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ABSTRACT

Purpose: This study aimed to identify prognostic factors for patients with distant lymph 
node-involved gastric cancer (GC) using a machine learning algorithm, a method that offers 
considerable advantages and new prospects for high-dimensional biomedical data exploration.
Materials and Methods: This study employed 79 features of clinical pathology, laboratory 
tests, and therapeutic details from 289 GC patients whose distant lymphadenopathy was 
presented as the first episode of recurrence or metastasis. Outcomes were measured as any-
cause death events and survival months after distant lymph node metastasis. A prediction 
model was built based on possible outcome predictors using a random survival forest 
algorithm and confirmed by 5×5 nested cross-validation. The effects of single variables were 
interpreted using partial dependence plots. A contour plot was used to visually represent 
survival prediction based on 2 predictive features.
Results: The median survival time of patients with GC with distant nodal metastasis was 
9.2 months. The optimal model incorporated the prealbumin level and the prothrombin 
time (PT), and yielded a prediction error of 0.353. The inclusion of other variables resulted 
in poorer model performance. Patients with higher serum prealbumin levels or shorter PTs 
had a significantly better prognosis. The predicted one-year survival rate was stratified and 
illustrated as a contour plot based on the combined effect the prealbumin level and the PT.
Conclusions: Machine learning is useful for identifying the important determinants of 
cancer survival using high-dimensional datasets. The prealbumin level and the PT on distant 
lymph node metastasis are the 2 most crucial factors in predicting the subsequent survival 
time of advanced GC.
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INTRODUCTION

Patients with recurrent or metastatic gastric cancer (GC) have short life expectancies [1]. The 
tumor, node and metastasis staging system classifies patients with distant metastasis into the 
M1 subgroup without considering the impact of different metastatic sites [2]. In fact, different 
patterns of recurrence or metastasis typically imply different survival outcomes [3-5]. Distant 
lymph nodes are common sites of metastasis in advanced GC [6-9]; however, GC with nodal 
recurrence has a short survival time similar to a hematogenous relapse [5], which is different 
from the nature of other late-stage cancers (e.g., breast cancer with distant nodal metastasis 
has a better prognosis than hematogenous metastasis). More importantly, the risk factors 
contributing to the short survival time of this subgroup have not been identified.

Although use of gene signatures and molecular profiles has been suggested for survival 
prediction of GC [10-12], in view of their application in clinical practice, it is easier and 
more applicable to use universal laboratory analytes and clinical features as potential 
predictive markers. It has been demonstrated that peripheral blood parameters could be 
independent factors in predicting the survival of stage IV GC [13]; however, the selection of 
the candidate predictors is arbitrary or empirical and the inner links between the features 
are omitted. Therefore, it is uncertain whether the chosen independent variables can achieve 
the optimal power of prediction. Furthermore, conventional statistical analytical methods, 
such as traditional logistic regression models and Cox proportional hazard (PH) models, 
perform poorly when dealing with datasets that contain numerous noisy variables [14-16]. To 
overcome these problems, machine learning techniques have been developed and introduced 
in GC research, yielding satisfactory results compared to traditional methods [17-19].

To utilize the high volume of medical records for survival prediction of GC with distant 
node recurrence or metastasis, we collected demographic, pathological, therapeutic, and 
laboratory variables to create a high-dimensional dataset of advanced GC. The laboratory 
information contained 58 common analytes, including routine blood, liver function, kidney 
function, nutrition status, electrolyte, coagulation function, and tumor biomarker tests. 
The random survival forest (RSF) algorithm, a well-known machine learning technique, was 
employed to select important features and train the prediction model on patients with GC 
with synchronous or metachronous distant node metastasis.

MATERIALS AND METHODS

Patient enrollment and follow-up
The cohort was derived from a registered hospital-based ambispective cohort study on 
consecutive patients with gastric and esophagogastric junction carcinoma admitted at the 
First Affiliated Hospital of Anhui Medical University between January 2010 and December 
2019 (ChiCTR1800019978, http://www.chictr.org.cn/). Individuals with primary metastatic 
GC (stage IV disease) and initial nonstaged IV disease who developed distant recurrence 
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after gastrectomy were eligible. To build a machine learning model, we selected patients 
whose metastatic sites included distant lymph nodes, because the number of patients in 
this subgroup was the largest in our cohort. Supplementary Table 1 presents the mean 
post-metastasis survival of the patients in our cohort at each metastatic site. The diagnosis 
of distant lymphatic metastasis was confirmed by cytopathological, histopathological, and 
radiological examination. Patients with multiple primary malignant tumors were excluded 
from the study. All procedures performed in this study involving human participants were 
in accordance with the 1964 Helsinki Declaration and its subsequent amendments or 
comparable ethical standards. This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Anhui Medical University (reference number: Quick-PJ 2021-05-19). The 
requirement of informed consent was waived owing to the retrospective nature of this study. 
The workflow of this study is illustrated in Fig. 1.

The date of identification of distant lymph node metastasis was the starting point of the 
observation. The endpoint was death for any reason. The death date was acquired from the 
provincial population death register system or during a telephonic follow-up of the patients 
or their relatives conducted every 3 months. Survival time was defined as the interval (in 
months) between the start point and the death event or the last follow-up.

Data collection
To build a high-dimensional dataset of advanced GC with distant lymph node metastasis, we 
extracted demographic, clinical, and laboratory information from electronic medical records 
and combined these variables (features) with survival outcomes. Briefly, 20 demographic 
features, 28 clinical features, 76 laboratory features, the survival status, and the survival 
time were recorded. The laboratory variables were measured within one month before and 
after the identification of distant lymph node metastasis. Owing to patient heterogeneity 
and missing values at random, not all features contained sufficient valid values. To deal with 
this problem, we excluded variables in which over 30% observations were randomly missed 
and we recoded some variables by summarizing and integrating information. Variables 
that were clearly unrelated to survival after metastasis, based on existing knowledge, were 
also excluded. Finally, 81 variables were included to establish the model: survival status, 
survival time, 10 demographic features, 11 clinical features, and 58 laboratory features 
(Supplementary Table 2).

Model training and optimization
The model was built based on the RSF algorithm, a random forest method for the analysis 
of right-censored survival data [20]. Briefly, in this technique, bootstrap samples were 
drawn from the original data and a survival tree was grown for each bootstrap sample. Each 
bootstrap sample excluded on average 37% data, which are called out-of-bag (OOB) data. The 
cumulative hazard function (CHF) was calculated for each tree. A tree was grown starting 
at the root node and split at a node that maximized the survival according to the log-rank 
splitting rule. As the number of nodes increased and dissimilar cases became separated, 
each node in the tree became homogeneous and was populated by cases with similar survival 
times. The ensemble CHF was constructed by averaging all trees. The prediction error for the 
ensemble CHF was obtained using the OOB data [20].

The model was optimized and evaluated by nested cross-validation (nCV). Briefly, the 
data were split into five outer-loop folds, in which a single fold was selected as the test set, 
whereas the remaining four folds were merged and split into five inner-loop folds comprising 
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Fig. 1. Flow diagram of patient selection and model building. 
AHMU = Anhui Medical University; RSF = random survival forest.
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an inner training set (4-folds) and a validation set (1-fold). In each inner model, data 
imputation, feature selection, and hyperparameter tuning were conducted on the training set 
and tested on the validation set. The inner model with the best performance was evaluated on 
the outer test set. Data imputation was based on the random forest algorithm [20]. A random 
search technique with 100 iterations was employed to select features and tune 3 important 
hyperparameters: ntree (the number of individual trees in the forest), mtry (the number of 
features to randomly sample at each node), and nodesize (the minimum number of cases 
allowed in a leaf ). The hyperparameters and features of the best outer model were selected to 
train the entire dataset and create the final model. The protocol of the 5×5 nCV is illustrated 
in Fig. 1. Model performance was measured using Harrell’s concordance index (C-index), 
which was calculated as a 1-prediction error. A value of 0.5 implies random guessing, 
and a value of 1 is a perfect prediction. The sensitivity, specificity, and area under receiver 
operating characteristic (ROC) curve at 12 months were also determined. This process was 
implemented using R packages “randomForestSRC” [20], “mlr3” [21], and “ranger” [22].

Model interpretation
The final RSF model was interpreted using variable importance and partial dependence plots 
[23]. A variable was considered important if breaking the relationship between it and survival 
resulted in an increased prediction error and a degraded model performance. In brief, the ten 
most important variables were sequentially displayed in a bar chart. A partial dependence plot 
was used to illustrate the partial effect of the important variables on the predicted 12-month 
survival probability. A contour plot was drawn to interpret a two-variable partial effect, which 
contained three-dimensional information (variable A, variable B, and predicted survival 
probability). This process was implemented using R package “randomForestSRC” [20].

Other statistical analysis
The median, 25th percentile, and 75th percentile were used to describe the various variables, 
and density plots were used to show their distribution. Dot plots with Spearman’s correlation 
tests were employed to identify the possible association between two variables. Numbers and 
percentages were used to describe categorical variables. Survival curves were drawn using the 
Kaplan–Meier (KM) method and compared using the log-rank method. The PH assumption 
was tested using a graph of the scaled Schoenfeld residuals drawn using R package 
“survminer.” Cox regression with restricted cubic spline (RCS) analysis was performed to 
explore the nonlinear associations between the hazard ratio (HR) and numerous variables 
employing R package “rms.” RStudio 1.4.1717 was used, and a two-sided P-value less than 
0.05 was considered statistically significant.

RESULTS

Characteristics of patients
A total of 574 patients with advanced GC whose first metastatic site was a distant lymph node 
were enrolled. By the last follow-up (December 2020), 547 patients (95.3%) had reached the 
endpoint. The median follow-up time was 10.1 months. The median survival time was 10.1 
months. Detailed baseline characteristics are listed in Table 1. After excluding the patients with 
massive missing values of clinical and laboratory features, 289 patients were finally included 
in the model building. In this population, 275 patients (95.2%) reached the endpoint. The 
median follow-up time was 9.7 months. The median survival time was 9.2 months (Fig. 2A). 
The median survival of metachronous cases was identical to that of synchronous cases (9.1 vs. 
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9.2 months, Plog-rank=0.449). The baseline characteristics and median survival of the populations 
inside and outside the model were comparable (Table 1, Fig. 2B). The only exception was that 
more individuals with high-stage cancer were in the model cohort, which might be attributed 
to the higher probability of availability of serological tests in metastasis in this population. 
Therefore, the participants in the model cohort were less likely to undergo surgery and adjuvant 
chemotherapy.

Building model using RSF algorithm
Based on the nCV results, the optimal hyperparameters were ntree=500, nodesize=4, and 
mtry=29. Fig. 2C shows that the OOB error of the model stabilizes as the number of trees 
increases to 500. The ten most important features are shown in Fig. 1D. Prealbumin and the 
prothrombin time (PT) were the most crucial and second most crucial survival predictors, 
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Table 1. Characteristics of included and excluded patients
Variables Cohort inside model (n=289) Cohort outside model (n=285) P-value Total cohort (n=574)
Median age at metastasis (yr) 62 (53–68) 63 (55–69) 0.189 62 (53–69)
Sex 0.261

Male 205 (0.71) 215 (0.75) 420 (0.73)
Female 84 (0.29) 70 (0.25) 154 (0.27)

Tumor location 0.830
Cardia 148 (0.51) 143 (0.50) 291 (0.51)
Body 54 (0.19) 59 (0.21) 113 (0.20)
Pylorus 87 (0.30) 83 (0.29) 170 (0.30)

Histological subtype 0.585
Adenocarcinoma, NOS 247 (0.85) 235 (0.82) 482 (0.84)
Mucinous 27 (0.09) 34 (0.12) 61 (0.11)
Signet-ring cell 15 (0.05) 14 (0.05) 29 (0.05)

Tumor grade 0.018
G1–G2 37 (0.13) 56 (0.20) 93 (0.16)
G3–G4 176 (0.61) 175 (0.61) 351 (0.61)
Gx 75 (0.26) 52 (0.18) 127 (0.22)
NA 1 (<0.01) 2 (0.01) 3 (0.01)

Tumor stage 0.008
I 6 (0.02) 9 (0.03) 15 (0.03)
II 22 (0.08) 37 (0.13) 59 (0.10)
III 103 (0.36) 120 (0.42) 223 (0.39)
IV 150 (0.52) 110 (0.39) 260 (0.45)
NA 8 (0.03) 9 (0.03) 17 (0.03)

Gastrectomy 0.002
Yes 150 (0.52) 185 (0.65) 335 (0.58)
No 139 (0.48) 100 (0.35) 239 (0.42)

Adjuvant chemotherapy 0.002
Yes 92 (0.32) 127 (0.45) 219 (0.38)
No 197 (0.68) 158 (0.55) 355 (0.62)

Palliative chemotherapy 0.415
Yes 256 (0.89) 245 (0.86) 501 (0.87)
No 33 (0.11) 40 (0.14) 73 (0.13)

Radiotherapy for nodes 0.666
Yes 12 (4.15) 15 (5.26) 27 (4.70)
No 277 (95.85) 270 (94.74) 547 (95.30)

Other distant metastases 0.114
Yes 161 (0.56) 139 (0.49) 300 (0.52)
No 128 (0.44) 146 (0.51) 274 (0.48)

Median follow-up (mon) 9.7 (4.7–17.9) 10.7 (5.2–19.4) 0.084 10.1 (5.0–18.3)
Median survival (mon) 9.2 (8.0–10.7) 10.7 (9.8–12.6) 0.143 10.1 (9.1–11.2)
One-year survival rate (%) 38.7 (33.5–44.8) 45.0 (39.6–51.2) 0.185 42.0 (38.2–46.3)
Values are presented as number (%) or median (range).
NOS = not otherwise specified; NA = not available.
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respectively. The other features contributed little, thereby not remarkably improving 
the model. Fig. 2E shows that stepwise inclusion of the important variables changes the 
prediction error. The best performance was the result of a second iteration (Fig. 2F), 
yielding a prediction error of 0.353 (C-index of 0.647) when the two most important features 
(prealbumin and PT) were included (Fig. 2E). The area under ROC curve, sensitivity, and 
specificity at 12 months were 0.613, 0.229, and 0.653, respectively. Finally, with the optimal 
hyperparameters, the prealbumin level and the PT on metastasis were chosen to train the 
entire dataset and build the final RSF model.

Correlation between important features and survival time
Because the prealbumin level and the PT were identified as the most crucial predictors, we 
further explored their inter-correlation. As shown in Fig. 3A, the distributions of the PT and the 
survival time are left-skewed. The prealbumin level is normally distributed, and it is negatively 
correlated with the PT (R=−0.29) and positively correlated with the survival time (R=0.32). The 
linear association between the PT and the survival is not statistically significant (Fig. 3B).

Nonlinear association of prealbumin and PT with survival
The dot plots (Fig. 3B) clearly show that the relations of the prealbumin level and the PT with 
the survival time are nonlinear; therefore, we subsequently investigated these nonlinear 
associations using partial dependence plots. The predicted one-year survival increased 
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sharply as the prealbumin level increased, and it peaked when the prealbumin level was 
approximately 150–170 mg/L. Subsequently, the predicted survival started to gradually decline 
(Fig. 4A). The predicted survival maximized when the PT was 12–13 seconds, and decreased 
substantially when the PT rose from 14 to 15 seconds. After the PT became longer than 15 
seconds, the predicted survival gradually declined (Fig. 4A).

To confirm the nonlinear association, the PH assumptions of the prealbumin level and the PT 
were tested (Supplementary Fig. 1) and the Cox regression with RCS analysis was performed 
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(Fig. 4B). The obtained L-shaped line plot showed that the HR first steeply declined and 
subsequently remained stable as the prealbumin level increased to 150 mg/L. Following this, 
the upper limit of the HR decreased to approximately below 1. The plot of the PT was also a 
curved line, in which a PT above 15 seconds significantly increased the death risk.

Based on the visual inspection of Fig. 4A and B, we select 150 mg/L and 15 seconds as the 
cutoff values of the prealbumin level and the PT, respectively. The KM plots show that the 
prealbumin level and the PT are significant predictors of survival after metastasis. Higher 
prealbumin and shorter PT subgroups had an apparently better outcome (Fig. 4C).

Contour plotting of effect of prealbumin and PT on survival
To further illustrate the joint effect of the prealbumin level and the PT on survival, a contour 
plot is presented in Fig. 5A. For a given combination of prealbumin and PT, the contour plot 
reflects the interval of the estimated one-year survival rate. For example, for a patient with 
a prealbumin level above 150 mg/L and a PT between 13.0 and 13.5 seconds, the predicted 
1-year survival rate is 60%–70% based on the RSF algorithm. Another plot based on the 
Cox regression with RCS is also shown in Fig. 5B to provide additional evidence of the 
relationship of the prealbumin level and the PT with the survival.

DISCUSSION

GC is well-known for its heterogeneity. GC with distant lymph node recurrence or metastasis 
is a distinct subgroup of advanced GC, and only a few studies have investigated its survival 
determinants. This study was based on an ambispective GC cohort at a tertiary hospital in 
a real-world clinical practice setting. A machine learning algorithm was used to identify 
important features affecting the survival of GC with nodal metastasis. The prealbumin 
level and the PT were found to be the most crucial factors, and a contour plot was depicted 
accordingly as a clinically applicable survival prediction tool. These findings are expected to 
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assist oncologists in predicting outcomes and devising decision-making strategies for the 
distinct subgroup of patients with advanced GC.

In this study, 574 GC patients with distant node metastasis were consecutively enrolled, of 
whom 289 were included for the RSF exploration. Compared to previous reports [4-9,24,25], 
our study collected a greater number of samples in this subgroup of advanced GC. For each 
individual, 81 variables were documented, based on which a data frame containing 289×81 
pieces of information was created. Traditional analysis methods perform poorly on such 
high-dimensional datasets because of noisy variables, missing values, collinearity, and 
restriction of data distribution. In contrast, tree-based algorithms can easily address these 
problems. The RSF algorithm makes no assumption about the data distribution, satisfactorily 
handles missing values and numerous variables with different scales, and improves model 
performance using ensemble techniques [20].

Model validation by cross-validation is indispensable for evaluating the performance of a 
model on unseen data. Compared with holdout, leave-one-out, and k-fold cross-validation, 
nCV provides an almost unbiased estimate of the true error [26] and is the key technique 
in building a machine learning algorithm-based model. Theoretically, a small number 
of samples left out at each step of the outer loop implies high reliability of the true error 
estimation [26]. However, nCV is computationally expensive; therefore, we split the inner 
and outer loops by five folds, instead of ten folds, at the cost of a more biased evaluation. 
Notably, we included data-dependent preprocesses (i.e., missing value imputation, 
hyperparameter tuning, and feature selection) in the nCV procedure, to ensure that the data 
used for the final evaluation of the model had not been seen by the model at all.

The performance of a machine learning model is substantially affected by the quality of 
the selected features, and this phenomenon is called “bias-variance dilemma.” Specifically, 
incorporating excessive irrelevant features in the training model may lead to predictions that do 
not generalize well on validation data (overfitting). By contrast, excluding important features 
from the training model may lead to predictions with low accuracy (underfitting) [27]. In this 
study, the prealbumin level and the PT were identified as the predictors of top priority. Their 
importance was much greater than those of the other factors. However, the inclusion of other 
factors with the two variables would result in an increased prediction error. In the settings of 
the RSF algorithm and survival prediction of GC with distant node involvement, the prealbumin 
level and the PT on metastasis were the most crucial factors that outperformed the other 
variables, including pathological, therapeutic, and other biochemical features.

We previously reported that preoperative prealbumin and coagulation parameters indicate 
long-term outcomes of resectable GC [28]. In this study, the prealbumin level and the PT 
were recognized as the most important determinants of post-metastasis survival. Some 
studies have transformed these two variables into integrated scores to predict the prognosis 
of nonmetastatic GC [29-31]; however, clinical investigations seldom observe their impact on 
metastasis or recurrence. The RCS and the KM plots consistently indicated the existence of a 
threshold value that could classify patients into high- and low-risk subgroups. Nevertheless, 
the partial dependence plot did not support “the higher the better” pattern regarding 
the prealbumin level: a moderate decline of survival was clearly observed after the peak. 
Regarding the PT, the predicted survival rate decreased dramatically to approximately 15% 
once it exceeded 15 seconds, compared to a normal level reflecting a rate of over 40%.
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Prealbumin is a sensitive and early indicator of malnutrition, a condition that predicts poor 
clinical outcomes in people with cancer [32]. The underlying mechanism may involve immune 
function. Enteral nutrition improves prealbumin levels in postoperative cancer patients, 
and increased prealbumin is strongly correlated with higher CD4 and CD8 T cell counts and 
immunoglobulin levels [33]. In addition, prealbumin is predominantly synthesized in the liver; 
therefore, a decline in prealbumin may reflect a hepatic dysfunction and abnormal anticancer 
drug metabolism, which is a key factor that predicts worse outcomes in GC [34]. A prolonged 
PT is a sign of hemostatic system activation, and some tumors can express coagulation factors 
[35]. Alternatively, hemostasis may affect tumor progression by influencing the proliferation 
rate, angiogenesis, invasion, and metastasis [35]. GC patients with tumor thrombi [36] or 
disseminated intravascular coagulation [37] frequently have a severely poor prognosis.

Clinicians are expected to use prediction models in practice; however, machine learning 
models are difficult to interpret meaningfully, and they are also commonly described as 
black-box models [38]. The most well-known tool for risk prediction in clinical practice is 
a nomogram, which is based on the beta coefficient of each variable [39]. Thus, this tool 
is indirectly compatible with the RSF. Some studies have integrated nomograms with RSF 
as a dimension reduction technique for omics data; nevertheless, the estimated risk is still 
based on traditional methods [40,41]. In addition, these studies apply the RSF technique 
to a specific proportion of the entire database (typically numerous variables of a single 
domain); therefore, they do not utilize the strength that an RSF can also deal with categorized 
factors. Different from previous studies, we created a contour plot-based clinically applicable 
prediction system directly developed using an RSF. Contour plots are useful for displaying a 
three-dimensional data frame (i.e., prealbumin, PT, and predicted survival rate).

This study had some limitations. First, selection bias was probable because of the single-
center retrospective nature of the study. Second, heterogeneity of primary staging and 
treatment existed in the population owing to the inclusion of both synchronous and 
metachronous GC with nodal involvement. In fact, the prognosis after metastasis is the 
same for synchronous and metachronous cases as long as the cancer is in an advanced 
stage [4]. Third, the key predictors were closely correlated with physical status; therefore, 
the Eastern Cooperative Oncology Group score or the Karnofsky performance score is an 
important covariate. Here, we adjusted the results by the body mass index on metastasis, 
because the performance score was not documented for recurrence or metastasis diagnosis. 
Fourth, inclusion of more features or analysis of a cohort with different characteristics would 
result in different model constructions because machine learning learns from data, and 
changes in data would result in different outcomes. Our model performed best when only 
the prealbumin level and the PT were considered, whereas the other features were excluded 
because they were mathematically noisy. However, the exclusion of a variable from this model 
does not indicate its clinical insignificance.

In conclusion, machine learning with nCV is useful for identifying important determinants 
of cancer survival from high-dimensional datasets. In this study, the constructed RSF 
algorithm model revealed the prealbumin level and the PT as the two most crucial factors for 
predicting survival after GC with distant node metastasis is diagnosed. A contour plot was 
also depicted to intuitively display the joint relationship between these two parameters and 
the survival outcome.
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