E1813D) Yes

DOCK8 (ENST00000453981),
c.700delA (p.R234Gfs*40)

AR Alveolar
rhabdomyosarcoma

Yes No No

ELANE (ENST00000263621),
whole gene deletion

AD CIC rearranged sarcoma Yes No No

ERCC3 (ENST00000285398),
c.325C.T (p.R109*)

AR Mesenchymal
chondrosarcoma

No No No

FAM175A
(ENST00000321945),
c.1106dupG (p.S370Ifs*2)

AD Osteosarcoma Yes Deletion of FAM175A No

FANCA (ENST00000389301),
CNV exons 11-29 deletion

AR Hepatoblastoma Yes No No

GBA (ENST00000368373),
c.1226A.G (p.N409S)

AR Mesenchymal
chondrosarcoma

No No No

GBA (ENST00000368373),
c.1226A.G (p.N409S)

AR CIC rearranged sarcoma No No No

GBA (ENST00000368373),
c.222_224delTAC
(p.T75del)

AR Osteosarcoma Yes No No

MITF (ENST00000352241),
c.1255G.A (p.E419K)

AD Ewing sarcoma No No No

MUTYH
(ENST00000372098),
c.1178G.A (p.G393D)

AR Spindle cell neoplasm
(infantile myofibroma)

Yes No No

MUTYH
(ENST00000372098),
c.1178G.A (p.G393D)

AR Alveolar
rhabdomyosarcoma

Yes No No

(Continued on following page)
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TABLE A1. Pathogenic or Likely Pathogenic Germline Variants (Continued)

Gene (Ensembl Reference
Transcript), Variant

Cancer Risk
Classification Tumor Diagnosis

Present on
Tumor-Only
Sequencing

Report Second Mutation in Tumor

Gene Previously
Associated With
Cancer Type

MUTYH
(ENST00000372098),
c.303C.A (p.Y101*)

AR Hepatocellular carcinoma Yes No No

RB1 (ENST00000267163),
c.1216-3A.G

AD Osteosarcoma Yes No Yes

SBDS (ENST00000246868),
c.258+2T.C

AR Osteosarcoma No No No

SDHA (ENST00000264932),
c.91C.T (p.R31*)

AD GIST Yes Deletion of SDHA Yes

SERPINA1
(ENST00000440909),
c.1096G.A (p.E366K)

AR Osteosarcoma No No No

SERPINA1
(ENST00000440909),
c.1096G.A (p.E366K)

AR Osteosarcoma No No No

SERPINA1
(ENST00000440909),
c.1096G.A (p.E366K)

AR Osteosarcoma No No No

SERPINA1
(ENST00000440909),
c.1096G.A (p.E366K)

AR Alveolar
rhabdomyosarcoma

No No No

SERPINA1
(ENST00000440909),
c.1096G.A (p.E366K)

AR Osteosarcoma No No No

SERPINA1
(ENST00000440909),
c.187C.T (p.R63C)

AR Ewing sarcoma Yes No No

SERPINA1
(ENST00000440909),
c.739C.T (p.R247C)

AR Ganglioneuroblastoma No No No

SMARCA4
(ENST00000344626),
c.948delT (p.A317Pfs*9)

AD Malignant neoplasm with
rhabdoid-like
morphology

Yes CN-LOH Yes

TP53 (ENST00000269305),
c.392A.T (p.N131I)

AD Chondrosarcoma Yes No Yes

TP53 (ENST00000269305),
c.742C.T (p.R248W)

AD Osteosarcoma Yes Deletion of TP53 within loss of 17p Yes

TP53 (ENST00000269305),
c.743G.A (p.R248Q)

AD Osteosarcoma Yes CN-LOH Yes

UROD (ENST00000246337),
c.239C.G (p.A80G)

AD Neuroblastoma Yes No No

WRN (ENST00000298139),
c.2194C.T (p.R732*)

AR Sertoli-Leydig cell tumor of
the ovary

Yes No No

XPA (ENST00000375128),
c.555G.C (p.Q185H)

AR Osteosarcoma Yes No No

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; CN-LOH, copy neutral loss of heterozygosity; CNS, central nervous system; CNV, copy-
number variant; GIST, gastrointestinal stromal tumor.

Schienda et al

1852 © 2021 by American Society of Clinical Oncology


	Germline Sequencing Improves Tumor-Only Sequencing Interpretation in a Precision Genomic Study of Patients With Pediatric S ...
	BACKGROUND
	MATERIALS AND METHODS
	GAIN Trial Enrollment and Selection of Patients for Study
	Tumor Sequencing and Variant Curation
	Clinical Interpretation
	Germline Sequencing and Variant Curation
	Comparison of Tumor-Only and Germline-Only Reports With Integrated Data Analysis

	RESULTS
	Germline Variants Identified in the Study Cohort
	Variants Identified in Tumor-Only Sequencing Are Frequently Germline in Origin
	VAF Is Not Sufficient to Clarify Germline or Somatic Origin
	Impact of Germline Variants on Therapeutic Recommendations
	Tumor-Only Sequencing May Exclude Significant Germline Variants

	DISCUSSION
	REFERENCES
	Appendix


