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Abstract
Phenology models are becoming increasingly important tools to accurately predict 
how climate change will impact the life histories of organisms. We propose a class of 
integral projection phenology models derived from stochastic individual-based models 
of insect development and demography. Our derivation, which is based on the rate 
summation concept, produces integral projection models that capture the effect of 
phenotypic rate variability on insect phenology, but which are typically more compu-
tationally frugal than equivalent individual-based phenology models. We demonstrate 
our approach using a temperature-dependent model of the demography of the moun-
tain pine beetle (Dendroctonus ponderosae Hopkins), an insect that kills mature pine 
trees. This work illustrates how a wide range of stochastic phenology models can be 
reformulated as integral projection models. Due to their computational efficiency, 
these integral projection models are suitable for deployment in large-scale simulations, 
such as studies of altered pest distributions under climate change.
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1  | INTRODUCTION

Climate change is influencing the phenology of insects and plants 
with temperature-dependent development rates (Bentz et al., 2010; 
Cleland, Chuine, Menzel, Mooney, & Schwartz, 2007; Régnière, 
St-Amant, & Duval, 2012). Scientists have developed a range of 
temperature-dependent phenology models to understand and 
predict how phenology will change under a warmer climate in-
cluding degree-day models (Tobin, Nagarkatti, Loeb, & Saunders, 
2008), cohort-based models (Logan, 1988), individual-based models 
(Régnière, Bentz, Powell, & St-Amant, 2015; Régnière & Powell, 2013; 
Régnière, St-Amant, et al., 2012), and models based on partial differ-
ential equations such as the McKendrick–von Foerster equation and 
its extensions (von Foerster, 1959; Gilbert, Powell, Logan, & Bentz, 
2004; McKendrick, 1926). Regardless of the modeling approach, most 

models of seasonally forced phenology rely on rate summation (Logan, 
1988) to compute the level of maturation that has accumulated as a 
function of a series of temperatures experienced by organisms. In rate 
summation, the development rate multiplied by the time interval (ap-
proximate level of development accrued in the time interval) at each 
time step is cumulatively summed over a time series of varying tem-
peratures experienced by an organism. Once a certain level of devel-
opment has accumulated, the organism matures into the next stage of 
its life cycle and the timing of development completion constitutes the 
phenological prediction or observation.

Popular degree-day-based phenology models that are commonly 
used to model crop and crop pest phenology (Herms, 2004; Sharratt, 
Sheaffer, & Baker, 1989) are a subtype of rate summation models in 
which daily temperatures above the lower temperature threshold are 
summed over a relevant number of days and specific phenological 
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events are predicted to occur at prescribed cumulative degree-day mile-
stones (Dennis, Kemp, & Beckwith, 1986; Kemp, Dennis, & Beckwith, 
1986; Pruess, 1983). More general rate summation models involve 
development rates that vary nonlinearly with temperature (Logan, 
1988; Régnière, Powell, Bentz, & Nealis, 2012; Schoolfield, Sharpe, & 
Magnuson, 1981; Sharpe & DeMichele, 1977; Wagner, Wu, Sharpe, & 
Coulson, 1984). Phenology models based on the rate summation con-
cept are primarily used for insect phenology modeling (Herms, 2004; 
Logan, 1988; Régnière, Powell, et al., 2012; Régnière, St-Amant, et al., 
2012), but have also been used to model the phenology of plants (Ghersa 
& Holt, 1995; Osawa, Shoemaker, & Stedinger, 1983; Sharratt et al., 
1989) and parasitic nematodes (Molnár, Kutz, Hoar, & Dobson, 2013).

Stochastic rate variability can have important consequences in 
rate summation models that are distinct from the effects of rate vari-
ability due to seasonal forcing (Gilbert et al., 2004; Régnière et al., 
2015; Régnière, St-Amant, et al., 2012). Stochastic rate variability can 
originate, for example, from intraspecific phenotypic variation that 
generates apparent randomness in observed demographic parame-
ters (Régnière & Powell, 2013). As a result, demographic parameters 
or populations themselves may be better described by distributions 
than by scalar values. A continuous-time stage-structured model, the 
Mckendric–von Foerster equation (von Foerster, 1959; McKendrick, 
1926), has been extended to accommodate a distributed aging rate and 
used to model the flight phenology of mountain pine beetles (Gilbert 
et al., 2004). Researchers have similarly incorporated the effects of 
rate variability and forcing by seasonal fluctuations within individual-
based stage- and age-structured models (Régnière & Powell, 2013; 
Régnière et al., 2015; Régnière, St-Amant, et al., 2012).

Although the effects of rate variability and seasonal forcing can be 
readily simulated using individual-based methods (Régnière & Powell, 
2013; Régnière et al., 2015; Régnière, St-Amant, et al., 2012), the 
computational cost of simulation in individual-based models restricts 
their use in large-scale earth system models (Régnière et al., 2015). 
An alternate framework for simulating rate variability in seasonally 
forced age- and stage-structured models is the cohort-based ap-
proach (Focks, Daniels, Haile, & Keesling, 1995; Focks, Haile, Daniels, 
& Mount, 1993; Legros et al., 2011; Logan, 1988; Magori et al., 2009). 
In cohort-based models, individuals born at varying times are binned 
into separate categories and the phenology of each cohort is tracked 
through time. Although binning into cohorts increases computational 
efficiency relative to individual-based simulation, there are drawbacks 
to artificial categorization (binning) of individuals into discrete age or 
size classes. Accuracy drawbacks due to binning in cohort-based mod-
els are analogous to those associated with dividing age into discrete 
categories in matrix models of demography (Ellner & Rees, 2006).

Accuracy issues due to binning can be minimized by replacing ma-
trix or cohort-based models with integral projection models (Ellner & 
Rees, 2006), which permit continuous age distributions. Integral pro-
jection models have been used to predict flowering phenology in plants 
while simultaneously modeling demography (Ellner & Rees, 2006). Due 
to its flexibility, the integral projection framework has been extended 
to include stochastic processes (Childs, Rees, Rose, Grubb, & Ellner, 
2004; Ellner & Rees, 2007; Rees & Ellner, 2009; de Valpine, 2009), 

time-varying parameters (Rees & Ellner, 2009), evolving traits (Coulson 
& Tuljapurkar, 2008; Coulson, Tuljapurkar, & Childs, 2010), and param-
eter variability (Plard, Gaillard, Coulson, & Tuljapurkar, 2016). Although 
integral projection models have been shown to be useful for modeling 
phenology (Ellner & Rees, 2006) and stochastic processes (Childs et al., 
2004; Ellner & Rees, 2007; Rees & Ellner, 2009; de Valpine, 2009), as 
far as we know, no previous work has derived integral projection mod-
els starting from the stochastic rate summation process that underlies 
most phenology models.

In this study, we start from the rate summation concept and derive 
computationally efficient age-structured integral projection models 
that incorporate stochastic rate variability while accommodating sea-
sonal forcing. The mathematics underlying the derivation differ from 
the mathematics of traditional integral projection models but enable 
the simulation of the stochastic process that results in a distributed 
population with respect to a continuous physiological age variable in 
the presence of seasonal forcing. Linking age-structured integral pro-
jection models of development in each life stage enables simulation 
of an organism’s entire life cycle or multiple life cycles and results in 
a stage- and age-structured integral projection model. Our approach 
realistically incorporates seasonal forcing using an underlying model 
that is well established in the phenology modeling community, while 
also accounting for the effects of rate variability.

We demonstrate the utility of stage- and age-structured integral 
projection models for accommodating phenotypic variation in rate 
parameters using a temperature-dependent model of mountain pine 
beetle (Dendroctonus ponderosae Hopkins) phenology and mortal-
ity. The mountain pine beetle (Figure 1) is a tree-killing bark beetle 
that causes landscape-wide mortality in mature pine forests when at 
outbreak levels (Bentz et al., 2010; Raffa et al., 2008). The mountain 
pine beetle system is ideal for demonstrating the advantages of our 
modeling framework as the phenology and demography of mountain 
pine beetles are strongly influenced by environmental temperatures 

F IGURE  1 An adult mountain pine beetle (Dendroctonus 
ponderosae Hopkins) photographed under a light microscope. The 
adult mountain pine beetle is about the length of a grain of rice. 
Photograph credit: Devin W. Goodsman
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(Safranyik & Carroll, 2006) and individual-level variability in pheno-
typic traits has been quantified (Régnière & Powell, 2013; Régnière, 
Powell, et al., 2012).

2  | MATERIALS AND METHODS

We begin by defining a simple integral projection model for age-
structured demography in an organism with a single life stage. We then 
demonstrate how integral projection models can be derived as solutions 
of stochastic rate summation models with seasonal forcing. We briefly 
describe how integral projection models derived from rate summation 
can be linked to form stage- and age-structured integral projection 
models that incorporate temporally varying environment-dependent 
mortality and birth. After describing an application of our integral pro-
jection modeling framework to model mountain pine beetle phenology, 
we conclude with description of our model validation against mountain 
pine beetle flight phenology data from Alberta, Canada.

2.1 | Model derivation

2.1.1 | The integral projection model

Integral projection models represent the evolution of continuous 
variables such as age or size when time is iterated forward in discrete 
time steps. One can think of integral projection models as analogous 
to demographic matrix models in which the Leslie matrix (Leslie, 
1945, 1948) for discrete age categories has been replaced with a 
projection kernel that represents the growth, mortality, and aging 
processes with age treated as a continuous variable (Ellner & Rees, 
2006). A simple integral projection model of the density of individu-
als x of continuous age b in an organism with a single life stage can 
be written as 

 in which xi(a) is the density of individuals of age a at time step i, k(b, a) 
is the projection kernel that determines growth, mortality, and aging 
as the organism progresses from age a to age b. The bounds on the in-
tegral (α and γ) are upper and lower age bounds (Ellner & Rees, 2006). 
In the special case where growth and aging do not depend on age, 
Equation 2 can be rewritten as a convolution integral: 

When using the convolution integral above, we assume that demog-
raphy is independent of age within a particular life stage. Although 
the assumption that demography is independent of age within 
stage is tenable for many organisms with life cycles that are divided 
into numerous short-duration life stages, it obviously represents a 
simplification of reality (Tuljapurkar & Horvitz, 2006; Tuljapurkar, 
Steiner, & Orzack, 2009). For many organisms with fecundity that 
changes as a function of age, the assumption of age-independent 

demography will not hold. In contrast, for annual plants and univol-
tine insects, reproduction often happens only at the endpoints of a 
multistage life cycle and within-stage demography in the Northern 
Hemisphere is often more strongly influenced by seasonal forcing 
than by age within stage.

2.1.2 | Rate summation and seasonal forcing

The standard approach to modeling maturation is to define a vari-
able, often called physiological age (a), which accumulates over time 
at a rate (r). In constant environmental conditions, in which the de-
velopment rate does not vary in time (r = r0), physiological age can be 
computed by integration of the rate equation 

This development equation underlies the advection term in the 
McKendrick–von Foerster equation (von Foerster, 1959; McKendrick, 
1926). In natural environments, however, the development rate de-
pends on environmental conditions (E) and environmental conditions 
typically vary with time. If environmental conditions have been re-
corded over time, they can be represented using an empirical time 
dependency (E(t)) and Equation 3 must be redefined: 

Due to this environmental variation in time, Equation 4 cannot 
generally be computed analytically and must instead be numerically in-
tegrated by breaking the time interval (t) into a number (n) of small in-
crements. Moreover, as environmental conditions are usually censused 
at discrete times (ti) separated by regular intervals (Δt), Equation 4 can 
be approximated using a rate summation model (Logan, 1988): 

which is a Riemann sum (from basic integral calculus) approximation 
of Equation 4. This rate summation (Equation 5) forms the basis of the 
aging process in variable environments.

To complete the age-structured model (in the absence of mor-
tality), the rate function in Equation 5 must be defined. Poikilotherm 
development rates depend on the temperature of their local en-
vironment (Sharpe & DeMichele, 1977) and so E(ti) in Equation 5 is 
replaced with T(ti). Many options exist for temperature-dependent de-
velopment rate models. Whereas rate models based on degree days 
assume that development accrues at a rate that is a linear function of 
temperature above a minimum temperature threshold (Dennis et al., 
1986; Kemp et al., 1986; Pruess, 1983), more realistic rate models ac-
count for nonlinear temperature dependence (Régnière, Powell, et al., 
2012; Schoolfield et al., 1981; Sharpe & DeMichele, 1977). We do not 
endorse one model over another here as our aim is to provide a gen-
eral framework that can accommodate any environment-dependent 
rate function.

(1)xi+1(b)=∫
γ

α

xi(a)k(b,a)da,

(2)xi+1(b)=∫
γ

α

xi(a)k(b−a)da.

(3)a(t)=∫
t

0

r0ds.

(4)a(t)=∫
t

0

r[E(s)]ds.

(5)a(tn)≈

n∑
i=1

r[E(ti)]Δt,
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2.1.3 | Stochastic rate variation

Due to phenotypic variation, environmental stochasticity, or sam-
pling effects, the development rate at any given temperature will 
vary among individuals or populations (Gilbert et al., 2004; Régnière, 
Powell, et al., 2012). To account for this rate variability, we assume 
that development rate of individual j is a random variable (Rj). Thus, we 
write a stochastic version of the rate summation (Equation 5): 

where Aj,n is the random level of development (age) accumulated by 
individual j after time interval n. Note that randomness in Aj,n is due to 
randomness in Rj,i. For what follows, it is helpful to define an iterative 
reformulation of Equation 6 for any time step i ∊ {1, 2, …, n}.

 

If we consider an organism that has age zero when born and age γ 
when it dies, then age in this organism with a single life stage is bounded 
(Aj,i ∊ [0, γ]). Note that the sum of random variables can be computed by 
convolving the probability density functions of the random variables in 
the sum (Hogg & Craig, 2005). Thus, we can represent the outcome of 
the sum in Equation 7 using the following convolution 

where xi(a) is the probability density function of individuals of age a 
in time step i and ki(b − a) is the probability density function of the 
random variable Ri+1 multiplied by Δt, which can be thought of as the 
probability of aging from age a to age b in the time interval. Note that 
the kernel (ki(b − a)) varies from one time step to the next due to envi-
ronmental forcing of the stochastic aging rate (Ri+1). For now, we will 
assume that both probability density functions are defined on a strictly 
positive domain. The reader will recognize that Equation 8 is an in-
tegral projection model (compare Equation 8 to Equations 1 and 2). 
However, it differs slightly from the way that integral projection mod-
els are traditionally defined in that the kernel (ki(b − a)) must integrate 
to one on a ∊ [0, ∞) even though the distribution of ages in the integral 
projection model is bounded by 0 and γ.

If we assume that at t0 all individuals have zero accumulated 
development, then the initial condition can be written as 

where S0 is a scalar that gives the population size and δ(a) is the Dirac 
delta function. The Dirac delta function (δ(a)) is a distribution that in-
tegrates to one and is zero everywhere except where a = 0. With this 
initial condition, the distribution of physiological age in the population 
will evolve over time as the stochastic aging process progresses. An 
example of the evolving distribution of physiological age for a hypo-
thetical organism is given in Figure 2.

The stochastic integral projection model we derived in Equation 8 
is an exact deterministic representation of the stochastic rate sum-
mation equation (Equations 6 and 7), which is an approximation of 
continuous-time nonautonomous differential equation models of 

seasonally forced phenology. The issue of the fidelity with which 
discretized models approximate their continuous counterparts is 
ubiquitous when computers are used to solve differential equations 
and relates back to the initial Riemann sum or Euler approximation 
of the solution of the underlying differential equation (Adler, 2005). 
Because the accuracy with which Equation 8 approximates the 
continuous-time process will increase as the size of the time steps (Δt) 
decreases, Equation 8 should enable arbitrarily exact approximation 
of the desired continuous-time age-structured model. To demonstrate 
that Equation 8 can represent the solutions of continuous-time age-
structured models, we derive the extended von Foerster model (a 
continuous-time age-structured model) of Gilbert et al. (2004) starting 
from equations 8 and 9 in Appendix S1.

2.1.4 | Incorporating variable mortality

We have so far assumed no mortality, except due to old age, and 
modeled only the environment-dependent aging process. Organisms, 
though, experience environment-dependent mortality rates throughout 
their lives. Many insects (Lee, 1991) and plants (Inouye, 2000), for ex-
ample, can be killed by extreme or aseasonal cold events. Adding mor-
tality to the age-structured model (Equation 8) requires that we relax 
our initial restriction that xi(a) integrates to one on a ∊ [0, ∞) because, 
with mortality, the integral of xi(a) on a ∊ [0, ∞) will decrease over time 
(in the absence of birth) and can take on values less than one. Let mi be 
the environment-dependent probability of mortality in time step i. The 
age-structured model with seasonally forced mortality then becomes 

This formulation assumes that mortality is not age-dependent 
within a particular stage. In organisms with multiple stages, 

(6)Aj,n=

n∑
i=1

(Rj,i)Δt,

(7)Aj,i+1=Aj,i+ (Rj,i+1)Δt.

(8)xi+1(b)=∫
γ

0

xi(a)ki(b−a)da,

(9)

x0(a)=S0δ(a),

(10)xi+1(b)= (1−mi) ∫
γ

0

xi(a)ki(b−a)da.

F IGURE  2 A demonstration of a stochastic age-structured model 
where maturation is determined by a random development rate. 
The observed stochastic development rate in individual j in time 
step i is Rj,i is log-normally distributed with a median of r0Δt where 
the time step is equal to one unit time (Δt = 1). Thus, the location 
parameter of the log-normal distribution (μ) is equal to ln (r0Δt), and 
σ is the scale parameter of the log-normal distribution. The initial 
distribution of individuals at t0 was a Dirac delta function centered 
on the physiological of age of zero multiplied by 100 to represent 
100 individuals that began with a physiological age of zero. The 
development rate parameter was r0 = 0.5(unit time)−1 and the scale 
parameter was σ = .2
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however, it is straightforward to construct models with stage-
specific mortality functions that are seasonally dependent. Adding 
density-dependent mortality requires little added complexity as the 
only additional steps are defining an appropriate density-dependent 
mortality function and computing the density of living individu-
als. Computing the total density of living individuals (Xi+1) of any 
age within a particular life stage involves a second integration of 
Equation 10: 

The ease with which we can simultaneously accommodate 
environment-dependent and density-dependent mortality and 
environment-dependent aging makes this approach more flexible than 
partial differential equation-based models like the McKendrick–von 
Foerster equation.

2.1.5 | The stage and age-structured model

To create a stage- and age-structured model, we imagine that our 
model organism has s stages (where s is an integer). Each stage devel-
ops or ages according its own environment-dependent development 
rate function rs[E(ti)]. The corresponding stochastic variable, Rs,j,i, rep-
resents the stochastic development rate for individual j in time step i 
and stage s. When a critical level of development has been reached, 
individuals move to the first age in the next stage as shown in Figure 3. 
We represent the threshold level of development at which individuals 
in stage s develop into stage s + 1 with γs. Consider an organism with 
three stages (such as egg, juvenile, and reproducing adult). We repre-
sent the distribution of ages within the three stages using x(ax), y(ay), 
and z(az). These three distributions for age within stage represent dis-
tributions that result from the stochastic accumulation of physiological 
age in each of the stages represented by the random variables Aj,i,x, 
Aj,i,y, and Aj,i,z (that are analogous to Aj,i in Equation 7). Using the same 
logic that underlies our derivation of Equation 8 from Equation 7, we 
extend the age-structured integral projection model with variable 
mortality (Equation 10) to form a stage- and age-structured integral 
projection model of a hypothetical organism with three life stages: 

 

 

Note that each life stage in Equation 12 has its own stage-
specific mortality function and aging kernel indexed by x, y, or z. In 
Equations 12b and 12c, we compute the individuals that have passed 
the γs threshold in the current time step by subtracting all of the in-
dividuals that exceeded the threshold by the previous time step from 
all of the individuals that exceeded the threshold by the current time 
step. We then multiply by the Dirac delta function to force all new in-
dividuals into the first age in the next stage. Note that in Equation 12, 
we do not allow individuals to skip a life stage, so all individuals with 
physiological ages between γs and ∞ move to stage s + 1 in the next 
time step. For Equation 12 to accurately represent demography, time 
steps need to be small enough to make the assumption of “no stage-
skipping” tenable.

The system in Equation 12 provides the age distributions of in-
dividuals in each stage, but it does not give the population densities 
in each stage. A second integration of the elements of Equation 12 
is required to compute the total density of individuals in each stage 
as described in Equation 11. To complete the life cycle, we could add 
to Equation 12a an environment-dependent birth function that de-
scribes the rate at which new individuals are born into the first stage 
as a function of the density of individuals in the reproductive stage 
(Figure 3).

2.2 | Model application

2.2.1 | Temperature-dependent mountain pine 
beetle biology

Typically adult mountain pine beetles fly from their brood trees in 
the summer or fall to attack new trees that, if successfully attacked, 
will become hosts for subsequent generation (Safranyik & Carroll, 
2006). The phenology of the mountain pine beetle life cycle, includ-
ing the timing of these summer flights, is strongly linked to tempera-
ture (Bentz, Logan, & Amman, 1991; Bentz & Powell, 2014; Logan 
& Bentz, 1999; Régnière et al., 2015; Régnière, Powell, et al., 2012). 
Flight phenology determines the success with which mountain pine 
beetle populations kill host trees (Logan & Powell, 2001; Powell & 
Bentz, 2009) because optimal tree killing and colonization by flying 
beetles rely on synchronous beetle flights (Logan, White, Bentz, & 

(11)Xi+1=∫
γ

0

xi+1(b)db.

(12a)xi+1(bx)= (1−mi,x) ∫
γ1

0

xi(ax)ki,x(bx−ax)dax,

(12b)

yi+1(by)=δ(by)

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
∞

γ1
∫
∞

γ1

xi(ax)ki,x(bx−ax)daxdbx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

density that reached stage 2 by time i+1

− ∫
∞

γ1
∫
∞

γ1

xi−1(ax)ki−1,x(bx−ax)daxdbx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

density that reached stage 2 previously

⎞
⎟⎟⎟⎟⎟⎟⎠

+ (1−mi,y) ∫
γ2

0

yi(ay)ki,y(by−ay)day,

(12c)
zi+1(bz)=δ(bz)

⎛
⎜⎜⎜⎜⎜⎜⎝

∫
∞

γ2
∫
∞

γ2

yi(ay)ki,y(by−ay)daydby

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

density that reached stage 3 by time i+1

− ∫
∞

γ2
∫
∞

γ2

yi−1(ay)ki−1,y(by−ay)daydby

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

density that reached stage 3 previously

⎞
⎟⎟⎟⎟⎟⎟⎠

+ (1−mi,z) ∫
γ3

0

zi(az)ki,z(bz−az)daz.
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Powell, 1998) at a time that is seasonally adaptive for the initiation of 
new broods (Logan & Bentz, 1999; Logan & Powell, 2001). Adaptive 
seasonality results in the minimization of mortality in new broods due 
to lack of synchronization with seasonal fluctuations (Logan & Bentz, 
1999; Logan & Powell, 2001).

To predict the phenology of the mountain pine beetle, research-
ers have parameterized development rate curves for each mountain 
pine beetle life stage based on the time required for stage comple-
tion when life stages are reared in the laboratory at various constant 
temperatures (Bentz et al., 1991). The curves that provide the most 
parsimonious fit to the data are nonlinear, hump-shaped functions of 
temperature (Régnière, Powell, et al., 2012). The parameters of the 
current optimal rate curves for the egg, four larval instars, pupae and 
teneral adult life stages are given in Régnière, Powell et al. (2012) but 
are also reproduced in the appendices (Appendix S2). The full stage- 
and age-structured phenology model can be constructed by linking 
age-structured models such that individuals that finish development in 
one stage proceed to the next stage (see Section 2.2.2 for a more de-
tailed description). The phenology model requires, as input, a time se-
ries of daily mean air temperatures in degrees centigrade that are then 
translated to under-bark temperatures using a submodel (Bolstad, 
Bentz, & Logan, 1997).

Winter mortality is thought to be one of the main limiting fac-
tors of northward range expansion of mountain pine beetles (Bentz 
et al., 2010; Safranyik et al., 2010; Sambaraju et al., 2012) and is 
often cited as the cause of beetle population crashes that end out-
breaks of mountain pine beetle infestation (Aukema et al., 2008; 
Sambaraju et al., 2012; Stahl, Moore, & McKendry, 2006). Because 
the egg, pupal, and teneral adult stages of the mountain pine bee-
tle are less cold-tolerant than the larval stages (Bentz & Mullins, 
1999; Yuill, 1941), winter mortality in these stages is an important 
determinant of adaptive seasonality. However, modeling efforts that 
have attempted to incorporate both phenology and mortality have 
had mixed success (Dooley, Six, & Powell, 2015), largely because of 
uncertainty regarding the potential for the cold-hardening process 

to interfere with the development rate process in the mountain 
pine beetle’s larval stages (Dooley et al., 2015). Due to uncertainty 
regarding interaction between development and cold-hardening 
processes, and because this interaction is the subject of ongoing 
research, we do not account for larval mortality in our mountain pine 
beetle phenology model even though mid-winter larval mortality is 
possibly the most important mortality component in the mountain 
pine beetle life cycle (Safranyik & Carroll, 2006). We do, however, 
incorporate simple models for egg, pupal, teneral adult, and adult 
mortality using a temperature-dependent step function in which 
the probability of mortality is zero when minimum temperatures 
are above −18°C and one when minimum temperatures are below 
−18°C (Régnière et al., 2015).

2.2.2 | Stochastic mountain pine beetle model

To test the ability of our deterministic integral projection models of 
phenology to capture the variability in stochastic systems, we devel-
oped a stochastic individual-based model using the simulation ap-
proach of Régnière, Powell et al. (2012) to produce simulation results 
for comparison to those of the integral projection model. We simulated 
the maturation and mortality of a single mountain pine beetle brood, 
using a stochastic individual-based approach in which each of the 
brood insects was separately simulated as an individual. The individual-
based simulation is forced using mean, minimum, and maximum daily 
air temperature data (°C) recorded between 15 July 2014 and 30 
September 2015 at the Jasper warden station (Jasper, Alberta, Canada, 
Lat: 52.93, Lon: −118.03, Elevation: 1,020 m). The driving temperature 
data from Jasper are provided in the Supporting Information (Data S1). 
We initialized the stochastic model on 30 July 2014, with 82 eggs laid 
by a simulated mated female according to a temperature-dependent 
oviposition model Régnière, Powell et al. (2012).

An assumption made during the conception and parameteriza-
tion of the mountain pine beetle development rate models is that the 
rates are log-normally distributed around the median development 

F IGURE  3 An illustration of a stage- and age-structured model for a hypothetical organism with three life stages. In the first life stage (a), 
individuals that have passed the first developmental milestone (γ1) in each time step enter the second life stage at physiological age zero. In the 
second life stage (b), individuals that have passed the second developmental milestone, γ2, enter the third life stage at physiological age zero. 
In the third life stage (c), the third developmental milestone (γ3) corresponds to death due to old age. Thus, only individuals that have not yet 
reached that milestone are able to reproduce. Reproduction by individuals in the third life stage results in new individuals entering the first life 
stage at physiological age zero
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rate in the population (Régnière, Powell, et al., 2012). If the median 
development rate is given by the temperature-dependent and stage-
dependent rate equation rs[T(ti)], then the location parameter of the 
log-normal distribution (μs) must be μs = ln (rs[T(ti)]). Thus, the proba-
bility density function on the random level of development accrued in 
one time step is 

where σ2
s
 is the stage-specific scale parameter of the log-normal distri-

bution that was also estimated in Régnière, Powell et al. (2012).
The algorithm for iterating the stochastic development model first 

computes the step and stage-specific mean development rate rs[T(ti)]. 
Then, for each living individual, a random number is drawn from the 
log-normal distribution LN(μs= ln (rs[T(ti)]),σ

2
s
), and added to the level 

of development already accrued by the individual. After the develop-
ment summation step, each individual is assigned to the appropriate 
life stage. Without loss of generality, we set γs, the level of develop-
ment required for maturation into the next life stage in all beetle life 
stages, to one (Régnière, Powell, et al., 2012). Thus, the individuals are 
moved among the life stages according to 

The full simulation also requires a representation of mortality. 
We do not simulate larval mortality, but for the egg, pupae, teneral 
adult, and emerged adult life stages, the cold-induced mortality model 
employs the step function described in the previous section.

We do not consider the mating process that leads to new life cy-
cles but instead follow only a single life cycle by simulating up to the 
adult life stage. Computer code, written in R (R Core Team, 2016), that 
simulates the individual-based model of the full life cycle is provided 
in the Supporting Information (Data S2).

2.2.3 | Integral projection mountain pine 
beetle model

Like in the stochastic mountain pine beetle model, the stage- and age-
structured integral projection model is forced using the Jasper mean 
daily temperature data and the time step and stage-dependent me-
dian development rate is computed in each time step according to 
rs[T(ti)]. Instead of drawing a random number from the corresponding 
log-normal distribution, the probability density function of the log-
normal distribution (Equation 13) is convolved with the distribution of 
development already accumulated in the population as in Equation 8 
to obtain an updated distribution on the level of development for each 
stage. Membership in each life stage as a result of development and 
mortality is then computed as described above. The mountain pine 
beetle-specific equations are provided in Appendix S3. Computer 
code that simulates the stage- and age-structured integral projec-
tion model of mountain pine beetle demography, written in R (R Core 
Team, 2016), is provided in the Supporting Information (Data S3).

2.2.4 | Cohort-based mountain pine beetle model

To simulate a cohort-based model of mountain pine beetle phenol-
ogy and mortality for comparison with the analogous integral pro-
jection model, we reduced the age resolution at which we simulated 
the integral projection model of mountain pine beetle phenology 
and mortality such that within each life stage, individuals moved 
between 16 age cohorts before progressing to the next stage (com-
pared to 128 age bins within each stage in the representation of the 
integral projection model in our code). We do not provide a sepa-
rate script containing this code as it is essentially the same as the 
stage- and age-structured integral projection model of mountain 
pine beetle demography and phenology already in the Supporting 
Information (Data S3).

2.2.5 | Model validation

To demonstrate the utility of the stage- and age-structured integral 
projection model of mountain pine beetle phenology for prediction 
of phenological timing, we validated the model against mountain pine 
beetle flight trap data across Alberta, Canada. The model, as it is cur-
rently described, only simulates beetle development up to the adult 
stage and does not simulate flight. To simulate adult flight in our 
phenology model, we added a statement to the code in which indi-
viduals that had already developed into adults would fly if maximum 
daily temperatures exceeded 18.3°C, a flight temperature threshold 
based on observations of mountain pine beetle flight (McCambridge, 
1971). Beetles are not able to fly indefinitely. To account for settling 
in beetles that expend their energy reserves for flight, we added an 
exponential settling function based on laboratory measurements of 
beetle flight propensity (Evenden, Whitehouse, & Sykes, 2014) and 
a simple model of mountain pine beetle dispersal (Goodsman et al., 
2016).

Because we were unable to determine the exact time of adult 
mountain pine beetle attack and oviposition at specific locations 
or trees using data that were available to us, we used distributions 
of insect trap times from flight phenology data from the previous 
year to initialize our model at a variety of locations where we also 
had mountain pine beetle flight phenology data for the subse-
quent year, and where trees attacked by mountain pine beetle in 
the current year were confirmed. We then used BioSIM software 
(Régnière, Saint-Amant, & Béchard, 2014) to spatially interpolate 
daily weather station data records of minimum and maximum tem-
peratures for each location where we had confirmed mountain 
pine beetle attacked trees in the previous year. These temperature 
time series were used as input data for the model that we ran at 
each location. We calculated the cumulative number of simulated 
adult beetles that flying at each time in the flight window (usually 
between June and October).

In order to compare the simulated data to the normalized cu-
mulative trap catch data for each region, we normalized the sim-
ulated data by dividing by the total number of simulated emerged 
adults to obtain a cumulative flight distribution of adults that was 

(13)p(rj;μs,σ
2
s
)=

1

rjσs

√
2π

exp

�
( ln (rj)− ln (rs[T(ti)]))

2

2σ2
s

�
,

sj=

�
sj if

∑i

1
(Rs,j,i)Δt≤1,

sj+1 if
∑i

1
(Rs,j,i)Δt>1.
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bounded from above by one. To test the quality of our phenological 
predictions and validate the integral projection model, we used a 
Kolmogorov–Smirnov test under the null hypothesis that the ob-
served data and simulated data were similarly distributed. A failure 
to reject this null hypothesis corresponded to a positive validation 
result. The assumption that the number of trapped beetles at any 
time in the flight window is proportional to the density of flying 
beetles in the flight window is implicit in our model validation. Flight 
trap data for the locations and years used in this model validation 
are available in the Supporting Information (Data S4), and code 
written in R that simulates the predictions of the integral projection 
model with distributed start times is also available in the Supporting 
Information (Data S5).

3  | RESULTS

Our results demonstrate the utility of our modeling approach by il-
lustrating its accommodation of phenotypic variation in maturation 
rates in a model of mountain pine beetle phenology. The mountain 
pine beetle stage- and age-structured model realistically simulated 
complex dynamics of temperature-dependent mountain pine beetle 
phenology in a fluctuating environment (Figure 4). Although the inte-
gral projection model of mountain pine beetle dynamics is determin-
istic (mathematical details in Appendices S2 and S3), it captures the 
variability inherent in the stochastic model by correctly representing 
rate variation (Figure 5a–h). Due to the coarser nature of the cohort-
based model using 16 age cohorts within each life stage, some accu-
racy is lost relative to the underlying stochastic model (Figure 5a–h). 

Both the stochastic model and the integral projection model replicate 
the observed characteristics of mountain pine beetle demography 
well. In the early summer, for example, fourth-instar larvae, pupae, 
and teneral adults can all be present at the same time (Figure 5b) and 
(Figure 5e–g).

The integral projection model of mountain pine beetle phenol-
ogy and mortality is computationally faster than running Monte Carlo 
simulations of the stochastic model. Collectively, the 20 stochastic 
simulations shown in Figure 5 took approximately 170 times as long 
as the simulation of the corresponding integral projection model. 
Equivalently, each single run of the stochastic individual-based model 
was approximately 8.5 times slower than running the integral projec-
tion model of mountain pine beetle phenology. Clearly, regardless of 
how many or how few Monte Carlo simulations are necessary to ap-
proximate the expected behavior of the stochastic system, the integral 
projection model is more computationally efficient than simulating the 
stochastic individual-based model.

The validation of the integral projection model of mountain pine 
beetle phenology against flight trap data for mountain pine beetles 
shows that the model is able to predict mountain pine beetle flight 
phenology well over a variety of years and locations (Figure 6a–i). In 
each year, we tested the hypothesis that the observed data are dis-
tributed according to the predicted flight time distribution using a 
Kolmogorov–Smirnov test. In all years except 2014 and 2015, we 
failed to reject the hypothesis that the observed data are distributed 
according to the predicted data (Figure 6a–i). Our failure to reject this 
null hypothesis corresponds to a positive validation test result in every 
year but 2014 and 2015. Although we failed the rather strict validation 
test in 2014 and 2015, our prediction is shifted by only approximately 

F IGURE  4 The predictions of the stage- 
and age-structured integral projection 
model for temperature-dependent 
development and mortality of a mountain 
pine beetle brood. The model is forced with 
(a) temperatures recorded at the Jasper 
warden station in Jasper, Alberta, Canada. 
The (b) expected number of individuals in 
each of the stages as determined by the 
stage- and age-structured model. Note that 
the current version of the model does not 
account for larval mortality
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10 days relative to observations in 2014, and by 20 days in 2015. 
Despite the shifted mean or median flight times in 2014 and 2015, the 
shape of the predicted and observed cumulative catch curves are very 
similar in both years, indicating that the model correctly captured the 
variability in flight times if not the exact date of the mean flight time 
in those years.

4  | DISCUSSION

We have developed a convolution-based framework for constructing 
seasonally forced stage- and age-structured integral projection mod-
els based on the rate summation concept. Rate summation models 

have been widely used to model the phenology of insects (Herms, 
2004; Logan, 1988; Régnière, Powell, et al., 2012; Régnière, St-Amant, 
et al., 2012) and plants (Ghersa & Holt, 1995; Osawa et al., 1983; 
Sharratt et al., 1989). Our process models use convolutions to com-
pute random rate summations with natural variability in maturation 
rates, leading to age-structured integral projection models that can 
be incorporated into stage-structured models to form stage- and age-
structured models. Although the distribution that results from sum-
ming stochastic rates is not always analytically available, the use of 
fast Fourier transforms (Singleton, 1969) to numerically compute the 
outcomes of convolutions enables the framework to assume any im-
aginable distribution that describes rate variability. The convolution-
based integral projection modeling framework we propose differs 

F IGURE  5 Comparisons of the predictions of the stage- and age-structured integral projection model of mountain pine beetle phenology 
and mortality with the predictions of the stochastic age- and stage-structured model on which it is based and a coarser cohort-based model. For 
each mountain pine beetle life stage after oviposition (a–h), the predictions of the integral projection and cohort-based models are overlaid on 
the trajectories predicted by 20 simulations of the stochastic model
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from previous stochastic integral projection models (Rees & Ellner, 
2009; de Valpine, 2009) in that our derivation is based on the rate 
summation framework, a widely used and accepted method for simu-
lating phenology (Ghersa & Holt, 1995; Herms, 2004; Logan, 1988; 
Osawa et al., 1983; Régnière, Powell, et al., 2012; Régnière, St-Amant, 
et al., 2012; Schoolfield et al., 1981; Sharpe & DeMichele, 1977; 
Sharratt et al., 1989; Wagner et al., 1984).

Our convolution-based integral projection modeling framework 
demonstrates the connections between widely used phenology 

models based on degree days or on nonlinear rate functions and in-
tegral projection models that have become popular in ecology (Ellner 
& Rees, 2006; Rees & Ellner, 2009). The connection between these 
previously disparate model types is especially evident when models 
are derived for demography in constant environments. In constant 
environments or when development is modeled as a linear function 
of degree days, continuous-time age- and stage-structured models 
can be derived analytically using our convolution-based framework. 
Thus, we have made explicit the relationship between extended 

F IGURE  6 Validation plots comparing the predictions of adult flight time of the stage- and age-structured integral projection model of 
mountain pine beetle phenology and mortality with observed trap catches of flying adult mountain pine beetles in Alberta, Canada from 2008 
to 2016 (a–i). The cumulative trap catch curve is the normalized cumulative number of individuals caught. To test the quality of predictions, we 
used a Kolmogorov–Smirnov test and p-values and sample sizes (not the number of insects but rather the number of records in the time series) 
for the tests in each year are given in the upper left corner. A p-value larger than .05 means that we failed to reject the null hypothesis that 
the observed cumulative trap catch and predicted trap catch are similarly distributed (failing to reject this hypothesis corresponds to a positive 
validation result)
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von Foerster equations (Gilbert et al., 2004), the stochastic phenol-
ogy models proposed by Dennis et al. (1986), and age-structured 
integral projection models.

Although mathematical derivations are convenient in constant en-
vironments, we developed convolution-based integral projection mod-
els for modeling environmentally forced dynamics. Rates that change 
from one time to the next due to a time-varying environment can read-
ily be incorporated in integral projection models. The mountain pine 
beetle system is ideal for demonstrating this capability of stage- and 
age-structured integral projection models as researchers have devel-
oped mechanistic temperature-dependent models of mountain pine 
beetle phenology and winter mortality. Using simulations of mountain 
pine beetle phenology and mortality in a fluctuating environment, we 
demonstrated that stage- and age-structured integral projection mod-
els capture the effects of variability and can accommodate complex 
demographic submodels.

de Valpine (2009) developed stage- and age-structured integral 
projection models assuming stochastic development, but the moti-
vation behind the derivation of the integral projection models of de 
Valpine (2009) is fundamentally different from our own. de Valpine 
(2009) derived an integral projection model by integrating over con-
tinuous stochastic stage duration, while assuming that age is a discrete 
variable determined by time since birth (de Valpine, 2009). Conversely, 
we derived our integral projection model based on the convolution of 
continuous probability density functions that represent the stochastic 
variation of continuous physiological age. The probabilistic functions 
of de Valpine (2009) describe the probabilities of reaching particular 
age within a stage before transitioning to the next stage (stage dura-
tion) while the probability density functions in our integral projection 
models explicitly describe rate variability. Although development rates 
and stage duration are evidently linked, we can think of no simple way 
of accommodating seasonal forcing within models that assume an a 
priori distribution on stage duration. Accounting for seasonal forcing 
in models involving stage duration is difficult because stage duration 
changes as a function of environmental conditions that vary from 
one time step to a next in many organisms (e.g., poikilotherms in the 
Northern Hemisphere).

Integral projection models are a popular modeling approach in 
ecology with an extensive collection of literature that describes 
their underlying theory, application, and extensions (Coulson & 
Tuljapurkar, 2008; Ellner & Rees, 2006, 2007; Plard et al., 2016; Rees 
& Ellner, 2009; de Valpine, 2009). A significant proportion of the inte-
gral projection modeling literature focuses on stochastically derived 
integral projection models (Ellner & Rees, 2007; Rees & Ellner, 2009; 
de Valpine, 2009). In contrast to other stochastic integral projection 
models, our convolution-based approach is derived starting from the 
rate summation idea. Therefore, parameters estimated for cohort-
based models (Focks et al., 1993, 1995; Logan, 1988) or individual-
based phenology and demography models (Régnière & Powell, 
2013; Régnière, Powell, et al., 2012) based on the rate summation 
concept need not be estimated again for our modeling framework, 
but can rather be used directly in analogous convolution-based in-
tegral projection models. Thus, many historic seasonally forced 

phenology models developed for a wide variety of organisms can be 
reformulated as integral projection models relatively easily using our 
framework.

A key concept that enabled us to model time-evolving age 
structure as a distributed variable in our integral projection mod-
els was the separation of physiological age from time since birth. 
This distinction further differentiates our integral projection models 
from those of de Valpine (2009). Without the distinction between 
physiological age and time since birth, it would not make sense to 
model age as a distributed variable in the absence of variation in 
birth time. Randomly distributed development rates lead naturally 
to distributed levels of maturity in populations of individuals born 
at the same time.

Individual-based models have been used to represent 
environment-dependent demography under the influence of global 
climate warming for forest insects (Régnière & Powell, 2013; 
Régnière et al., 2015), but even with modern supercomputers, the 
computational burden and logistical complexity involved in simulat-
ing billions of individuals remain restrictive (Régnière et al., 2015). 
In this regard, integral projection and cohort-based models have an 
advantage over individual-based models; simulating a million indi-
viduals is no more computationally taxing than simulating a single 
individual. In theory, one can obtain the integral projection model 
in the limit as the number of cohorts in the cohort-based model 
approaches infinity and cohort size approaches zero provided that 
the cohort-based model includes a representation of development 
rate variability. Simulating integral projection models on a computer, 
however, requires discretization of distributions, which means es-
sentially reverting them back to cohort-based models. In spite of 
this reversion, a key advantage of our integral projection approach 
is that, due to its use of efficient mathematically based fast Fourier 
transforms (Singleton, 1969), implementing more accurate integral 
projection models rather than coarser cohort-based models involves 
minimal increases in computational cost.

Due to their computational efficiency and scalability, convolution-
based integral projection models will enable researchers to surmount 
computational hurdles while maintaining the effects of stochastic 
variability and seasonal forcing. Moreover, convolution-based integral 
projection models are amenable to incorporation directly into global 
climate models, enabling two-way dependencies and interactions 
with the vegetation components of climate models and prediction of 
insect–vegetation dynamics under climate change.
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